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Motivation: Long-term control of energy storage

= Nonlinear, complex models
= Receding horizon setting
= Applications:

= Seasonal demand

= Peak shaving
= Price arbitrage
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Seasonal storage problem

= Want to solve long-term nonlinear problem of the form (NLP)
T—1

I:l;;l,iun ; ge(we,u) + gr(zr)

S.t. Ti41 = ft(azt,ut), t = 0,...,T— 1
(ut,xt)EZt, t:O,,T—l

To glven.

... but this can be computationally intractable.
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Split-horizon approximation

= To make problem tractable, approximate second part of horizon: (NLP+LP)

T, —1 T—-1
1};1151 Z ge(Te,ug) + Z (ctTast -+ dtTut) + cpar
T =0 t=T
ft(act,ut), tZO,...,Tl—l
S.t. Li+1 =
Atiﬁt-l—Bt’U,t, t:Tl,...,T—].
(ut,th)EZt, t=20,...,77 — 1
Etxt+Ftut§ht, t:Tl,...,T—].
To glven.
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Split-horizon approximation, continued

= Split problem into nonlinear part (NLP1):
T —1

min Z ge (e, ue) + éTl (z7,)

uo,...,uTl_l
T1yeeerTTy t=0

s.t. xpp1 = fe(we,ug), t=0,...,T1 -1

(ug, ) € Z4, t=0,...,77 —1 Exact NLP Approximate Linear Program
To glven. R Tr41 ... T .
= And linear part (LP2): |
~ . -1 T T T G~Tl (mTl)
Gr,(zp,) =  min Z (¢, @ + dy wi) + cpar

S.t. Ti41 = AtCE‘t + Btut,
FEixy + Fiug < hy,
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Complete recourse assumption

Assumption 1: The linear second-stage problem (LP2) is feasible for all 7, in the
domain of the first-stage problem (NLP1).
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Benders decomposition review

= Want to find value function for (LP2), as function of terminal state 7,

V(xnl)

xnl(l) xnl(z) xnl(3) Xn,
. . ~(7 T
= Approximate value function: G%)(:E:rl) = max_ {a; zr, +b;}
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Benders decomposition bounds

Given feasible solutions for each stage, can form

T —1
LB= Y glwu)+GP (zr)
t=0
77 —1 T—1
UB = gt (e, ue) + Z (C;réﬁt -+ d;rut) - 0;3321“
t=0 t=T,

@
'fa Benjamin Flamm | Sep. 12,2018 | 8



Dual dynamic programming algorithm with approximate solutions
of nonlinear first stage

= Nonlinear first stage (NLP1):

T —1
, Imin Z gt(x,uy) + G, (x1y) Algorithm 1 Split-horizon DDP with nonlinear first horizon
[IEEEER Tl_l
Tl 30 while (UB — LB > ¢) do
s.t. :Et—|—1 — ft(mt; ut)j t = 0; . e 7T1 - ]. 1. Solve (NLPl) USng éi(l‘zl) (SCTI) = max;—1,.. ; {af%TSUTl + bz} :
(ut,azt)EZt, t:(),...,Tl—l e B ] ¢ | q é(ﬁ)
To given. . enerate using x, v from step 1 and current T (x7,);
3. Solve (LP2) using x7, from step 1;
= |jnear second stage (|_ P2) 4. Generate UB using x, v from steps 1 and 3;
-1 5. Improve estimate of G, (z7,) using dual variables from step 3:
GT (ZET ) = min Z (CTIt —+ dT’UJt) + CTIL'T . .
1 1 UTY 5oy UT -1 t t T 6j:J+1,
CL'T1+1 ..... T t:Tl end

S.t. Tiy1 = Ath't + Btut,
Eixy + Frup < hy,
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Dual dynamic programming algorithm convergence

Theorem 1: When using Algorithm 1 to solve a split-horizon problem of the form
(NLP+LP), the algorithm will terminate in a finite number of iterations, returning a
feasible solution of the split-horizon problem. In addition, two special cases apply:

(a) If the nonconvex first stage is solved in step 1 to local optimality, then
Algorithm 1 will return a locally-optimal solution to the two-stage problem.

(b) If the nonconvex first stage Is solved in step 1 to global optimality, then
Algorithm 1 solves the two-stage problem to global optimality.

Proof sketch: Since second stage is linear, finite number of lower-bounding
hyperplanes. Eventually find all relevant hyperplanes to set LB = UB at given point.

