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GPU Computing

 Used in the past for graphics and video applications …

 … but now popular for many other applications such as 
scientific computing [Owens et al. 2008]

 In the metaheuristics field:

 Few existing works (Genetic algorithms [T-T. Wong 2006], Genetic 
programming [Harding et al. 2009], …), light tentative for the Tabu
search algorithm [Zhu et al. 2009]

 Popularity due to the publication of the CUDA development 
toolkit allowing …

 … GPU programming in a C-like language [Garland et al. 2008]
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Many-cores and a hierarchy of memories

Memory 
type

Access 
latency

Size

Global Medium Big

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

- Highly parallel multi-
threaded many core

- High memory bandwidth    
compared to CPU

- Different levels of memory 
(different latencies)
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Objective and challenging issues

 Re-think the parallel models to take into account the 
characteristics of GPU

 Three major challenges …

 Challenge 1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge 2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge 3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?
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Works completed

 Re-design of parallel models on GPU …

 … which allows to produce a bunch of general methods:

 Hill climbing, tabu search, VNS, multi-start LS, …

 GAs, EDAs, island model for GAs, …
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 1 international journal.

 9 international conference proceedings.

 1 national conference proceeding.

 2 conference abstracts.

 7 workshops and talks.

 1 research report.

 Application to 9 combinatorial problems and 10 continuous 
tests functions.

 Speed-ups from experiments provide promising results :

 Up to x50 for combinatorial problems

 Up to x2000 for continuous test functions

Works completed (2)

GTX 280 
(2008 configuration)
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Iteration-level parallel model

… Need of massively parallel computing on 

very large neighborhoods
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 Keypoints:

 Generation of the neighborhood on the GPU side to 
minimize the CPUGPU data transfer

 If possible, thread reduction for the best solution 
selection to minimize the GPUCPU data transfer

 Efficient parallelism control control: mapping 
neighboring onto threads ids, efficient kernel for fitness 
evaluation – incremental evaluation

 Efficient memory management (e.g. use of texture 
memory or L2 cache for Fermi cards) 

Parallelization scheme on GPU (2)
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 Cons:

 Data transfers at each iteration

 Definitely not better than an optimized problem-dependent 
implementation (data reorganization, alignment requirements, 
register pressure, …)

 Pros:

 Common parallelization to many local search algorithms

 Application to many class of problems and local search algorithms

 Clear separation of concepts specific to the local search and 
specific to the parallelization -> framework

GPU Computing for Parallel Local Search Metaheuristic Algorithms                  
IEEE Transactions on Computers (under revision)

Parallelization scheme on GPU (3)
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Outline

 Application to Combinatorial Problems

 Application to Continuous Problems

 Thread Control Optimization

 Comparison with Other Parallel and Distributed 
Architectures

 Application to Other Algorithms

 Application to Multiobjective Optimization Problems

 Integration of GPU-based Concepts in the ParadisEO
Platform
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Application to Combinatorial
Problems
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Parameter settings

Hardware configurations

 Configuration 1: laptop (2006)
 Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)

 Configuration 2 : desktop-computer (2007)
 Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)

 Configuration 3 : workstation (2008)
 Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)

 Tabu Search and parameters

 Neighborhood generation and evaluation on GPU

 10.000 iterations, 30 runs
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Quadratic Assignment Problem

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Permutation representation
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Permuted Perceptron Problem (1)

 1-Hamming distance neighborhood: n neighbors

 Delta evaluation: O(n)

 Binary encoding
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Permuted Perceptron Problem (2)

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors
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Permuted Perceptron Problem (3)

 3-Hamming distance neighborhood

 n*(n-1)*(n-2)/6 neighbors
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Application to Continuous
Problems
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X2

X1

A candidate solution

A neighbor

Continuous Neighborhood

 Vector of real values 

Neighbors are taken by 
random selection of one
point inside each crown 
[Siarry et al.]
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Continuous Weierstrass Function (1)

Neighbor evaluation: O(n²)

 Vector of real values

No data inputs

 Continuous neighborhood: 10000 neighbors
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Continuous Weierstrass Function (2)

 Dimension Problem: 2

 Vary the neighborhood size
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Thread Control 
Optimization
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Traveling Salesman Problem

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(1)

 Permutation representation
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Solution
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14 11 513 4 18 241516 13 19 6

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

 Increase the threads granularity …

…  with associating each thread to MANY neighbors

… to avoid memory overflow (e.g. hardware register limitation)

Thread Control (1)
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Kernel 

executionKernel call

…

…

…

…
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Thread Control (2)

Kernel 

executionKernel call

Kernel 
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Kernel 
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… …

 Dynamic heuristic for parameters auto-tuning

 To prevent the program from crashing

 To obtain extra performance

0.18s

0.12s

0.14s

0.04s

crash
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Heuristic performed on 
the first iterations

 Vary the total number 
of threads (*2)

 Vary the number of 
threads per block (+32)

 Time measurements of 
each configuration for a 
certain number of trials

 Return the best 
configuration for tuning 
the rest of the algorithm

 If an error is detected, 
restore the previous best 
configuration found



Traveling Salesman Problem (2)

 Thread control

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(1)

 Permutation representation

29
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Permuted Perceptron Problem

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Binary encoding

 Thread control
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Comparison with Other
Parallel and Distributed

Architectures
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 Different parallel approaches and implementations have been 
proposed for local search algorithms on different architectures:
Massively Parallel Processors [e.g. Chakrapani et al. 1993]
Networks or Clusters of Workstations [e.g. T. Crainic et al. 1995]
 Shared Memory or SMP machines [e.g. T. James et al. 2009].
 Large-scale computational grids [N. Melab et al. 2007].

