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@ Application on Hydrothermal Planning Problem
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Hydrothermal Planning Problem

= Resource: Energy (thermal and hydraulic)

= Minimize thermal generation cost

= Subject to : (1) system demand
(2) physical constraint of the units
(3) stochastic future water inflow
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Hydrothermal Planning Problem

= Resource: Energy (thermal and hydraulic)

= Minimize thermal generation cost

= Subject to : (1) system demand
(2) physical constraint of the units
(3) stochastic future water inflow
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Hydrothermal Planning Problem

@ Real life problem

@ Brazilian operation planning is made using stochastic optimization
models developed by Cepel
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Hydrothermal Planning Problem

@ Real life problem
@ Brazilian operation planning is made using stochastic optimization
models developed by Cepel

time horizon
» Usually the problem has
model detall high dimension
level Rea||st|c model » May take considerable
representative 1 CPU time to be solved
inflow scenarios

@ Application on the Brazilian short/mid term model DECOMP

@ Enable considering uncertainty in the first month, larger time horizon
and improve the detailing of the features
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Hydrothermal Planning Problem
Problem considered: Mid-term Hydrothermal Coordination (2-months / 1 year):
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and others...
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Contributions of this work

@ Dual Dynamic programming is widely used to solve stochastic
optimization problems

@ As an iterative method it can take a large number of iterations to
converge

@ We seek to accelerate the solution process by using several cores

@ We propose an Asynchronous dual dynamic programming
(ADDP) which is more suitable for parallel applications
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Dual Dynamic Programming

@ Decompose the problem into time stages and scenarios subproblems
(scenario tree)

The time stages are coupled by state variables
Iteratively traverse the tree solving the subproblems

Build costs approximation based on dual solutions

Stops by some convergence criteria, usually when the cost
approximation is close enough to the real cost

Algorithm iteration:
@ Forward pass: travel forward along the tree transmitting state
variables
@ Backward pass: travel backward along the tree transmitting cost
information

@ Convergence test
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Traditional Parallelization

[Dempster and Thompson, 1998]

Nodes at the same time period are solved in parallel

In-between time periods nodes must wait either for states from the
previous period or cuts from next period

There is a synchronization point between the time periods

The maximum number of processors that can be used is number of
leaf nodes on the tree
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)

two
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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Dual Dynamic Programming (Parallel)
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9 Asynchronous Dual Dynamic Programming
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Asynchronous Dual Dynamic Programming (ADDP)

Performs steps instead of iterations
Allows full node-wise parallelization within each step

Information is transmitted between steps

Convergence criteria is similar to DDP

Algorithm steps:
@ Solve all nodes independently

@ Test convergence by comparing the cost approximation (Benders cuts)
and the real cost (sum of nodes solutions) of the corresponding step

@ Transmit information, state variables and Benders cuts, through the
tree
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Asynchronous Dual Dynamic Programming (ADDP)
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Partial Asynchronous Dual Dynamic Programming
(PADDP)

@ The scenario tree may have a very large number of nodes. In that
case, even for ADDP, nodes may share the same processor

@ Makes use information of nodes in the same processor

@ A partial synchronism is conveniently introduced at the algorithm

@ We seek to increase the convergence rate, as the number of
processors decrease
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Partial Asynchronous Dual Dynamic Programming
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Partial Asynchronous Dual Dynamic Programming
(PADDP)
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Partial Asynchronous Dual Dynamic Programming
(PADDP)
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Partial Asynchronous Dual Dynamic Programming
(PADDP)

Step 1: e
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Study cases

@ 84 hydro plants and 46 thermal plants;

e Constrains: load supply, water balance, future cost function (long
term model), piecewise linear hydro power function;

@ 4 different inflow scenario trees:

Study case 1:

| Total number of nodes: [ 127 |

Time periods: 1 213|456 |7
# Scenarios per period: 1 21212222

SRR
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Study cases

Study case 2:

| Total number of nodes: | 781 |

Time periods: 1 213|415
# Scenarios per period: 1 515|565

SR

INN/\N /J\\ N\ : AN\
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Study cases

Study case 3 (official PMO scenario tree):

| Total number of nodes: | 306 |

Time periods: 1 21314 |5]6| 7
# Scenarios per period: 1 1/1)1|1|1]300

Lilian C. Brand3o and André L. Diniz Asynchronous parallel stochastic programming September 13, 2018 20 / 28



Study cases

Study case 4:

| Number of nodes: [ 221 |

Time periods: 1 2 |3|4|5|6|7|8[9]10|11 12
Scenarios per period: 1 2001 |1j1{1j111|1 1 1
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Results on Parallel Processing

