

Experiences with incorporating power loss in shared tunnels into the hydro unit commitment

Hydro Power Scheduling Workshop, 12 September 2018

Jiehong Kong, Research Scientist

SINTEF Energy Research

Outline

- Background of Short-term Hydro Optimization Program (SHOP)
- Determination of the unit PQ curve
- Methods for incorporating power loss in shared penstock
- Numerical results
- Conclusion

Short-term Hydro Optimization Program (SHOP)

Objectives

- maximize the profit by exploiting the options of buying and selling in the markets
- minimize cost for covering a load

Inputs

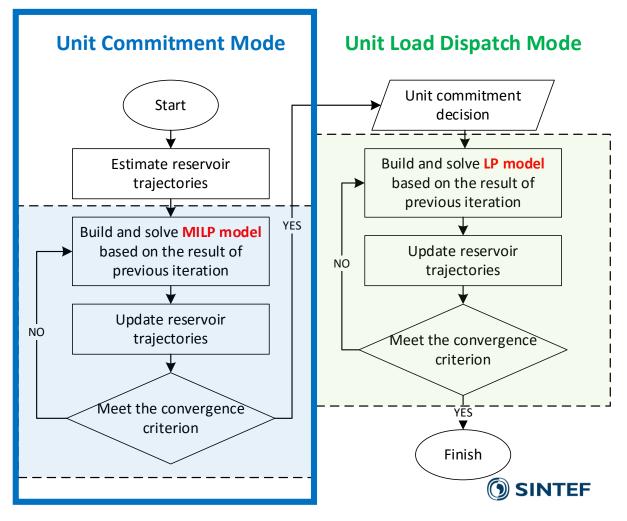
- Deterministic electricity price, inflow and/or load for each time period (hourly / minute)
- **Detailed** description of watercourses, plant and unit configurations
- Different alternatives for coupling to mid-term planning (independent water value, water-value functions...)

Main results

3

- Reservoir trajectories, water flow among hydraulic objects
- Traded volume against the market (for **bidding**)
- Plant and unit production/consumption schedules (for energy delivery)
- Optimal distribution of ancillary services

S


Η

0

Ρ

- The solution strategy involves two modeling modes and employs **an iterative procedure** to refine the results
- Commercial solvers CPLEX & GUROBI Open Source solver CBC

Michael M. E.: Isnes Frederic Dorn Hans Ivar Skjelbred Jiehong Kong

Authors

Mathematical formulation

$$p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$$

$$P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$$

$$Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$$

$$h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$$

$$\sum_{i\in I} p_{i,t} = p_t^{SELL}$$

SHOP input

GENERATOR						1	
#Id;Number	:;Ref	erenc	e;Pts	;X_u	nit;Y	_unit	
16650	1	0		1 MW	ę		
# x_value	e;	y_val	ue;				
60 10)0						
120 10	0						

	urb eff curves PL Reference;Pts;X_u: 1 <u>185.000</u>		L	
<pre># x_value; 28.12 30.45 32.78 35.11 37.45 39.78 42.11 44.44 46.77 49.10 51.43 53.76 56.10</pre>	y_value; 86.7321	GENERATOR tu #Id;Number;H 16650 # x_value; 30.45 32.78 35.11 37.45 39.78 42.11 44.44 46.77	88.7725 89.8497 90.8355 91.7435 92.5871 93.3798 94.1096 94.6777 94.9712 95.0813	1
		56.10	94.5101	

Mathematical formulation

SHOP input

 $p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$ $P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$ $Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$ $h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$

$$\sum_{i\in I} p_{i,t} = p_t^{SELL}$$

GENERATOR attributes PLANT001 1 #Id Type Penstock Nom_prod Min_prod Max_prod Start_cost 24839 0 1 120.000 60.000 120.000 0

GENERATOR min_p_constr PLANT001 1 # Id number starttime time_unit period data_type y_unit npts 0 0 2016110806000000 HOUR 8760 -1 MW 1 # time y 2016110806000000 65

