Advances in Metaheuristics on GPU

Thé Van Luong, El-Ghazali Talbi and **Nouredine Melab**

DOLPHIN Project Team

May 2011

1

INSTITUT NATIONAL DE RECHERCHE INFORMATIQUE

Interests in optimization methods

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parallel models for metaheuristics

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

GPU Computing

- Used in the past for graphics and video applications ...
 - ... but now popular for many other applications such as scientific computing [Owens *et al*. 2008]
- In the metaheuristics field:
 - Few existing works (Genetic algorithms [T-T. Wong 2006], Genetic programming [Harding *et al.* 2009], ...), light tentative for the Tabu search algorithm [Zhu *et al.* 2009]
- Popularity due to the publication of the CUDA development toolkit allowing ...
 - ... GPU programming in a C-like language [Garland *et al.* 2008]

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 4

Many-cores and a hierarchy of memories

Memory type	Access latency	Size
Global	Medium	Big
Registers	Very fast	Very small
Local	Medium	Medium
Shared	Fast	Small
Constant	Fast (cached)	Medium
Texture	Fast (cached)	Medium

- Highly parallel multithreaded many core

- High memory bandwidth compared to CPU

- Different levels of memory (different latencies)

Objective and challenging issues

- Re-think the parallel models to take into account the characteristics of GPU
 - Three major challenges ...
- Challenge 1: efficient CPU-GPU cooperation
 - Work partitioning between CPU and GPU, data transfer optimization
- Challenge 2: efficient parallelism control
 - Threads generation control (memory constraints)
 - Efficient mapping between work units and threads Ids
- Challenge 3: efficient memory management
 - Which data on which memory (latency and capacity constraints)?

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Works completed

Re-design of parallel models on GPU ...

• ... which allows to produce a bunch of general methods:

- Hill climbing, tabu search, VNS, multi-start LS, ...
- GAs, EDAs, island model for GAs, ...

Works completed (2)

- Application to 9 combinatorial problems and 10 continuous tests functions.
- Speed-ups from experiments provide promising results :
 - Up to x50 for combinatorial problems
 - Up to x2000 for continuous test functions

GTX 280 (2008 configuration)

- 1 international journal.
- 9 international conference proceedings.
- 1 national conference proceeding.
- 2 conference abstracts.
- 7 workshops and talks.
- 1 research report.

Iteration-level parallel model

Parallelization scheme on GPU (1)

CPU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 10

Parallelization scheme on GPU (2)

Keypoints:

- Generation of the neighborhood on the GPU side to minimize the CPU→GPU data transfer
- If possible, thread reduction for the best solution selection to minimize the GPU→CPU data transfer
- Efficient parallelism control control: mapping neighboring onto threads ids, efficient kernel for fitness evaluation – incremental evaluation
- Efficient memory management (e.g. use of texture memory or L2 cache for Fermi cards)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 11

Parallelization scheme on GPU (3)

• Cons:

- Data transfers at each iteration
- Definitely not better than an optimized problem-dependent implementation (data reorganization, alignment requirements, register pressure, ...)
- Pros:
 - Common parallelization to many local search algorithms
 - Application to many class of problems and local search algorithms
 - Clear separation of concepts specific to the local search and specific to the parallelization -> framework

GPU Computing for Parallel Local Search Metaheuristic Algorithms IEEE Transactions on Computers (under revision)

> INSTITUT NATIONA DE RECHERCH EN INFORMATIQUI ET EN AUTOMATIQUI

Outline

- Application to Combinatorial Problems
- Application to Continuous Problems
- Thread Control Optimization
- Comparison with Other Parallel and Distributed Architectures
- Application to Other Algorithms
- Application to Multiobjective Optimization Problems
- Integration of GPU-based Concepts in the ParadisEO Platform

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE F EN AUTOMATIQUE

Application to Combinatorial Problems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Parameter settings

- Hardware configurations
 - Configuration 1: laptop (2006)
 - Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)
 - Configuration 2 : desktop-computer (2007)
 - Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)
 - Configuration 3 : workstation (2008)
 - Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)
- Tabu Search and parameters
 - Neighborhood generation and evaluation on GPU
 - 10.000 iterations, 30 runs

INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Quadratic Assignment Problem

- Swap neighborhood: n*(n-1)/2 neighbors
- Delta evaluation: O(n)
- Permutation representation

	<u> </u>	A D	0.01	6	101	0.401	т	(1)V (
		ore 2 Duo	2Gnz	Cor	e 2 Quad	2.4Gnz	11	ntel Xeon a	3Gnz	
Instance	Ge	Force 8600	M GT	Ge	Force 880	0 GTX	GeForce GTX 280			
Instance	4 multiprocessors			16	16 multiprocessors			30 multiprocessors		
	CPU	GPŪ	$\mathrm{GPU}_{\mathbf{Tex}}$	CPU	GPŨ	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPŨ	$\mathrm{GPU}_{\mathbf{Tex}}$	
tai30a	2.3	$4.2_{\times 0.5}$	1.3×1.8	1.9	$2.3_{\times 0.8}$	1.0×1.9	1.6	$1.1_{\times 1.4}$	$0.8_{\times 2.0}$	
tai35a	3.3	$6.5_{\times 0.5}$	$1.6_{\times 2.1}$	2.7	$2.9_{\times 0.9}$	$1.2_{\times 2.3}$	2.4	$1.2_{\times 1.9}$	$0.9_{\times 2.6}$	
tai40a	5.0	$9.7_{\times 0.5}$	$1.8_{\times 2.6}$	4.2	$3.7_{\times 1.1}$	$1.5_{\times 2.9}$	3.6	$1.3_{\times 2.7}$	$1.1_{\times 3.3}$	
tai50a	9.9	16×0.6	$3.0_{ imes 3.2}$	8.4	$5.7_{\times 1.4}$	1.8×4.6	6.9	$1.7_{\times 4.1}$	1.3×5.3	
tai60a	17	$28_{\times 0.6}$	$4.9_{\times 3.4}$	14	$8.4_{\times 1.6}$	2.0×7.1	11	$2.0_{\times 5.6}$	1.6×7.3	
tai80a	42	$63_{\times 0.7}$	$10_{\times 4.2}$	36	$19_{\times 1.9}$	$4.5_{\times 8.1}$	30	$3.2_{\times 9.1}$	$2.8_{\times 10.8}$	
tai100a	108	$139_{\times 0.8}$	$19_{\times 5.6}$	76	$33_{\times 2.3}$	$8.7_{\times 8.8}$	60	$5.5_{\times 10.9}$	$3.7_{\times 16.5}$	

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 16

Permuted Perceptron Problem (1)

- 1-Hamming distance neighborhood: n neighbors
- Delta evaluation: O(n)
- Binary encoding

Instance	Core 2 Duo 2Ghz GeForce 8600M GT			Coi Ge	e 2 Quad Force 880	2.4Ghz 0 GTX	Ir Ge	itel Xeon eForce G7	3Ghz TX 280		
Instance	4	multiproc	essors	16	multiproc	cessors	30 multiprocessors				
	CPU	GPŨ	GPU_{Tex}	CPU	GPŨ	GPU_{Tex}	CPU	GPŨ	GPU_{Tex}		
73-73	1.5	$6.1_{ imes 0.2}$	$5.0_{ imes 0.3}$	1.1	$3.3_{ imes 0.3}$	$3.0_{ imes 0.4}$	1.1	$3.5_{ imes 0.3}$	$2.8_{ imes 0.5}$		
81-81	2.0	$6.7_{\times 0.3}$	$5.3_{\times 0.3}$	1.4	$3.9_{\times 0.4}$	$3.5_{\times 0.4}$	1.3	$3.8_{ imes 0.3}$	$3.1_{\times 0.5}$		
101-117	3.3	$8.9_{\times 0.4}$	$6.6_{\times 0.5}$	2.5	$4.8_{\times 0.5}$	$4.3_{\times 0.6}$	2.2	$4.9_{\times 0.4}$	$3.9_{\times 0.6}$		
201-217	11	$19_{\times 0.6}$	$12_{\times 0.9}$	8.8	$10_{\times 0.8}$	8.1×1.1	8.1	$8.8_{ imes 0.9}$	$7.7_{\times 1.1}$		
401-417	43	$53_{\times 0.8}$	24×1.7	33	$28_{\times 1.2}$	$18_{\times 1.8}$	29	$16_{\times 1.9}$	$13_{\times 2.2}$		
601-617	189	$169_{\times 1.1}$	$98_{\times 1.9}$	151	96×1.6	$68_{\times 2.2}$	105	$47_{\times 2.2}$	$43_{\times 2.4}$		
801-817	373	244×1.4	120×3.1	280	$120_{\times 2.4}$	$84_{\times 3.4}$	201	$54_{\times 3.6}$	$49_{\times 4.2}$		
1001-1017	599	345×1.8	$147_{\times 4.1}$	456	145×3.1	100×4.5	338	63×5.3	60×5.7		
1301-1317	1180	$571_{\times 2.2}$	273×4.3	808	227×3.6	$169_{\times 4.8}$	690	$93_{\times 7.4}$	82×8.1		

