STAYERS

Stationary PEM fuel cells with lifetimes beyond five years

FCH-JU 256721

Jorg Coolegem Nedstack fuel cell technology BV

www.stayers.eu

STAYERS PROJECT OVERVIEW

Stationary PEM fuel cells with lifetimes beyond five years

SP1-JTI-FCH.2009.3.2: Materials development for cells, stacks and

balance of plant

SP1-JTI-FCH.2009.3.1: Fundamentals of fuel cell degradation for

stationary power applications

Duration: 42 months; 1 Jan 2011 - 30 Jun 2014

Budget/FCH-JU funding:4.1/1.9 M€

Goal: lifetime of PEM fuel cell > 40,000 hours in stationary operation

Motivation: lower OPEX/TCO of PEM power plant

Development &

Commercialization:

Testing + modeling:

PROJECT APPROACH: 4+1 ITERATIONS

WP-2 MEMBRANE DEVELOPMENT

- Process development & scale-up
- Product development: different membrane generations
 - First baseline membrane (SC-0) showed proven lifetime >10,000 hrs
 - No substantial degradation observed in eol/post-mortem tests
 - Final IMP-2 membrane estimated to surpass 40,000 hrs based on AST

WP-3: MEA DEVELOPMENT

Evolution of MEA generations in course of STAYERS (simplified):

MEA generation	Membrane	Electrode	RIM type	objective
SC-0	old baseline	CCB type 1/3	4-layer	reference
SC-1	new baseline	CCB type 3	2-layer	apply new baseline membrane
SC-2	IMP-1	CCM - type 3 based	simplified 2-layer	apply new membrane, CCM, process automization, improve durability
SC-3	IMP-1/2	CCM rainbow	simplified 2-layer	improve durability, conditioning, costs
SC-4	IMP-1/2	CCM multiple	simplified 2-layer	demo extrapolated life 40,000 hrs

SC-3: multiple variations for evaluation

SC-4: selected best performers of SC-3

SC-0 MEA PERFORMANCE IN FIELD TESTS

Divided in reversible and irreversible effects

VALIDATED EXTRAPOLATION METHODS

- Validation of lifetime prediction after 4 khs
- Using field data in retrospect (SC-0, 1, 2, ext. reference)
- 2 extrapolation methods selected (min/max window):
 - Case 2: conservative, based on all data
 - Case 4: optimistic, based on retrievable performance only

····· Case 2 – degradation rate from trend line

VALIDATED EXTRAPOLATION METHODS

- Validation of lifetime prediction after 4 khs
- Using field data in retrospect (SC-0, 1, 2, ext. reference)
- 2 extrapolation methods selected (min/max window):
 - Case 2: conservative, based on all data
 - Case 4: optimistic, based on retrievable performance only

FIELD TESTING - EXAMPLES

- > 50 MEA variations (type of cat, loading, GDL, process) have been tested and analyzed (BOL, EOT, PM)
- Predominant decay mechanisms have been identified

EXTRAPOLATED MEA LIFETIMES SC-0 TO 4

WP-4: STACK COMPONENT DEVELOPMENT

Lifetime prediction by:

- Material analyses 0 to 23,000 hs
- AST's

	Lifetime (hrs)		improvement
component	proven	estimated	implemented
I. Flow fields	> 28,000	40,000	not required
II. Cell plates	> 28,000	40,000	not required
permeability & dimensional stability			
surface properties / hydrophobicity			
conductivity			
mechanical properties			
III. Seals	20,000 (ref)	40,000	yes
IV. Housing & mounting	20,000 (ref)	>> 40,000	yes
System / BOP	40,000	80,000	not required

SET UP FOR FIELD TESTS

- H₂ from chlorine plant Akzo Nobel
- Operating point 60 kW ~ 0.5
 A/cm²
- Total hrs to grid > 40,000
 M1-M42: >25,000

XXL	lifetime	decay rate	Estim. Life-
stack	(khs)	(μV/h)	time (khs)
S0114	16.4	1.55	44.6
S0224	10	1.43	48.3
S0240	7.1	0.32	216.0
avg	11.2	1.1	103.0

WP-5: CATHODE AST & CONTAMINANTS

Irreversible decay: Cathode AST

- cycling 0.7 V 0.9 V
- clear performance & ECSA decrease
- Acceleration factor=5-6

Reversible decay: 0.5 ppm SO₂

- Comb 9b more tolerant
- Tolerance reduces strongly after Cathode AST

WP-6: MEA MODELLING

3D CFD Model validated with experimental data SC-0 (BOL resp EOL)

Parametric study based on properties from EOL/post mortem analysis:

- Cathode ECSA decrease has main influence on voltage decay
- GDL properties (porosity, contact angle, conductivity) and proton & CL conductivity also contribute

DECAY MECHANISMS FIELD TESTS SC-0 TO 4

- Cathode loss of active surface area by poisoning reversible
- 2. Cathode increase in mass transfer resistance due to loss in hydrophobicity
 - from material degradation (irreversible)
 - change in surface functional groups (reversible)
- 3. Cathode loss of active surface area irreversible
 - particle growth / dissolution
 - carbon corrosion
- 4. Anode loss of active surface area
 - by poisoning (reversible)
 - assisted by loss of active surface area irreversible (particle growth/dissolution, carbon corrosion)
- 5. Cathode increase of proton resistance irreversible

DISSEMINATION

- 2 workshops on degradation (co-)organized
 - 2nd Int. workshop on degradation issues, Greece, 2011
 - Degradation of PEM FC, Oslo, 2013
 - STAYERS, PREMIUM ACT, KEEPEMALIVE
- Website
- Several publications
- Presentations (Grove, StackTest, Carisma)

EXPLOITATION

MAIP/AIP objectives achieved:

- > 20,000 hs proven in real life conditions
- 40,000 hs (extrapolated) stack lifetime
- Improved understanding degradation mechanisms

Exploitation:

- Continuation R&D in Second Act (Sintef, JRC, Nedstack)
- Solvay, Solvicore: products for stationary market
- Nedstack proven lifetime 20,000 hs & TCO:
 - kW scale: stacks for continuous power / extended backup generators
 - MW scale: DemcoPEM 2 MW Demoproject
 Demonstration of a combined heat and power 2MWe PEM fuel cell generator and integration into an existing chlorine production plant