GENERATOR max p constr PLANT001 1 time_unit period data_type y_unit npts Id number starttime 20161108060000000 HOUR 8760 -1 MW 1 0 0 # time У 2016110806000000 95

Mathematical formulation

$$p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$$

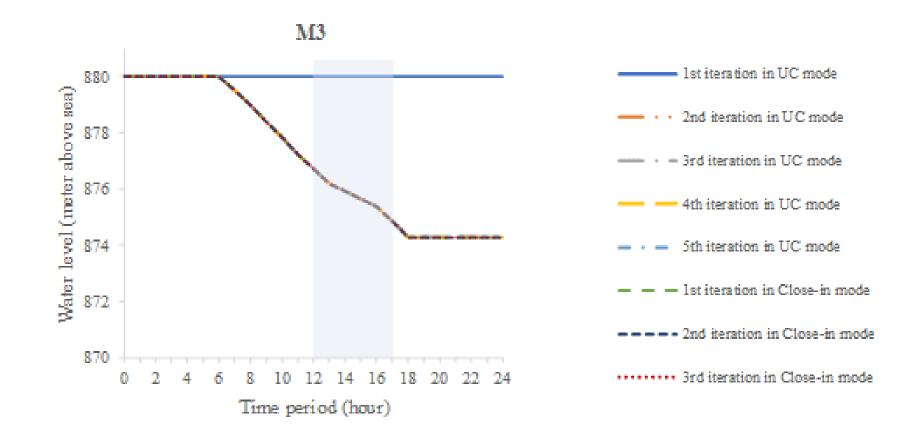
$$P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$$

$$Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$$

$$h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$$

$$\sum_{i\in I} p_{i,t} = p_t^{SELL}$$

SHOP input


GENERATOR +	urb eff curves PLA	АМТОО1 1	-			
	Reference; Pts; X u		-			
16650	1 185.000	3 M3/S %				
<pre># x value;</pre>		GENERATOR +	urb eff c	urves PLANT(001	1
28.12				;Pts;X unit;		1
30.45		16650	1 210	_	M3/S %	
32.78	88.9688	<pre># x value;</pre>			110, 2 0	
35.11	89.9450		88,7725	.,		
37.45	90.8441	32.78	89.8497			
39.78	91.6794	35.11	90.8355			
42.11	92.4643	37.45	91.7435			
44.44	93.1870	39.78	92.5871			
46.77	93.7495	42.11	93.3798			
49.10	94.0401	44.44	94.1096			
51.43		46.77	94.6777			
53.76		49.10	94.9712			
	93.5836	51.43	95.0813			
58.83	93.0964	53.76	94.8998			
		56.10	94.5101			
CENEDAMOD	nin a santa Di		1			
	min_q_constr Pl					
	er starttime 20161108060000000			data_type -1	y_unit M3/S	npts 1
# time		HOUR	8760	-1	M3/5	T
	У 1000000 40					
20101108000	1000000 40					
	<u>max q constr</u> PI					
# Id numb	er starttime	time_unit	period	data_type	y_unit	npts
	20161108060000000			-1	M3/S	1
# time	У					
20161108060	000000 51.43					

Mathematical formulation

 $p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$ $P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$ $Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$ $h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$ $\sum p_{i,t} = p_t^{SELL}$

- SHOP is formulated as a MILP model
- How to convert the nonlinear & nonconvex hydropower production function into a concave piecewise linear unit PQ curve?
- How to take all the **limits** into account?

Step 1: Update the Trajectory of the Reservoir and Calculate the Gross Head of the Plant



9

Р

Step 1: Update the Trajectory of the Reservoir and Calculate the Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water Discharge $Q_{i,t}^{MIN}$, Best Efficiency point $Q_{i,t}^{BEST}$ and Maximum Water Discharge $Q_{i,t}^{MAX}$ of the Unit

 $\overline{s}^{DOWN} + \overline{s}^{UP}$

 $Q_{i\,t}^{MAX}$

 $q_{i,t}^*$

-DOWN .

