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Lilian C. Brandão and André L. Diniz Asynchronous parallel stochastic programming September 13, 2018 1 / 28



Outline

1 Application on Hydrothermal Planning Problem

2 Parallel Dual Dynamic Programming

3 Asynchronous Dual Dynamic Programming

4 Partial Asynchronous Dual Dynamic Programming

5 Simulations and Results

6 Conclusions
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Hydrothermal Planning Problem

⇒ Resource: Energy (thermal and hydraulic)
⇒ Minimize thermal generation cost
⇒ Subject to : (1) system demand

(2) physical constraint of the units
(3) stochastic future water inflow

Decision

Minimize thermal cost 
using stored water

Future
water inflow Consequences

High

Low

Ok

Higher cost/
Energy deficit

High

Low

Spill water

Ok

Keep the water and 
use thermal energy
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Hydrothermal Planning Problem

Real life problem

Brazilian operation planning is made using stochastic optimization
models developed by Cepel

model detail
level

representative
inflow scenarios

time horizon

Realistic model

I Usually the problem has
high dimension

I May take considerable
CPU time to be solved

Application on the Brazilian short/mid term model DECOMP

Enable considering uncertainty in the first month, larger time horizon
and improve the detailing of the features
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Hydrothermal Planning Problem
Problem considered: Mid-term Hydrothermal Coordination (2-months / 1 year):

min
NT∑
t=1

NS∑
s=1

NT∑
i=1

NL∑
p=1

cti ,t×gtp,t,si +
NS∑
s=1

FCF (V T ,s
i )

→ Objective Function

NT∑
i=1

gtp,t,si +
NH∑
j=1

ghp,t,sj = dp,t , ∀p, s, t → Energy Balance

v t,si +
NL∑
p=1

(qp,t,si +sp,t,si )−
NL∑
p=1

∑
j∈Ωup

(qp,t,sj +sp,t,sj ) = v t−1,r
i + I t,si , ∀i , s, t

→ Water Balance

ghp,t,si ≤ γ(k)
0,i ,t,s + γ

(k)
v ,i ,t,s(v t−1,r

i + v t,si )/2 + γ
(k)
q,i ,t,sq

p,t,s
i + γ

(k)
s,i ,t,ss

p,t,s
i

∀k, i , p, t, s → Hydro Production Function

and others...
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Contributions of this work

Dual Dynamic programming is widely used to solve stochastic
optimization problems

As an iterative method it can take a large number of iterations to
converge

We seek to accelerate the solution process by using several cores

We propose an Asynchronous dual dynamic programming
(ADDP) which is more suitable for parallel applications
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Dual Dynamic Programming

Decompose the problem into time stages and scenarios subproblems
(scenario tree)

The time stages are coupled by state variables

Iteratively traverse the tree solving the subproblems

Build costs approximation based on dual solutions

Stops by some convergence criteria, usually when the cost
approximation is close enough to the real cost

Algorithm iteration:

Forward pass: travel forward along the tree transmitting state
variables

Backward pass: travel backward along the tree transmitting cost
information

Convergence test
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Traditional Parallelization

[Dempster and Thompson, 1998]

Nodes at the same time period are solved in parallel

In-between time periods nodes must wait either for states from the
previous period or cuts from next period

There is a synchronization point between the time periods

The maximum number of processors that can be used is number of
leaf nodes on the tree
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Dual Dynamic Programming (Parallel)

Lilian C. Brandão and André L. Diniz Asynchronous parallel stochastic programming September 13, 2018 10 / 28



Dual Dynamic Programming (Parallel)
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im
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Stage 1

Stage 2

Stage 3
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Dual Dynamic Programming (Parallel)

two
possibilities

two
possibilities

two
possibilities

p=0.4
p=0.6

p=0.2
p=0.8 p=0.5

p=0.5
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Dual Dynamic Programming (Parallel)

p=0.4
p=0.6

p=0.2
p=0.8 p=0.5
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Scenarios: 1
p=0.08

   2
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3
p=0.30

    4
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Asynchronous Dual Dynamic Programming (ADDP)

