
References

Mid-Term Hydro-Scheduling Problem: The Battle Between

Stochastic Dynamic Programming and Reinforcement

Learning
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3Université de Sherbrooke, Sherbrooke Canada. qd@terminal.io

September 12, 2018

6th Workshop on Hydro Scheduling in Competitive Electricity Markets, Stavanger, Norway 1



References

Optimization Problem I

Minimize the expected cost

Energy imports

Reservoir level constraints

Subject to

Mass balance equation

Energy demands

Recreational reservoir limits
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Optimization Problem II

We are looking for a feedback policy

(S) Reservoir storage, hydrological state of the watershed, ...

(U) Water released, spillage, imported energy, ...

(Q) Natural inflows to the resevoir, energy demand, ...

(C) Composite objective function

(Θ) Parameters of the policy
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Optimization Problem III

Policy should be found such as the following expected cost function is
minimized:

min J (Θ) = E

[
T∑
t=0

αtC (ut , st , qt)

]
st+1 = G (ut , st , qt)

ut = πΘ (st)

Solution Methods:

Dynamic programming methods (explicit)

Stochastic Dynamic Programming [1] [2] [3]

Approximate SDP for larger systems [4] [5]

Direct policy search methods (implicit)

Black-box optimization [6], [7]

Other types of methods (among others)

Extended Linear Quadratic Gaussian algorithm [8]

Optimal Trajectory Approach [9]
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Stochastic Dynamic Programming

The SDP feedback policy is given by:

πθt (st) = argmin
ut

{
E
qt

[
αtC (ut , st , qt) + αt+1F

(θt+1)
t+1 (st+1)

]}
where

Θ = [θ0, θ1, . . . , θT ]

F
(θt )
t ≈ Ft (st) = min

ut

{
E
qt

[
C (ut , st , qt) + αt+1F

(θt+1)
t+1 (st+1)

]}
F

(θt )
t can be estimated by

Lookup table

Piecewise linear approximation [10]

Multivariate spline [11], [12]

Neural network [13],[14]
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Direct Policy Search Methods

Parameters of the policy are directly optimized by “black box”
optimization where the objective function is estimated by simulating the
policy.

Universal approximator is used to model the policy (neural network)
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Direct Policy Search Methods

Many algorithms can be used to solve this black-box optimization problem (to
name only a few)

Differential Evolution [15]

Covariance Matrix Adaptation Evolution Strategy [16]

Particle Swarm [17]

Mesh Adaptive Direct Search [18]

Efficient and easy to use NOMAD software [19]

Proof of convergence, parallel computation, handles constraints
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Reinforce Algorithm I

If the policy is continuously differentiable w.r.t its parameters Θ, the
Reinforce algorithm[20] can be used to estimate the gradient of the
objective function.

The objective function can be rewritten using the expected cumulative
cost C over all possible trajectories:

J (Θ) = E

[
T∑
t=0

αtC (ut , st , qt)

]

J (Θ) =

∫
T
pΘ (τ)C (τ) dτ

∇ΘJ (Θ) =

∫
T
∇ΘpΘ (τ)C (τ) dτ

∇ΘJ (Θ) =

∫
T
pΘ (τ)∇Θ log pΘ (τ)C (τ) dτ

6th Workshop on Hydro Scheduling in Competitive Electricity Markets, Stavanger, Norway 8



References

Reinforce Algorithm II

By using a stochastic policy ut ∼ πΘ(ut | st), we have that:

pΘ (τ) = p (s0)
T∏
t=0

p (st+1 | st , ut)πΘ(ut | st)

As only the policy depends on Θ we have :

∇Θ log pΘ (τ) = log

(
p (s0)

T∏
t=0

p (st+1 | st , ut)πΘ(ut | st)

)

∇Θ log pΘ (τ) =
T∑
t=0

∇Θ log πΘ(ut | st)

In the case of random gaussian stochastic policy, i.e.
πΘ(ut | st) ∼ N

(
µ = ΦΘ(st), σ

2
)
, where ΦΘ(st) is a policy approximator,

with the derivative chain rule we have:

∇Θ log πΘ(ut | st) = ∇Θ logN ( ) = ∇ΘΦΘ(st)

