SHyFT INTRODUCTION TO STATKRAFT'S <u>HY</u>DROLOGIC FORECASTING <u>T</u>OOLBOX

Providing a framework for hydrologic forecasting in operational environments

Gaute Lappegard

VP Hydrology

Developers: Burkhart, Matt, Abdella, Helset, Skavhaug

Statkraft's global presence – modeling challenges

Shyft is a C++ and Python based toolbox designed to:

- provide a <u>flexible</u> hydrologic forecasting toolbox built for operational environments
- enable highly <u>efficient</u> calculations of hydrologic response at the regional scale
- use the multiple working hypothesis to obtain an <u>optimal</u> catchment forecast
- rapid implementation of <u>improvements</u> identified through research activities
- \Rightarrow Give us controll of the sensitivity and uncertainty of model and the forcings

Statkraf

Method of multiple configuration testing

By keeping the hydrologic model simple, and using a flexible API, SHyFT enables us to evaluate <u>uncertainty and sensitivity</u> resulting from **multiple forecast system configurations**

- Which model provides greatest fidelity to our forecast?
- What forcing datasets provide the best inflow forecasts?
- What is the impact of choice of calibration routine?
- Can we calibrate using remote sensing data?
- Energy balance or degree day?
- What is the appropriate scale?

"SHyFT is not a model!"

"SHyFT is a platform, with an API!"

from shyft import api

```
params = api.pt_gs_k.PTGSKParameter()
model = api.pt_gs_k.PTGSKModel(cell_data_vector, params)
```

model.run_cells()

True flexibility is gained in evaluation of multiple configurations

Historical Input	Forecast Input	Input Processing	Model Stack	Simulation Unit	Routing	Calibration	Updating	Forecast System	
Station	AROME	IDW Intern	PTGSK	Cell	Unit	Min	None	1	
AROME	EC	Kriging	<u>PTSSK</u>	Subcat.	Hyd.	Bobyqua	Substitute	2	
EC Grid	GFS	Interp.	<u>PTHSK</u>	ElevZone	Hydraulic	Complex	Weighting	3	
ERA- Interim		Bayes TKrig	HBVSTac k			DREAM	<u>Kalman</u> Filter	4	
SE-Norge		GridPP						5	
		Weighting	Uncertai	6					
		OM	 Choice forcing 	7					
		QIT	 objective function 					8	
			observation uncertainty						

The hydrological model in SHyFT

'Model Stacks' allow us to address uncertainty and sensitivity due to model selection by providing a **simple** collection of routines for hydropower inflow forecasting.

Potential ET	Actual ET	Snow Response	Glacier Melt	Soil Moisture	Runoff Response	 Model Stacks
Priestley Taylor	Exp. Scaling	Gamma Snow	Glacier Melt	<u>HBV</u> Soil	Linear Tanks	 PTGSK
	Linear Scaling	Skaugen Snow			Kirchner Routine	PTHSK PTSSK
		HBV Snow				HBVStack

Shyft allows for multiple working hypothesis

Computational efficiency allows for testing of a large number of model configurations

Forcing data represents the «truth», but what is the correct forcing?

Historical Input	Forecast Input	Input Processing	Model Stack	Simulation Unit	Routing	Calibration	Updating	Forecast System
Station	AROME	IDW Interp	PTGSK	Cell	Unit	Min	None	1
AROME	EC	Kriging	<u>PTSSK</u>	Subcat.	Hyd.	<u>Bobyqua</u>	Substitute	2
EC Grid	GFS	Interp.	PTHSK	ElevZone	Hydraulic	Complex	Weighting	3
ERA- Interim		Bayes TKrig	HBVSTac k			DREAM	Kalman Filter	4
SE-Norge		GridPP	1007.0					5
		Weighting						6
		QM						7
								8

Repository concept allows for fast analysis of different data sources

Model spread resulting from various sources of uncertainty and sensitivities

Operational forecasting with uncertainty

Forcing data:

gridded data from a weather generator

Horizon: 200 days

Simulation time resolution: hourly

Simulation spatial resolution: 2x2 km

SHyFT is available from: https://github.com/statkraft/shyft

Gaute.lappegard@statkraft.com

www.statkraft.com