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Permuted Perceptron Problem (2)

- 2-Hamming distance neighborhood
- n*(n-1)/2 neighbors

	C	Core 2 Duo 2	Ghz	Со	re 2 Quad 2	.4Ghz	I	ntel Xeon 3	Ghz
Instance	G	eForce 8600N	/I GT	G	eForce 8800	GTX	GeForce GTX 280		
mstance	4	multiproces	processors 16 mu			ssors	30 multiprocessors		
	CPU	GPU	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPŪ	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPŪ	$\mathrm{GPU}_{\mathrm{Tex}}$
73-73	2.9	$3.9_{\times 0.7}$	$0.8_{ imes 3.6}$	2.2	$1.3_{\times 1.7}$	0.2×10.1	2.1	0.2×9.9	0.2×10.9
81-81	4.2	$5.2_{\times 0.8}$	$1.1_{\times 3.8}$	2.8	$1.7_{\times 1.7}$	$0.3_{ imes 10.4}$	2.7	0.3×10.3	$0.2_{\times 12.2}$
101-117	11	$12_{\times 0.9}$	$2.5_{\times 4.4}$	7.3	$4.1_{\times 1.8}$	$0.6_{\times 12.4}$	7.0	$0.6_{\times 11.8}$	$0.4_{ imes 18.1}$
201-217	70	$75_{\times 0.9}$	$15_{\times 4.7}$	51	$25_{\times 2.0}$	$3.3_{ imes 15.4}$	48	$3.0_{ imes 16.3}$	$1.9_{ imes 25.3}$
401-417	573	$570_{\times 1.0}$	103×5.4	441	123×3.5	$24_{\times 18.3}$	403	$20_{\times 20.1}$	14×28.8
601-617	3210	1881×1.7	512×6.3	2520	$351_{\times 7.1}$	$89_{\times 28.3}$	2049	67×30.5	$51_{\times 40.1}$
801-817	8615	$4396_{\times 2.0}$	$1245_{\times 6.9}$	6929	$817_{\times 8.5}$	212×32.8	5410	$154_{\times 35.3}$	$128_{\times 42.3}$
1001-1017	17521	$8474_{\times 2.1}$	2421×7.2	14461	$1474_{\times 9.8}$	409×35.2	11075	292×37.9	$252_{\times 43.9}$
1301-1317	39465	$17910_{\times 2.2}$	4903×8.0	33155	3041×10.9	911×36.2	25016	651×38.5	$568_{\times 44.1}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Permuted Perceptron Problem (3)