 $Q_{i,t}^{BEST}$

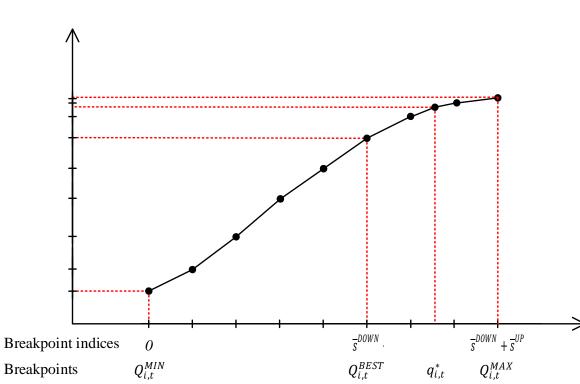
Step 1: Update the Trajectory of the Reservoir and Calculate the Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water Discharge $Q_{i,t}^{MIN}$, Best Efficiency point $Q_{i,t}^{BEST}$ and Maximum Water Discharge $Q_{i,t}^{MAX}$ of the Unit

Step 3: Equally Partition the Interval between the Minimum Water Discharge and the Best Efficiency Point into \overline{s}^{DOWN} Segments.

Step 4: Equally Partition the Interval between the Best Efficiency Point and the Maximum Water Discharge into \overline{s}^{UP} Segments.

Step 5: Add the Optimal Operating Point $q_{i,t}^*$ Resulting from the Previous Iteration as an extra breakpoint.


Breakpoints

Breakpoint indices

0

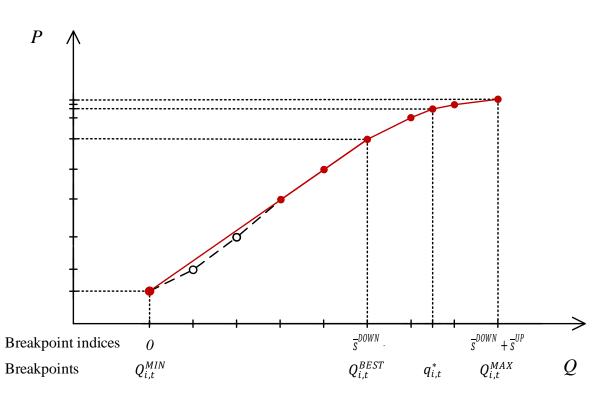
 Q_{it}^{MIN}

Р

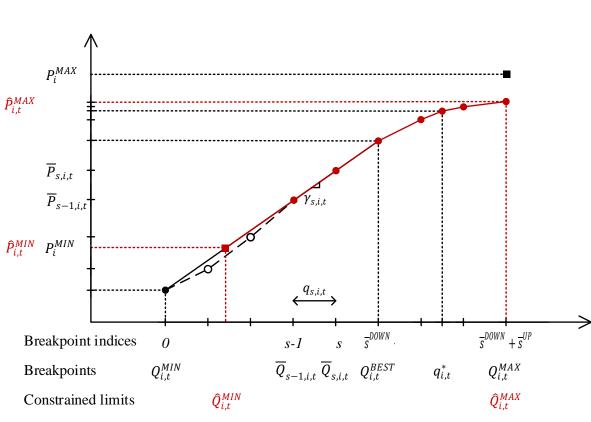
Step 1: Update the Trajectory of the Reservoir and Calculate the Gross Head of the Plant

Step 2: Determinate the Head-dependent Minimum Water Discharge $Q_{i,t}^{MIN}$, Best Efficiency point $Q_{i,t}^{BEST}$ and Maximum Water Discharge $Q_{i,t}^{MAX}$ of the Unit

Step 3: Equally Partition the Interval between the Minimum Water Discharge and the Best Efficiency Point into \overline{s}^{DOWN} Segments.