T, —1

. — a'x, +b,

LB =) gy u)+ G%) (z1,) |
t=0 o \ )
o Fre N

e UB= Y alru)+ Glen)
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Error bound on two-stage approximation

We restrict ourselves to the following tractable problem class:

Assumption 2: There exists a map M; which takes a solution for (LP2) and
produces a unique solution for the second stage of (NLP) such that

(a) At each timestep, the objective of the LP is an underestimate of (NLP), with a
maximum error of ;.

(b) Through M; , each feasible solution of (NLP) is mapped to by a feasible solution
of (LP2).

In other words, any feasible second-stage solution of (NLP) is underapproximated
by a feasible solution of (LP2), with a maximum underestimate of ¢;.
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Theorems on suboptimality

= Theorem 2: When using Algorithm 1 to solve (NLP+LP), if Assumption 2 holds,
and step 1 is solved to ¢ -suboptimality each iteration, then the resulting solution
Gg )(azo) IS such that:

G (20) < Go(zo) < Gy (o) +e+ > 4.
t=1T1
= Theorem 3: When using Algorithm 1 to solve (NLP+LP), if Assumption 2 holds,
and step 1 is solved to ¢ -suboptimality each iteration, then when the resulting
arguments (z(/) (/) are evaluated in the objective of (NLP):

T —1 T—1
o(z0) <th (@, ay") + Gr, (25)) < Golwo) + e+ Y b
t=14

5= Inspired by Guigues, 2018 Benjamin Flamm | Sep. 12, 2018 | 12




Application: hydro reservoir scheduling with head effects

= System of multiple, interconnected reservoirs, with head-dependent power
= Objective: meeting electricity demand, with deterministic electricity spot prices
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Application: sample hydro reservoir system parameters

= Five equally sized reservoirs
= 35 MW turbines and pumps with system topology as below
= Drainage time roughly 10 days (from full to empty at full power)

= No spillage — constant amount of water in system [ 2 ]
= Reservoirs are rectangular in profile [ . ]
= Head can vary by a factor of 5 (40 m to 200 m)

Lk [4]
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Application: hydro reservoir scheduling with head effects

= Energy per unit volume depends on net head between reservoirs:
Bt = a7+ B (G = 4[t]), P = VI BT [

= First stage exact NLP'

min jz_%lp[t]( Z > P )+G(€[T])

1=1 jeNi—
s.t. PHj[t] —VHJ'[] ( T BT (4[] = 45t])) Y jeNTT
Gt + ( SV - S viti)
keN —i JEN I
0;[t] < Gi[t] < Lit],  £:]0] given

M < VI <V V5 e Nt
r=1,....N; t=0,...,7T — 1.

%
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Bilinear approximation: McCormick envelope

We replace the problematic constraint
PR = VI (o7 4 577 (G — 45[H)

with
P[] = Vit 77 4 877 067 [ = Gl
where:
DIl > VPTG 4+ VI — VI,
Xi I = VI + VI - VT,
XS] < VI 4+ VI - VT,
X S VL, + VT [t] — Vit
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Bilinear approximation: McCormick envelope

McCormick envelope over all orthants

McCormick envelope over positive orthant
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Improved bounds on McCormick envelopes

= Set linearization bounds to worst-case combination of inflows and outflows

Worst-case level limits for McCormick envelopes
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Successive linearization with McCormick envelopes

= Set linearization bounds to envelope about previously-found trajectory

70 -
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Successive linearization with McCormick envelopes

= Objective improves rapidly with heuristic algorithm

x 107

Objective
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Experimental results: objective

= Compute objective over receding horizon for 20 days
= 1 day split-horizon method is 4% better than constant efficiency approximation, but only 90%
of objective found by successive linearization

Objective

s
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Discussion

= For larger systems and longer time horizons, worst-case bounds are guite poor
= Modeling exact near term is beneficial

= Solving exact problem scales exponentially in problem size
= But longer linear stage is relatively cheap
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Conclusion

Solved long-term nonlinear problem via multistage approximation
Extended DDP to case where first stage is nonlinear
Provided bounds on suboptimality

= Different nonlinear problem classes?

Exact NLP Approximate Linear Program

I iy ITL o1 ITl-i-l rr
L4 |

| T

éTl (Q:Tl )

'

§in




Thanks!
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