Algorithms assessed:

o DDP: traditional Dual Dynamic Programming parallelization
[Dempster and Thompson, 1998]

@ ADDP: the proposed asynchronous approach

o PADDP: the alternative partial asynchronous framework
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Parallel Results - Case 1

Relative CPU time of an average iteration/step

1.0

g

509 uDDP
208

[} m ADDP
©07

= PADDP

waiting computing
Processor activity

Number of Nodes: 127

Number of Processors
1 \12\24\36\48\60\72\84\96\108\120

DDP t(s):

1845 | 655 | 517 | 347 | 358 | 317 | 321 | 321 | 326 | 323 | 327
ADDP t(s):

3563 | 408 | 302 | 175 | 147 | 135 | 103 | 104 | 101 | 93 | 89
PADDP t(s):

1897 [ 337 [ 249 [ 177 | 110 [ 85 |84 |73 |65 |71 |70
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Parallel Results - Case 2

Relative CPU time of an average iteration/step

£ 0 =DDP

m ADDP
H PADDP

waiting computing
Processor activity

Number of Nodes: 781

Number of Processors

1 (12 |24 [36 [48 [60 [72 [84 |96 | 108 | 120
DDP t(s):

9536 | 2727 | 1676 | 1164 | 925 | 817 | 590 | 526 | 514 | 519 | 504
ADDRP t(s):

19042 | 2017 | 1102 | 752 | 578 | 470 | 408 | 363 | 310 | 290 | 272
PADDP t(s):

9944 | 1432|825 [533 [431 373313268 | 243 | 233 [ 236
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Parallel Results - Case 3
Relative CPU time of an average iteration/step

0.8
£
So07 = DDP
pol
506 = ADDP

m PADDP

waiting computing
Processor activity

Number of Nodes: 306

Number of Processors
1 (12 |24 [36 [48 |60 [84 [96 |[108 | 120
DDP t(s):
5132 | 1211|804 | 643 | 562 | 506 | 478 | 476 | 452 | 428
ADDRP t(s):
13075 | 2053 | 1397 | 1293 | 1222 | 1175 | 1088 | 1054 | 1060 | 1037
PADDP t(s):
6266 | 998 | 724 | 473 | 576 | 429 | 492 | 682 | 466 | 475
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Parallel Results - Case 4
Relative CPU time of an average iteration/step

08
o
Eo7
> = DDP
506

= ADDP

m PADDP

waiting computing
Processor activity

Number of Nodes: 221

Number of Processors
1 (12 |24 |36 |48 |60 [72 [ 84 [96 | 108 | 120
DDP t(s):
6179 | 1024 | 725 | 722 [ 748 | 730 | 715 | 735 | 725 | 736 | 735
ADDP t(s):
10652 | 1143 | 806 | 581 | 480 | 437 | 409 | 350 | 357 | 348 | 282
PADDP t(s):
6566 | 641 | 400 | 320 | 270 | 274 | 247 | 208 | 221 | 202 | 171
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Conclusions and further work

Main results:

@ Asynchronous dual dynamic programming (ADDP):
» Allows full node-wise parallelization
» The sequential time is worse than DDP

» However with a small number of processors the wall time is better than
DDP

Speedup and efficiency are better than DDP

v
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@ Asynchronous dual dynamic programming (ADDP):
» Allows full node-wise parallelization
» The sequential time is worse than DDP

» However with a small number of processors the wall time is better than
DDP

» Speedup and efficiency are better than DDP
e Partial asynchronous dual dynamic programming (PADDP):
» Has better convergence rate than ADDP
» Algorithm changes with the number of processors, producing different
results
> Yields the best computational time
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Conclusions and further work

Main results:

@ Asynchronous dual dynamic programming (ADDP):
» Allows full node-wise parallelization
» The sequential time is worse than DDP

» However with a small number of processors the wall time is better than
DDP

» Speedup and efficiency are better than DDP
e Partial asynchronous dual dynamic programming (PADDP):
» Has better convergence rate than ADDP
» Algorithm changes with the number of processors, producing different
results
> Yields the best computational time

Future work:
@ Study better distribution of the nodes into the processors (PADDP)

@ Study the use of a dynamic parallelization scheme
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Speedup and efficiency - Study case 1
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Speedup and efficiency - Study case 2

SpeedUp Efficiency
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Speedup and efficiency - Study case 3

SpeedUp Efficiency
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Speedup and efficiency - Study case 4

SpeedUp Efficiency
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Average CPU time in each processor - Study case 1

Average CPU time per iteration/step
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Average CPU time in each processor - Study case 2
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Average CPU time in each processor - Study case 3

Average CPU time per iteration/step
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Average CPU time in each processor - Study case 4
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