 Emergence of heterogeneous COWs and computational grids as 
standard platforms for high-performance computing.

Parallel Implementations
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Machines on COWs and grids have been selected to have the 
same computational power than the previous GPU configurations.

 A Myri-10G gigabit ethernet connects the different machines
of the COWs .

 For the grid, the high-performance computing Grid’5000  has 
been used involving respectively two, five and seven French sites.

COWs and grids
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Parallelization Scheme

 Parallelization: the neighborhood is decomposed into different 
partitions of equal size which are distributed among the cores of 
the different machines.

 The parallelization is synchronous and one has to wait for the 
termination of the exploration of all partitions.

An hybrid OpenMP/MPI version has been produced to take 
advantage of both multi-core and distributed environments.
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Cluster of Worstations (1)

 Permuted perceptron problem

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Binary encoding
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Cluster of Worstations (2)

 Analysis of the data transfers including synchronizations
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Computational Grid
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Application to Other
Algorithms
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Instance Nug12 Nug13 Nug15 Nug18 Nug22

Best known value 580 1912 2230 17836 42476

# solutions 49/50 37/50 50/50 31/50 50/50

CPU time 256 s 1879 s 1360 s 17447 s 16147 s

GPUTex time 15 s 64 s 38 s 415 s 353 s

Acceleration x 17.3 x 29.2 x 36.0 x 42.0 x 45.7

Iterated Local Search for the Q3AP

 Iterative local search (100 iters) + tabu search (5000 iters) 
 Competitive algorithm
 Configuration: GTX 280
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Instance tai30a tai35a tai40a tai50a tai60a tai80a tai100a

Best known 
value

1818146 2522002 3139370 4938796 7205962 13511780 21052466

# solutions 27/30 23/30 18/30 10/30 6/30 4/30 2/30

CPU time 1h15min 2h24min 3h54min 10h2min 20h17min 66h 177h

GPUTex time 8min50s 12min56s 18min16s 45min 1h30min 4h45min 12h6min

Acceleration x 8.5 x 11.1 x 12.8 x 13.2 x 13.4 x 13.8 x 14.6

 10 individuals – 10 generations
 Evolutionary algorithm + iterative local search (3 iters) + tabu search  
(10000 iters)
Neighborhood based on a 3-exchange operator
 Competitive algorithm
 Configuration: GTX 280

Hybrid Genetic Algorithm for the QAP



414141

Multiobjective
Optimization

Problems
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Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 0.9s 1.9s 16s 32s 144s 271s 1190s 2221s

GPUTex time 1.7s 4.3s 6s 7.8s 11.5s 21s 77s 139s

Acceleration x 0.6 x 0.7 x 3.8 x 4.1 x 12.6 x 12.9 x 15.4 x 16.0

Aggregated Tabu Search

Multiobjective Flowshop Scheduling
 3 objectives (makespan, total tardiness and number of 
jobs delayed with regard to their due date)
 Taillard instances extended

 10000 global iterations per algorithm and 30 runs
 Configuration: GTX 280
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PLS-1 (dominating neighbors)

Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 1.0s 1.9s 17s 33s 140s 275s 1172s 2196s

GPUTex time 1.7s 3.0s 4.3s 7.8s 11.7s 21s 78s 140s

Acceleration x 0.6 x 0.6 x 3.8 x 4.2 x 12.0 x 13.1 x 15.1 x 15.7

# non-
dominated
solutions

11 13 19 20 31 34 61 71

 Pareto Multiobjective Local Search

 Only the dominating neighbors are added in the archive

 Archiving on CPU
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PLS-1 (non-dominated neighbors)

Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 1.2s 2.0s 21s 39s 253s 312s 1361s 2672s

GPUTex time 1.8s 3.0s 8.2s 13.2s 49s 59s 218s 378s

Acceleration x 0.7 x 0.7 x 2.5 x 3.0 x 5.1 x 5.3 x 6.4 x 7.1

# non-
dominated
solutions

77 83 396 596 1350 1530 1597 2061

 Pareto Multiobjective Local Search

 Only the non-dominated neighbors are added in the archive

 Archiving on CPU
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 Analysis of the time spent for archiving 

PLS-1
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Integration of GPU-based
Concepts in the 

ParadisEO Platform 
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Integration in ParadisEO

ParadisEO-PEO

ParadisEO-EO

ParadisEO-MOEO ParadisEO-MO
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U

One engineer position: Boufaras Karima
(Feb 2010 – Feb 2012) 
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Results of the Platform (1)

 Quadratic assignment problem

Neighborhood based on a 2-exchange operator

 Configuration: GTX 280

 Tabu search 10000 iterations
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Results of the Platform (2)

 Permuted perceptron problem (7 smallest instances)

Neighborhood based on a Hamming distance of two

 Configuration: GTX 480

 Tabu search 10000 iterations
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Actual Features

 First version will be released this month.

Transparent use of GPU in local search algorithms.

 Flexibility and easiness of reuse at implementation.

 Support binary and permutation-based problems.

http://paradiseo.gforge.inria.fr
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Indexed neighborhood

Mapping table

Neighborhood size

Mapping tables

 Pre-defined neighborhoods for binary and permutation 
representations.

 k-exchanges and k-Hamming distances neighborhoods.


