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• Background of Short-term Hydro Optimization Program (SHOP)

• Determination of the unit PQ curve

• Methods for incorporating power loss in shared penstock 

• Numerical results

• Conclusion
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Objectives

• maximize the profit by exploiting the options of buying and selling in the markets

• minimize cost for covering a load

Inputs

• Deterministic electricity price, inflow and/or load for each time period (hourly / minute)

• Detailed description of watercourses, plant and unit configurations

• Different alternatives for coupling to mid-term planning (independent water value, water-value functions…)

Main results

• Reservoir trajectories, water flow among hydraulic objects

• Traded volume against the market (for bidding)

• Plant and unit production/consumption schedules (for energy delivery)

• Optimal distribution of ancillary services
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Short-term Hydro Optimization Program (SHOP)



• The solution strategy involves two modeling 
modes and employs an iterative procedure to 
refine the results

• Commercial solvers CPLEX & GUROBI
Open Source solver CBC
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• SHOP is formulated as a MILP model

• How to convert the nonlinear & nonconvex
hydropower production function into a concave
piecewise linear unit PQ curve?

• How to take all the limits into account?
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Determination of the unit PQ curve
Step 1: Update the Trajectory of the Reservoir and Calculate the 
Gross Head of the Plant
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Determination of the unit PQ curve
Step 1: Update the Trajectory of the Reservoir and Calculate the 
Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water 
Discharge 𝑄𝑄𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺, Best Efficiency point 𝑄𝑄𝑖𝑖,𝑡𝑡𝑇𝑇𝐺𝐺𝐺𝐺𝑇𝑇 and Maximum Water 
Discharge 𝑄𝑄𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 of the Unit
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Breakpoints 𝑄𝑄𝑖𝑖 ,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀  𝑄𝑄𝑖𝑖 ,𝑡𝑡𝐵𝐵𝐵𝐵𝑆𝑆𝑆𝑆  𝑄𝑄𝑖𝑖 ,𝑡𝑡𝑀𝑀𝑀𝑀𝑋𝑋  

P

QMinimum point when H1:
28.12 m3/s, 85.87 %

Best point when H1:
51.43 m3/s, 93.22 %

Maximum point when H1:
58.83 m3/s, 92.17 %

Minimum point when H2:
28.12 m3/s, 86.73 %

Best point when H2:
51.43 m3/s, 94.15 %

Maximum point when H2:
58.83 m3/s, 93.10 %Minimum point when H3:

28.12 m3/s, 87.59 %

Best point when H3:
51.43 m3/s, 95.08 %

Maximum point when H3:
58.83 m3/s, 94.02 %
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E1: Turbine efficiency curves with constant discharge limits

H1 = 170 meter H2 = 185 meter H3 = 210 meter

Minimum point when H1:
30.45 m3/s, 87.03 %

Best point when H1:
51.43 m3/s, 93.22 %

Maximum point when H1:
53.76 m3/s, 93.04 %

Minimum point when H2:
28.12 m3/s, 86.73 %

Best point when H2:
51.43 m3/s, 94.15 %

Maximum point when H2:
58.83 m3/s, 93.10 %

Minimum point when H3:
30.45 m3/s, 88.77 %

Best point when H3:
51.43 m3/s, 95.08 %

Maximum point when H3:
56.10 m3/s, 94.51 %
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E2: Turbine efficiency curves with variable discharge limits 

H1 = 170 meter H2 = 185 meter H3 = 210 meter



Determination of the unit PQ curve
Step 1: Update the Trajectory of the Reservoir and Calculate the 
Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water 
Discharge 𝑄𝑄𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝐺𝐺, Best Efficiency point 𝑄𝑄𝑖𝑖,𝑡𝑡𝑇𝑇𝐺𝐺𝐺𝐺𝑇𝑇 and Maximum Water 
Discharge 𝑄𝑄𝑖𝑖,𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀 of the Unit

Step 3: Equally Partition the Interval between the Minimum Water 
Discharge and the Best Efficiency Point into 𝑠𝑠𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺 Segments.

Step 4: Equally Partition the Interval between the Best Efficiency 
Point and the Maximum Water Discharge into 𝑠𝑠𝑇𝑇𝑈𝑈 Segments.

Step 5: Add the Optimal Operating Point 𝑞𝑞𝑖𝑖,𝑡𝑡∗ Resulting from the 
Previous Iteration as an extra breakpoint. 
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Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water 
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Step 3: Equally Partition the Interval between the Minimum Water 
Discharge and the Best Efficiency Point into 𝑠𝑠𝐷𝐷𝐺𝐺𝐷𝐷𝐺𝐺 Segments.