Performs steps instead of iterations

Allows full node-wise parallelization within each step

Information is transmitted between steps

Convergence criteria is similar to DDP

Algorithm steps:

Solve all nodes independently

Test convergence by comparing the cost approximation (Benders cuts)
and the real cost (sum of nodes solutions) of the corresponding step

Transmit information, state variables and Benders cuts, through the
tree
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Asynchronous Dual Dynamic Programming (ADDP)

idle:

P1 P2

P3

P0

P4 P5 P6
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Asynchronous Dual Dynamic Programming (ADDP)

Step 1:
 - Solving
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Asynchronous Dual Dynamic Programming (ADDP)
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Partial Asynchronous Dual Dynamic Programming
(PADDP)

The scenario tree may have a very large number of nodes. In that
case, even for ADDP, nodes may share the same processor

Makes use information of nodes in the same processor

A partial synchronism is conveniently introduced at the algorithm

We seek to increase the convergence rate, as the number of
processors decrease
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Partial Asynchronous Dual Dynamic Programming
(PADDP)
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Partial Asynchronous Dual Dynamic Programming
(PADDP)
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Study cases

84 hydro plants and 46 thermal plants;

Constrains: load supply, water balance, future cost function (long
term model), piecewise linear hydro power function;

4 different inflow scenario trees:

Study case 1:

Total number of nodes: 127

Time periods: 1 2 3 4 5 6 7
# Scenarios per period: 1 2 2 2 2 2 2
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Study cases

Study case 2:

Total number of nodes: 781

Time periods: 1 2 3 4 5
# Scenarios per period: 1 5 5 5 5
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Study cases

Study case 3 (official PMO scenario tree):

Total number of nodes: 306

Time periods: 1 2 3 4 5 6 7
# Scenarios per period: 1 1 1 1 1 1 300
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Study cases

Study case 4:

Number of nodes: 221

Time periods: 1 2 3 4 5 6 7 8 9 10 11 12
Scenarios per period: 1 20 1 1 1 1 1 1 1 1 1 1
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Results on Parallel Processing

Algorithms assessed:

DDP: traditional Dual Dynamic Programming parallelization
[Dempster and Thompson, 1998]

ADDP: the proposed asynchronous approach

PADDP: the alternative partial asynchronous framework
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Parallel Results - Case 1
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Lilian C. Brandão and André L. Diniz Asynchronous parallel stochastic programming September 13, 2018 23 / 28



Parallel Results - Case 2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
ti

vi
ty

 C
P

U
 t

im
e

/t
o

ta
l C

P
U

 t
im

e

Relative CPU time of an average iteration/step

DDP

ADDP

PADDP

0.0

0.1

0.2

0.3

waiting computing

ac
ti

vi
ty

 C
P

U
 t

im
e

/t
o

ta
l C

P
U

 t
im

e

Processor activity

Number of Nodes: 781
Number of Processors

1 12 24 36 48 60 72 84 96 108 120
DDP t(s):

9536 2727 1676 1164 925 817 590 526 514 519 504

ADDP t(s):

19042 2017 1102 752 578 470 408 363 310 290 272

PADDP t(s):

9944 1432 825 533 431 373 313 268 243 233 236
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Parallel Results - Case 3
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Parallel Results - Case 4
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Conclusions and further work

Main results:

Asynchronous dual dynamic programming (ADDP):
I Allows full node-wise parallelization
I The sequential time is worse than DDP
I However with a small number of processors the wall time is better than

DDP
I Speedup and efficiency are better than DDP

Partial asynchronous dual dynamic programming (PADDP):
I Has better convergence rate than ADDP
I Algorithm changes with the number of processors, producing different

results
I Yields the best computational time

Future work:

Study better distribution of the nodes into the processors (PADDP)

Study the use of a dynamic parallelization scheme
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Speedup and efficiency - Study case 1
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Speedup and efficiency - Study case 2
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Speedup and efficiency - Study case 3
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Speedup and efficiency - Study case 4
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Average CPU time in each processor - Study case 1
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Average CPU time in each processor - Study case 2
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Average CPU time in each processor - Study case 3
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Average CPU time in each processor - Study case 4
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