Step 4: Equally Partition the Interval between the Best Efficiency Point and the Maximum Water Discharge into \overline{s}^{UP} Segments.

Step 5: Add the Optimal Operating Point $q_{i,t}^*$ Resulting from the Previous Iteration as an extra breakpoint.


Step 6: Calculate the Corresponding Power Output of Each Breakpoint

Instead of predefined, **the breakpoints are computed in a dynamic sequence** with their corresponding net head

Step 7: Make Sure the Slope of Each Segment Non-increasing by Eliminating the Nonconcave Breakpoints

Step 7: Make Sure the Slope of Each Segment Non-increasing by Eliminating the Nonconcave Breakpoints

Step 8: Define the Final Operating limits based on most restrictive rule

$$p_{i,t} = \hat{P}_{i,t}^{MIN} \cdot \omega_{i,t} + \sum_{s=1,\dots,\overline{s}^{DOWN} + \overline{s}^{UP}} \gamma_{s,i,t} \cdot q_{s,i,t}$$

$$p_{i,t} \leq \hat{P}_i^{MAX} \cdot \omega_{i,t}$$

$$q_{i,t} = \hat{Q}_{i,t}^{MIN} \cdot \omega_{i,t} + \sum_{s=1,\dots,\overline{s}^{DOWN} + \overline{s}^{UP}} q_{s,i,t}$$

 $0 \le q_{s,i,t} \le \overline{Q}_{s,i,t} - \overline{Q}_{s-1,i,t}$

🕥 SINTEF

Mathematical formulation

SHOP input

$$p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$$

$$P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$$

$$Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$$

$$h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$$

$$\sum_{i' \in I_n \setminus \{i\}} \sum_{i' \in I_n \setminus \{i' \in I_n \setminus \{i\}} \sum_{i' \in I_n \setminus \{i' \in$$

$$\sum_{i\in I} p_{i,t} = p_t^{SELL}$$

Upstream reservoir Shared penstock Gross head G1 Outlet line ## PLANT001 PLANT attributes PLANT001

#Id;Water_course;Type;Bid_area;Prod_area;Num_units;Num_pumps; 24800 0 0 1 1 2 0 #Num_main_seg;Num_penstock;Time_delay;Prod_factor;Outlet_line; 1 1 0 0.000 672 #Main tunnell loss 0.000 #penstock loss 0.001

EF

Mathematical formulation

 $p_{i,t} = G \cdot \eta_i^{GEN}(p_{i,t}) \cdot \eta_i^{TURB}(h_{i,t}^{NET}, q_{i,t}) \cdot h_{i,t}^{NET} \cdot q_{i,t}$ $P_{i,t}^{MIN} \cdot \omega_{i,t} \leq p_{i,t} \leq P_{i,t}^{MAX} \cdot \omega_{i,t}$ $Q_{i,t}^{MIN}(h_{i,t}^{NET}) \cdot \omega_{i,t} \leq q_{i,t} \leq Q_{i,t}^{MAX}(h_{i,t}^{NET}) \cdot \omega_{i,t}$ $h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t}\right)^2$

 $\sum_{i\in I} p_{i,t} = p_t^{SELL}$

- The determination of the unit PQ curve precedes the optimization. The operating status of other units remains unresolved.
- How to account for loss in shared penstocks, involving not only the flow through the unit but also the flow of all the other units that are connected to the same penstock?

Methods for incorporating loss in shared penstock

Method 1: Set power_loss /pq /previous

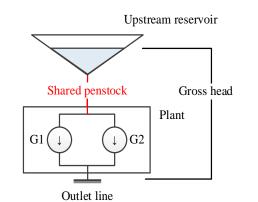
- Directly includes penstock loss in the PQ curve of the unit.
- Uses the optimal results obtained in the previous iteration.

