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Introduction

— Inflow forecasting methods: Data-driven methods and
physically-based methods

— Ensemble predictions are commonly used to assess the
uncertainty of future inflow

— Ensemble predictions are often biased and have too small
variance

— In this work we develop statistical postprocessing methods to
obtain calibrated and sharp probabilistic forecasts
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Bayesian Model Averaging (BMA)

f (y |x1, ..., xM) =
M∑

m=1

1
wm

g(y |xm)

Y |xm ∼ N (µm, τ
2)

µm = αm + βmxm

— Y : Random quantity of interest
— xm, m = 1, ...,M: Deterministic predictions
— f (y |x1, ..., xM): Predictive distribution, given M predictions
— g(y |xm): Pdf associated with with member m
— wm: Weight associated with member m
— αm and βm : Bias correction parameters for member m
— τ : Standard deviation of the ensemble member pdfs
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BMA with exchangeable ensemble members

f (y |x1, ..., xM) =
1
M

M∑
m=1

g(y |xm)

Y |xm ∼ N (µm, τ
2)

µm = α+ βxm
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Applications and earlier work

• Temperature forecasting
Raftery, Gneiting, Balabdaoui, and Polakowski (2005)

• Precipitation forecasting
Sloughter, Raftery, Gneiting, and Fraley (2007)

•Wind speed forecasting
Sloughter, Gneiting, and Raftery (2010), McLean Sloughter, Gneiting,
and Raftery (2013)

• Inflow forecasting
Duan, Ajami, Gao, and Sorooshian (2007), Vrugt and Robinson
(2007), Todini (2008), Rings, Vrugt, Schoups, Huisman, and
Vereecken (2012)
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Bayesian Model Averaging using Varying Coefficient
Regression (BMA-VCR)

BMA

f (y |x1, ..., xM) =
1
M

M∑
m=1

g(y |xm)

Y |xm ∼ N (µm, τ
2)

µm = α+ βxm

BMA-VCR

f (y |x1, ..., xM) =
1
M

M∑
m=1

g(y |xm)

Y |xm ∼ N (µm, τ
2)

µm = (α+ αt) + (β + βt)xm

αt = αt−1 + at , at ∼ N(0, δ−1)

βt = βt−1 + bt , bt ∼ N(0, δ−1)

6



Evaluation of probabilistic forecasts: Calibration
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Evaluation of probabilistic forecasts: Sharpness

— Continuous ranked probability
score (CRPS)

— Comparable to absolute error
for deterministic forecasts

— For a perfect deterministic
forecast, the CRPS is zero
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Results
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Conclusions and future work

— We have presented a statistical postprocessing method based
on BMA

— Demonstrated good results based on real data for low lead times
— For higher lead times, consider alternative pdfs associated with

the ensemble members, e.g. a combination of beta distributions
and the empirical distribution of historical inflow values

— Extend the method to a higher-dimensional system
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