(
πΘ(ut | st)− µ

(σ2)2

)
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Reinforce Algorithm III

We finally have the following results:

∇ΘJ (Θ) =

∫
T
pΘ (τ)∇Θ log pΘ (τ)C (τ) dτ

∇ΘJ (Θ) = E [∇Θ log pΘ (τ)C (τ)]

The expected gradient can be estimated be simulating the following
equation with many sequences, where a constant baseline is inserted to
reduce the variance of the approximator [21]:

∇ΘJ (Θ) =
T∑
t=0

∇Θ log πΘ(ut | st) (C (τ)− b)

The cost of the deterministic policy can be used as a baseline [22]:

Cπ (τ) =
∑T

t=0 αtC (ut , st , qt), ut ∼ πΘ(ut | st)

CΦ (τ) =
∑T

t=0 αtC (ut , st , qt), ut = ΦΘ(st)

∇ΘJ (Θ) =
∑T

t=0∇Θ log πΘ(ut | st) (Cπ (τ)− CΦ (τ))
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Reinforce Algorithm IV

N : Number of sequences to compute the expected gradient
VΨ : Approximator for water value function (critic)
A : Heuristic for step descent (we suggest Adam method [23])

while Until termination condition do
for i=1,2, . . ., N do

Randomly select initial state si,0
Stochastic Pass:
Rπi =

∑T
t=0 αtC (ut , st , qt) + αT+1VΨ (sT+1)) with ut ∼ πΘ(st)

gi =
∑T

t=0∇Θ log πΘ(ut | st)
Deterministic Pass:
Rd
i =

∑T
t=0 αtC (ut , st , qt) + αT+1VΨ (sT+1)) with ut = ΦΘ(st)

end
Actor Update:
∇ΘJ (Θ) = 1

N

∑N
i=1 gi

(
R s
i − Rd

i

)
Θ← A (Θ,∇ΘJ (Θ))
Critic Update:
L (Ψ) = 1

N

∑N
i=1 R

d
i − VΨ (si,0)

Ψ← A (Ψ,∇ΨL (Ψ))
end
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Synthetic Inflow Generation

Many inflow sequences must be used to find a robust policy [6], [22]

Synthetic inflow generation

Stochastic inflow generator with SAMS method [24]

Stochastic weather generator with KNNCad v4 [25] to drive the GR4J
hydrological model [26]
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Numerical Tests I

South part of the Saguenay Lac
St-Jean Hydropower system

1 reservoir of 5000 hm3 live storage

2 power houses

Installed capacity of 2000 MW

860 m3/sec avg. annual inflow

Historical Data

60 years of natural infows

25 years for validation

35 years for calibration

Randomly create 40 sets of 5000
sequences

SDP method

100 discretization points
for storage

2 state variables (storage
and hydrological variable)

DPS

1000 iterations

Neural neural with 1 hidden
layer of 20 nodes
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Optimization Method Results
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Inflow Data Generation Results I
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Convergence Rate
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Discussion

RL and DPS outperformed SDP for the SLSJ hydropower system in this
study.

Requires a lot of sequences to perform the training.

RL is a more complex and “black box” method for operation engineers.

How to implement RL in day-to-day operations with updated forecasts?
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Python code (use at your own risk !) I

import pickle
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras import backend as k
import tensorflow as tf
from scipy.stats import norm , uniform

# Reward function
def reward(storage , inflow , release , t):

# Update state
end_storage = storage + delta * (inflow - release)
# Check if release is feasible
z = 0.0
if end_storage > smax:

z += 0.0005*( end_storage - smax )**2.0
release += (end_storage - smax) / delta
end_storage = storage + delta * (inflow - release)

if end_storage < 0.0:
z += 0.0005*( end_storage )**2.0
release += (end_storage -1.e-3) / delta
end_storage = storage + delta * (inflow - release)

if release > rmax: # Spillage
mw = mwmax - 0.02 * (release - rmax )**1.3

else: # No Spillage
mw = (release )*0.35 * (0.1*( storage )/sref )**0.5

return ( -(0.99)** float(t) * mw / 1000.0 + z, end_storage)
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Python code II

