

MEDIUM-TERM HYDROPOWER SCHEDULING BY STOCHASTIC DUAL DYNAMIC INTEGER PROGRAMMING: A CASE STUDY

Martin Hjelmeland

NTNU Norwegian University of Science and Technology, Trondheim, Norway. martin.hjelmeland@ntnu.no

13.9.2018 – Hydro Power Scheduling Workshop 2018, Stavanger, Norway

Background

Lysebotn-2

- Research project initiated from the Hydropower Scheduling Workshop in 2012.
- Medium-term hydropower scheduling in multiple markets
 - Affects on Water Values

The Medium-Term Hydropower Scheduling (MTHS) Problem

- Challenges
 - Uncertainty of inflow and future energy/capacity prices
 - Level of details?
 - Individual generators
 - Unit commitment
 - Water head
 - Other system constraints

- Objective: Maximize income from energy and capacity reserves
 - Main scope of my PhD thesis
- Capacity reserves/Spinning reserves
 - Primary
 - Secondary

- Generation function for each hydropower station
- Head dependencies?

Stochastic Dual Dynamic integer Programming (SDDiP)

J. Zou, X. A. Sun and S. Ahmed, «Stochastic dual dynamic integer programming», Mathematical Programming 2018.

Stochastic Dual Dynamic Integer Programming (SDDiP)

Traditional

• Used in generic SDDP

1	Benders Cuts

2	Integer Optimality Cuts
3	

- Evaluates that exact solution
- Large coefficients
 - Increased CPU time
- Not applicable in practice

3	Lagrangian Cuts

Strengthened Benders Cuts

- Lagrangian relaxation is normally used for simplifying difficult constraints
- Here the problem is to find the Lagrangian multipliers that are used to generate tight cuts
- Relaxing time-linking constraint
- Computational demanding
 - Approx 30 MIP problems for subproblem

	Benders Cuts
	Integer Ontimality Cuts
	integer Optimality euts
3	Lagrangian Cuts

• Parallel to Benders Cuts

• Requires to solve one additional MIP problem

3	Strengthened Benders Cuts

3	Strengthened Benders Cuts

- Can be computed without having binary state variables
- Does not guarantee convergence but might provide a satisfying solution.

NTNU ENERGY < Strategic Research Area 2014-2023

Case Study

M. N. Hjelmeland, J. Zou, A. Helseth and S. Ahmed, "Nonconvex Medium-Term Hydropower Scheduling by Stochastic Dual Dynamic Integer Programming," *IEEE Transactions on Sustainable Energy*, 2018.

- Sales of both energy and reserve capacity
- 2 years
 - Weekly decision stages
- Uncertainty of inflow and energy price
 - VAR-1 model
 - McCormick Envelopes for bilinear terms
- Nonconvex generation function
 - Only dependent on discharge
- Minimum generation limits
- Spillage
- Reservoir operation

Results

• Lagrangian cuts too comprehensible.

TABLE ICASE I, INFLOW UNCERTAINTY. SDDIP (TOP) AND APPROXIMATEPROBLEM (BOTTOM).

TABLE II CASE II, INFLOW AND ENERGY PRICE UNCERTAINTY. SDDIP (TOP) AND APPROXIMATE PROBLEM (BOTTOM).

	UB [kEUR]	stat. LB [kEUR]	gap [%]	time [s]		UB [kEUR]	stat. LB [kEUR]	gap [%]	<u>gap</u> [%]	time [s]
B	47 353.72	40 776.87	13.89	16 792	B	107 469.94	42 276.74	60.66	11.24	11 788
B-SB	42 907.58	41 135.43	4.13	17 716	B-SB	84 380.16	43 802.85	48.09	7.37	13 896
B-SB-I	42 854.80	41 197.25	3.87	30 277	B-SB-I	84 291.78	43 748.69	48.10	7.50	18 966
B	47 030.08	40 973.28	12.88	742	B	107 449.36	42 444.20	60.50	10.80	2 279
B-SB	42 906.90	41 350.85	3.63	1 176	B-SB	84 367.26	43 891.43	47.98	7.15	2 869

Adding Head Dependencies

Head Function

Head Dependencies

- Multiple turbines
 - Adding to the nonconvexities
- Splitting the generation function into convex segments
 - Efficient way of doing this?

Visualization of the EFP Function

Visualize the EFP Function

• Simple Idea

- Solve the extensive form of the problem
- Iterate over different starting reservoirs
- Add different nonlinearities and observe

Area 2014-2023

Case Study 2.0

Case Studies

- Sales of both energy and reserve capacity
 - A. Downward, 2018
- 2 years
 - Weekly decision stages
- Uncertainty of inflow, energy & capacity price
 - VAR-1 model
 - McCormick Envelopes for bilinear terms
- Nonconvex generation function
 - Dependent on discharge and head
- Minimum generation limits
- Spillage
- Reservoir operation

- Significantly improved Gap
- Slightly improvement of policy

Water Values

- Assuming all but one reservoir fixed
- Water values for a given week using either B or SB
- Generally lower water values by SB
 - Does not imply lower operating states
 - Need more testing and validation

Thank you for your attention!

....

.....

- J. Zou, A. Sun and S. Ahmed , "Stochastic dual dynamic integer programming," *Mathematical Programming*, Mar 2018.
 - ICSP 2016 Presentation on SDDiP by Shabbir Ahmed: <u>https://www.youtube.com/watch?v=Ewr2Boj0Jgs</u>
- R. Baucke, A. Downward, G. Zakeri, A deterministic algorithm for solving stochastic minimax dynamic programmes, Optimization-online. URL: <u>http://www.optimization-</u> <u>online.org/DB_HTML/2018/02/6449.html</u>
- A. Downward, O. Dowson, R. Baucke, Stochastic dual dynamic programming with stagewise dependent objective uncertainty, Optimization-online. URL: <u>http://www.optimization-</u> <u>online.org/DB_HTML/2018/02/6454.html</u>
- M. N. Hjelmeland, A. Helseth, M. Korpås, Impact of modelling details on the generation function for a norwegian hydropower producer, Journal of Physics: Conference Series 1042 (1) (2018) 012010. doi:10.1088/1742-6596/1042/1/012010.