Method 2: Set power_loss /pq /proportional

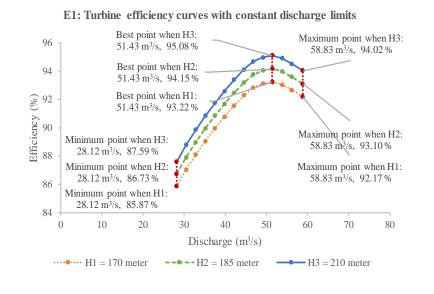
• **Directly includes** penstock loss in the PQ curve of the unit.

$$h_{i,t}^{NET} = H_t^{GROSS} - \alpha_n \cdot \left(q_{i,t} + \sum_{i' \in I_n \setminus \{i\}} q_{i',t} \right)^2$$

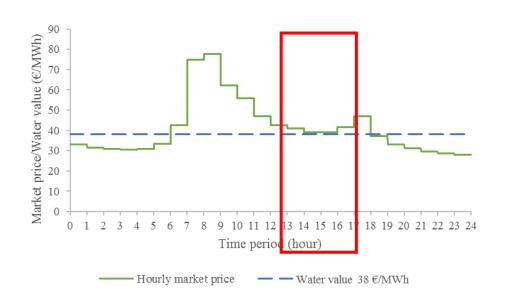
$$\sum_{i\in I} p_{i,t} - \sum_{n\in N} \Delta p_{n,t} = p_t^{SELL}$$


• Assumes that all the units connected to the same penstock always operate at the same fraction of their allowable capacity range.

Method 3: Set power_loss /busbar

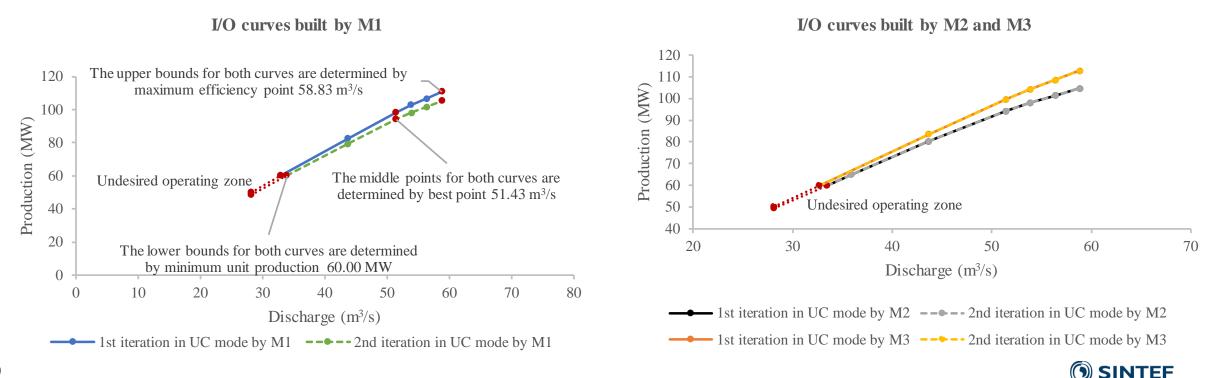

17

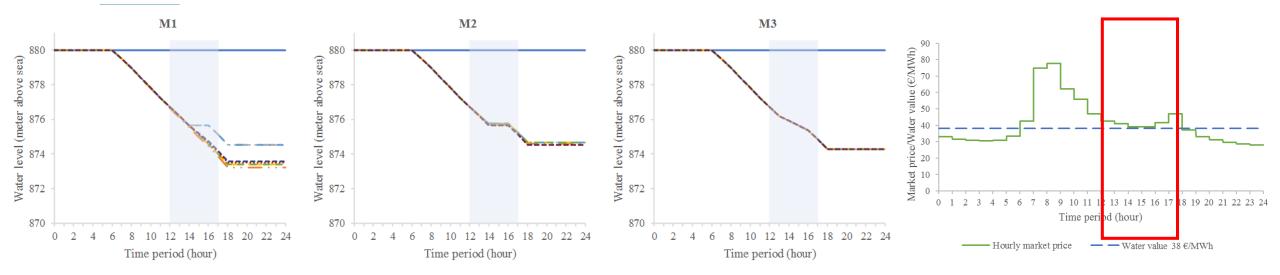
- First excludes the penstock loss in the PQ curve, causing over-estimated power generation for the given discharge.
- Then subtracts the sum of power loss for each unit, which is equal to the sum of power loss in each penstock, from the plant energy balance constraint, i.e. busbar.
- The sum of power loss in a shared penstock is a cubic function of the total flow through the penstock, which if approximated by a convex piecewise linear function.