# Simulate a sequence
def simulate(ini_storage , inflows , var , stochastic , actor):

# To cumulate the reward
R = 0.0
# To cumulate the gradient
G = [np.zeros_like(a) for a in actor.get_weights ()]
# Start simulation
storage = ini_storage
# Number of period
T = inflows.size
nsin = np.sin(np.array(range(T)) / float(T-1) * 2 * np.pi)
ncos = np.cos(np.array(range(T)) / float(T-1) * 2 * np.pi)
for t in range(T):

# Get input for critic
x = np.array ([[ inflows[t]/Qmax[t], storage/smax ,

ncos[t], nsin[t]]])
# Get the output of the network
yd = actor.predict(x)[0,0]
# Add noise
if stochastic:

ys = norm.rvs(loc=yd, scale=var)
else:

ys = yd
# De-Normalization
release = max(0.0, ys*rmax)
(r, storage) = reward(storage , inflows[t], release , t)
# Cumulate information
R += r
if stochastic:

g = sess.run(gradients ,feed_dict ={actor.input:x})
G = [G[i] + ((ys -yd)/var**2 * g[i]) for i in range(len(g))]

else:
G = None

return (R, G, storage)
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Python code III

if __name__ == "__main__":
# Load inflow sequences and compute stats for normalization
(Qcalib , Qvalid) = pickle.load(open(’Inflows.data’,’rb’))
Qmax = Qcalib.max(axis =0)

# Parameters for reward function
(smax , rmax , mwmax , sref , delta) = (5000. , 2500.0 , 1800.0 , 3000.0 , 0.6048)

# Create network for Actor
(anInput , anHidden) = (4, 20)
actor = Sequential ()
actor.add(Dense(anHidden , input_dim=anInput ,

activation=’tanh’, init=’uniform ’))
actor.add(Dense(1, activation=’sigmoid ’, init=’uniform ’))
actor.compile(loss=’mean_squared_error ’,

optimizer=’adam’, metrics =[’accuracy ’])

# To compute the gradient w.r.t. output
outputTensor = actor.output
listOfVariableTensors = actor.trainable_weights
gradients = k.gradients(outputTensor , listOfVariableTensors)
sess = tf.InteractiveSession ()
sess.run(tf.global_variables_initializer ())

# Create network for Critic
cnInput = 1
cnHidden = 20
critic = Sequential ()
critic.add(Dense(cnHidden , input_dim=cnInput ,

activation=’relu’, init=’uniform ’))
critic.add(Dense(1, activation=’linear ’, init=’uniform ’))
critic.compile(loss=’mean_squared_error ’,

optimizer=’adam’, metrics =[’accuracy ’])
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Python code IV

# Parameters for Adam update formula
beta1 = 0.4
beta2 = 0.7
eps = 1.e-8
alpha = 0.1
disc_end = (0.99)** float(Qvalid.shape [1])

# Initial storage for simulation
s0Valid = 0.85* smax

# Number of sequence per iteration
N = 100
# Number of iteration
MaxIter = 100
# Initial variance
# NOTE : This paramter can be optimized in the same way
# as the weights of the network are optimized.
var = 0.1
# to store the weights
Wold = actor.get_weights ()
Wnew = [np.zeros_like(w) for w in Wold]
Mg = [np.zeros_like(w) for w in Wold]
Vg = [np.zeros_like(w) for w in Wold]
grad = [np.zeros_like(w) for w in Wold]
step = [np.zeros_like(w) for w in Wold]
# Rewards (stochastic and deterministic pass)
Rs = np.zeros((N, 1))
Rd = np.zeros((N, 1))
# To update the critic
s0 = np.zeros((N,1))
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Python code V

#
# Loop on each outer iteration
for j in range(MaxIter ):

#=======================================================================
# Do printing
if j % 10.0 == 0.0:

print "Iter       E[ R() ]        || g(J) ||      alpha" +\
"          || step ||     Valid: E[ R() ]"

# Perform a simulation over validation set
(Rvalid , sini) = (0.0, s0Valid)
for k in range(Qvalid.shape [0]):

Q = Qvalid[k,:]
(R, _, sini) = simulate(sini , Q, var , False , actor)
Rvalid += R

