Evaluating approaches for estimating the water value of a hydropower plant in the day-ahead electricity market

Ignacio Guisández, Juan I. Pérez-Díaz
Department of Hydraulic, Energy and Environmental Engineering
Technical University of Madrid (UPM)

September 12th, 2018
6th Workshop on Hydro Scheduling in Competitive Electricity Markets
0. Index

1. Motivation and objective
2. Methodology
3. Results and conclusions
4. Future work
1. Motivation and objective

There is a wide number of recent articles dealing with the use of “complex algorithms” (MILP, MIQP, Lagrangian Relaxation, etc.) to solve the decomposed decision problems of DP-based medium-term scheduling models (water value)
1. Motivation and objective

The motivation for such a big research effort has been rather diverse, namely:

- Head-effects (H)
- Discharge-effects (Q)
- Units’ start-ups
- Reserve markets
- Price-making effects
- Bid curves
- Risk aversion
- ...

\[P = \gamma \eta(Q,H)QH(Q) \]
1. Motivation and objective

Research questions:

1. Is the use of “complex algorithms” to solve the decomposed decision problems of a DP-based medium-term scheduling model a fruitful/profitable/reasonable/… PRACTICAL effort?

2. In what circumstances is it practical?
1. Motivation and objective

Our focus

- SDP
- MILP
- Benders cuts
- LP
- MIQP
- SDDP
- SDDiP
- Risk aversion
- Head-effects
- Discharge effects
- Lagrangian relaxation
- Price-making effects
- Units’ start-ups
- Reserve markets
- Heuristic-based locally valid cuts
- Lagrangian cuts
- Bid curves
- Discharge effects
Our focus

PRELIMINARY WORK!
2. Methodology

- 1 hydropower reservoir
- 1 hydropower plant equipped with 1 Francis unit
- 4 medium-term scheduling models

$\text{SDP+LP (LP)} \rightarrow WV_{LP}$

$\text{SDP+MILP (MILP-1)} \rightarrow WV_{MILP-1}$

$\text{SDP+MILP (MILP-2)} \rightarrow WV_{MILP-2}$

$\text{SDP+MILP (MILP-3)} \rightarrow WV_{MILP-3}$

Simulations & Comparison

$WV = \text{Water value}$
2. Methodology

Common features of the medium-term scheduling models:

✓ 1-year planning period
✓ 1-week decision stages
✓ 1-hour time steps
✓ Aimed at maximizing the profit in the energy market
✓ Consider the unit’s start-up and wear and tear costs
✓ 2 exogenous stochastic variables: water inflow volume and average energy price
✓ The exogenous stochastic variables are modelled each by means a discrete first-order Markov chain (no cross-correlation)
✓ The realizations of the exogenous stochastic variables are assumed known in each decomposed decision problem
✓ The initial state of the decomposed decision problem is defined by the initial storage and the exogenous stochastic variables
✓ The initial storage is discretized into 9 equidistant values
2. Methodology

Differences between the medium-term scheduling models:

- **MILP-1**
 - Taken from Chang et al., IEEE Trans. on Power Syst. 16(4), 743-749, 2001.

- **MILP-2**
 - Taken from Conejo et al., IEEE Trans. on Power Syst. 17(4), 1265-1272, 2002.

- **MILP-3**

- **LP**
 - Taken from Piekutowski et al., in Proc. 1994 IEEE Power Industry Computer Application Conference.
2. Methodology

Differences between the medium-term scheduling models:

- MILP-1/2/3 use a binary variable to mode the unit’s start-ups.
- The breakpoints of the power-discharge curves used by MILP-1/2/3 correspond to the minimum turbine flow, best efficiency and maximum turbine flow.
- The breakpoints of the power-discharge curve used by LP correspond to zero, best efficiency and maximum turbine flow.
- The power-discharge curves used by MILP-2/3 in each decision correspond to different heads uniformly distributed over the range of feasible heads.
- LP uses a linear formulation based on Warland et al. (2008)* to minimize the occurrence of discharges between 0 and the minimum turbine flow.

2. Methodology

Power plant data

✓ Virtually located in Spain
✓ Installed power capacity 55 MW
✓ Maximum gross head 65 m
✓ Performance curves Krueger et al. (1976)\(^1\)
✓ Rated head loss 1 % of rated head
✓ Tailwater level variation El-Hawary & Christensen (1979)\(^2\)
✓ Inflow distribution pattern Spanish oceanic fluvial data
✓ Evaporation rates Dragoni & Valigi (1994)\(^3\)
✓ Reservoir curve Lehner et al. (2011)\(^4\)

2. Methodology

Simulations

- **1000-year long synthetic series** have been generated from the discrete Markov chains used to compute the Water Value by means of a heuristic sampling procedure
- **MILP-3** is used in the simulations on a rolling horizon basis
- **A perfect foresight** of both the hourly water inflows and energy prices is assumed in the simulations

![Graph showing energy price profiles](image)

Average, maximum and minimum hourly values of the synthetic weekly profiles of the energy prices
3. Results and conclusions

For the system under study the use of **MILP-1** to compute the WV seems to be **practical**

MILP-1 has **outperformed** **MILP-2/3**

Considering the small size of the system under study, the expected increase in the computation time **for a realistic system**, with several reservoirs and tens of hydropower units, would make **the use of MILP-1/2/3 definitely impractical**

The WV has been calculated by using one of the cores of an Intel® Xeon® E5 with 64 GB RAM at 3.1 GHz.
4. Future work

Reviewers’ suggestions

- Replicate the study in other more realistic hydropower systems with a larger number of reservoirs and complex topologies
- Add downstream equations (e.g. environmental constraints)
- Use a finer discretization for the initial storage and exogenous stochastic variables

We are still working with a single-reservoir system and plan to obtain soon similar results with different:

- Downstream constraints
- Price profiles
- Inflow patterns
- Inflow-discharge-storage ratios
- Number of hydropower units
- Performance curves of hydropower units
- Discretizations

To come in early 2019!
Thank you very much for your attention!

Any questions?

Juan I. Pérez-Díaz
ji.perez@upm.es