Step 4: Equally Partition the Interval between the Best Efficiency 
Point and the Maximum Water Discharge into 𝑠𝑠𝑇𝑇𝑈𝑈 Segments.

Step 5: Add the Optimal Operating Point 𝑞𝑞𝑖𝑖,𝑡𝑡∗ Resulting from the 
Previous Iteration as an extra breakpoint. 

Step 6: Calculate the Corresponding Power Output of Each 
Breakpoint12

Breakpoint indices 0 𝑠𝑠𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀 +  
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Instead of predefined, the breakpoints are computed in 
a dynamic sequence with their corresponding net head



Determination of the unit PQ curve
Step 7: Make Sure the Slope of Each Segment Non-increasing by 
Eliminating the Nonconcave Breakpoints 
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Determination of the unit PQ curve
Step 7: Make Sure the Slope of Each Segment Non-increasing by 
Eliminating the Nonconcave Breakpoints 

Step 8: Define the Final Operating limits based on most restrictive 
rule
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• The determination of the unit PQ curve precedes
the optimization. The operating status of other
units remains unresolved. 

• How to account for loss in shared penstocks, 
involving not only the flow through the unit but 
also the flow of all the other units that are 
connected to the same penstock? 
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Methods for incorporating loss in shared penstock 
Method 1: Set power_loss /pq /previous

• Directly includes penstock loss in the PQ curve of the unit.

• Uses the optimal results obtained in the previous iteration.

Method 2: Set power_loss /pq /proportional

• Directly includes penstock loss in the PQ curve of the unit.

• Assumes that all the units connected to the same penstock always operate at the same fraction of their allowable 
capacity range.

Method 3: Set power_loss /busbar

• First excludes the penstock loss in the PQ curve, causing over-estimated power generation for the given discharge. 

• Then subtracts the sum of power loss for each unit, which is equal to the sum of power loss in each penstock, from 
the plant energy balance constraint, i.e. busbar. 

• The sum of power loss in a shared penstock is a cubic function of the total flow through the penstock, which is 
approximated by a convex piecewise linear function.
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Numerical results – Datasets 
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General Configurations  
Outlet line (Meter above sea) 672 
Maximum unit production (MW) 60 
Minimum unit production (MW) 120 
Unit start-up cost (€) 0 

 

Minimum point when H1:
28.12 m3/s, 85.87 %

Best point when H1:
51.43 m3/s, 93.22 %

Maximum point when H1:
58.83 m3/s, 92.17 %

Minimum point when H2:
28.12 m3/s, 86.73 %

Best point when H2:
51.43 m3/s, 94.15 %

Maximum point when H2:
58.83 m3/s, 93.10 %Minimum point when H3:

28.12 m3/s, 87.59 %

Best point when H3:
51.43 m3/s, 95.08 %

Maximum point when H3:
58.83 m3/s, 94.02 %
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Numerical results – Comparison of Methods
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The upper bounds for both curves are determined by 
maximum efficiency point 58.83 m3/s

Undesired operating zone

The lower bounds for both curves are determined 
by minimum unit production 60.00 MW

The middle points for both curves are 
determined by best point 51.43 m3/s
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Numerical results – Comparison of Methods
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M1 M2 M3
Instance Production 

Revenue
Reservoir 
Value

Total Profit Production 
Revenue

Reservoir 
Value

Total Profit Production 
Revenue

Reservoir 
Value

Total Profit

S1 117,588.81 147,118.76 264,707.57 105,467.63 159,807.10 265,274.73 109,365.24 156,070.49 265,435.73

M3 is the bestM1 is flip-flop



Numerical results – Comparison of Modeling Penstock
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 penstocksIndependent

↓ ↓ G1 G2

Upstream reservoir

Plant

Gross head

Outlet line

Deviation from the optimal solution of -1,143.06 €

∆ℎ = 𝛼𝛼 � 𝑞𝑞1 + 𝑞𝑞2 2 ∆ℎ = 𝛼𝛼 � 𝑞𝑞12 + 𝑞𝑞22



Conclusion 

Method 1: Set power_loss /pq /previous

• When the predicted market price for electricity is close to the water value at the end of the scheduling horizon, 
the power production is likely to oscillate between iterations

Method 2: Set power_loss /pq /proportional

• Can avoid the flip-flop problem but suggests the units to operate in the same pattern

Method 3: Set power_loss /busbar

• Gives better optimization result but potentially might increase computational time, since the unit penstock loss 
should be introduced to unit energy balance constraints to improve accuracy, especially when delivering reserves. 
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