Rvalid /= float(Qvalid.shape [0])
fmt = "%4d %15.7f %15.7f %15.7f %15.7f %15.7f"
print fmt % (j, Rs.mean(), sum([np.linalg.norm(g) for g in grad]), alpha ,

sum([np.linalg.norm(s) for s in step]), Rvalid)
#=======================================================================
# To store gradient
g = [None] * N
#
# Simulate each sequences
iseq = np.random.permutation(Qcalib.shape [0]-1)
for k in range(N):

s0[k,0] = uniform.rvs() * smax
i = iseq[k]
Q = Qcalib[i, :]
# Stochastic pass
(Rs[k, 0], g[k], sT) = simulate(s0[k,0], Q, var , True , actor)
# Add critic
Rs[k, 0] += disc_end*critic.predict(np.array ([[sT/smax ]]))[0 ,0]
# Deterministic pass
(Rd[k, 0], _, sT) = simulate(s0[k,0], Q, var , False , actor)
# Add critic
Rd[k, 0] += disc_end*critic.predict(np.array ([[sT/smax ]]))[0 ,0]
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Python code VI

# Update the critic
critic.fit(s0/smax , Rd, batch_size =10, epochs =100, verbose =0)
#
# Expected gradient
grad = [np.zeros_like(w) for w in Wold]
for k in range(N):

for i in range(len(grad )):
grad[i] += g[k][i] * (Rs[k,0] - Rd[k,0])

grad = [g / float(N) for g in grad]
#
# Update weights with Adam
Mg = [beta1*m + (1.0- beta1 )*g for (m,g) in zip(Mg, grad)]
Vg =[beta2*v + (1.0- beta2)*g**2 for (v,g) in zip(Vg , grad)]
alpha = alpha*np.sqrt (1.0 - beta2 **(j+1.0))
alpha /= (1.0 - beta1 **(j+1.0))
step = [m/(np.sqrt(v) + eps) for (m,v) in zip(Mg,Vg)]
Wnew = [w - alpha*s for (w, s) in zip(Wold , step)]
actor.set_weights(Wnew)
Wold = [w for w in Wnew]
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Python code output

Iter E[ R() ] || g(J) || alpha || step || Valid: E[ R() ]
1 13235.6422075 6620.7401123 0.0912871 20.6913638 8274.0557306
2 10886.2509498 13714.1228027 0.0776096 20.1195977 7394.6909440
3 7114.4585637 5315.5012207 0.0672082 12.7249644 6470.1754653
4 7327.4838608 10749.0970459 0.0601261 15.3354113 4981.3557104
5 5740.6599404 6342.7301025 0.0554085 13.5942354 4463.4299631
6 6549.4258533 1967.5065536 0.0522612 8.7417132 4361.7644330
7 6199.3866973 13925.8970947 0.0501452 14.6356510 4555.0299688
8 5194.8458706 5908.9888306 0.0487103 5.4383829 4442.8724605
9 5669.7952595 3181.6757812 0.0477299 4.1133877 4271.2831183

Iter E[ R() ] || g(J) || alpha || step || Valid: E[ R() ]
10 5436.6479017 2435.9600983 0.0470558 4.0149955 4243.0616360
11 6628.2210682 2331.7276611 0.0465902 5.0736826 4141.0821997
12 6310.2819751 3661.7816162 0.0462675 7.9634422 4037.0038614
13 6614.8746142 4420.9333496 0.0460431 8.6875266 3846.5559875

[...]
Iter E[ R() ] || g(J) || alpha || step || Valid: E[ R() ]

50 7769.0894629 1403.5239983 0.0455247 7.3211062 4000.6439511
51 9281.7242786 14915.5718079 0.0455247 12.9929575 2966.6926542
52 8305.2400483 6395.8134804 0.0455247 10.2150637 2521.9583363
53 7239.6641027 4375.2785721 0.0455247 9.7960255 2628.4929596
54 8108.4698861 12411.9685974 0.0455247 11.5797659 2677.8480926

[...]
95 8336.9839646 7207.6943054 0.0455247 12.0878678 2455.6306705
96 8274.7471423 5084.1004944 0.0455247 12.0743954 2621.1963913
97 8813.3507141 13633.3601074 0.0455247 18.8322048 2872.9041490
98 8443.7042156 2772.4992523 0.0455247 8.1704949 3024.1396766
99 7582.1613727 3571.3728905 0.0455247 9.4253207 2992.7194769
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