Numerical results – Datasets

General Configurations	
Outlet line (Meter above sea)	672
Maximum unit production (MW)	60
Minimum unit production (MW)	120
Unit start-up cost (€)	0

18

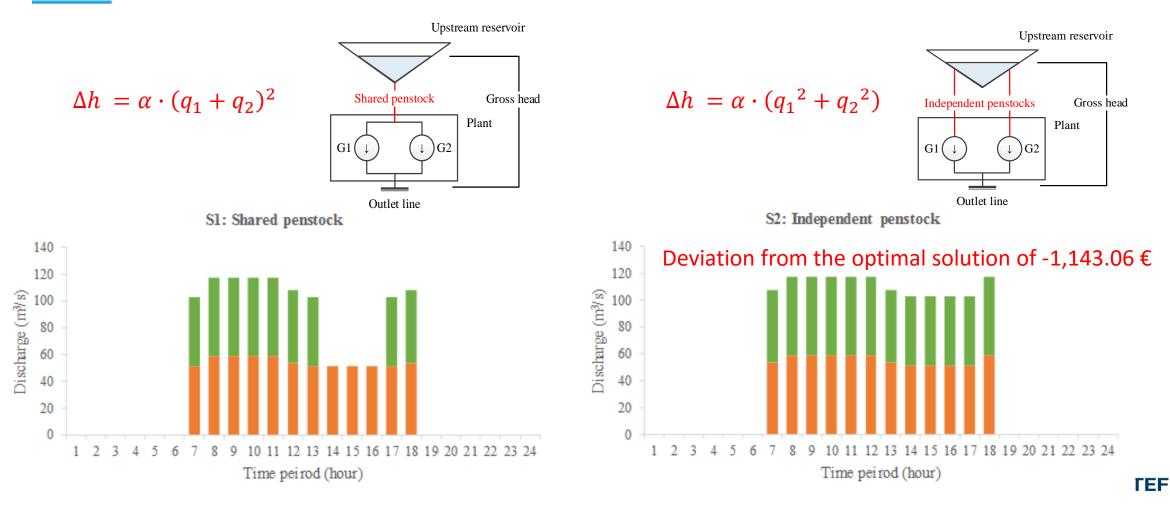



Numerical results – Comparison of Methods

Method 1: Set power_loss /pq /previous

Method 2: Set power_loss /pq /proportional Method 3 (Default): Set power_loss /busbar

Numerical results – Comparison of Methods


tion Reservoir Total Profit
e Value
5.24 156,070.49 265,435.73
าน

M1 is flip-flop

M3 is the best

Numerical results – Comparison of Modeling Penstock

Discharge of G1 Discharge of G2

2:

Discharge of G1 Discharge of G2

Conclusion

Method 1: Set power_loss /pq /previous

• When the predicted market price for electricity is **close** to the water value at the end of the scheduling horizon, the power production is likely to **oscillate** between iterations

Method 2: Set power_loss /pq /proportional

• Can avoid the flip-flop problem but suggests the units to **operate in the same pattern**

Method 3: Set power_loss /busbar

• Gives **better** optimization result but potentially might **increase computational time**, since the unit penstock loss should be introduced to unit energy balance constraints to improve accuracy, especially when delivering reserves.

Teknologi for et bedre samfunn