- 3-Hamming distance neighborhood
- n*(n-1)*(n-2)/6 neighbors

Instance	Core 2 Duo 2Ghz GeForce 8600M GT 4 multiprocessors			Core 2 Quad 2.4Ghz GeForce 8800 GTX 16 multiprocessors			Intel Xeon 3Ghz GeForce GTX 280 30 multiprocessors		
	CPU	GPU	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPŪ	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPŪ	$\mathrm{GPU}_{\mathrm{Tex}}$
73-73	538	$742_{\times 0.7}$	167×3.2	312	11.1×28.1	$10.6_{\times 29.4}$	278	$9.8_{\times 28.4}$	9.2×30.2
81-81	788	$1023_{\times 0.8}$	242×3.3	472	$16_{\times 29.5}$	$15_{\times 31.4}$	415	13.3×31.2	12.9×32.2
101-117	3181	$3329_{\times 0.9}$	883×3.6	1831	$57_{\times 32.1}$	$55_{\times 33.3}$	1782	$50_{\times 35.6}$	$47_{\times 37.9}$
201-217	78835	$70325_{\times 1.1}$	$15471_{\times 5.1}$	25718	$650_{\times 39.5}$	$615_{\times 41.8}$	22375	$510_{\times 43.9}$	$488_{\times 45.8}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 19

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Application to Continuous

Problems

Continuous Neighborhood

Х2

- A candidate solution
- O A neighbor

- Vector of real values
- Neighbors are taken by random selection of one point inside each crown [Siarry et al.]

INSTITUT NATION DE RECHERCI EN INFORMATIQU ET EN AUTOMATIQU

X1

Continuous Weierstrass Function (1)

22

- Neighbor evaluation: O(n²)
- Vector of real values
- No data inputs
- Continuous neighborhood: 10000 neighbors

	Core 2	Duo 2Ghz	Core 2	Quad 2.4Ghz	Intel)	Keon 3Ghz	
Inctance	GeForc	e 8600M GT	GeFore	e 8800 GTX	GeFore	ce GTX 280	
instance	4 mult	iprocessors	16 mul	tiprocessors	30 multiprocessors		
	CPU	GPU	CPU	GPU	CPU	GPU	
1	3848	98×39.2	2854	27×105.7	2034	16×127.1	
2	10298	247×41.7	5752	$52_{\times 110.6}$	4088	$32_{\times 127.8}$	
3	15776	$354_{\times 44.6}$	8538	$77_{\times 110.9}$	6113	$47_{\times 130.0}$	
4	20114	$440_{\times 45.7}$	11405	102×111.8	8137	61×133.4	
5	23294	$501_{\times 46.5}$	14245	127×112.1	10225	$76_{\times 134.5}$	
6	28244	$603_{\times 46.8}$	17370	151×115.0	12193	$90_{\times 135.5}$	
7	33461	712×47.0	20321	173×117.4	14319	104×137.7	
8	36540	$774_{\times 47.2}$	23957	203×118.0	16699	120×139.2	
9	42319	889×47.6	27100	229×118.3	19008	$134_{\times 141.9}$	
10	51156	$1063_{\times 48.1}$	30709	$259_{\times 118.6}$	21095	$148_{\times 142.5}$	

Continuous Weierstrass Function (2)

23

- Dimension Problem: 2
- Vary the neighborhood size

NT · 11 1 1	Core 2 GeForce	Duo 2Ghz 8600M GT	Core 2 GeFore	Quad 2.4Ghz ce 8800 GTX	Intel) GeFord	(eon 3Ghz e GTX 280		
Neighborhood	4 multi	processors	16 mu	ltiprocessors	30 mul	30 multiprocessors		
	CPU	GPU	CPU	GPU	CPU	GPU		
100	179	17×10.5	57	11×5.2	41	11×3.7		
500	482	22×21.9	287	$15_{\times 19.1}$	203	$12_{\times 16.9}$		
1000	1152	$31_{\times 37.1}$	576	16×36.0	407	13×31.3		
5000	5317	137×38.1	2874	$32_{\times 89.8}$	2034	$20_{\times 101.7}$		
10000	10298	247×41.7	5752	$52_{\times 110.6}$	4088	$32_{\times 127.8}$		
20000	21330	$428_{\times 49.8}$	11488	101×113.7	8508	$65_{\times 130.9}$		
50000	53402	$1060_{\times 50.3}$	28718	$244_{\times 117.7}$	20364	148×137.6		
100000	104439	2124×51.6	58857	$493_{\times 119.4}$	40700	$292_{\times 139.4}$		

Thread Control Optimization

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Traveling Salesman Problem

- Swap neighborhood: n*(n-1)/2 neighbors
- Delta evaluation: O(1)
- Permutation representation

Instance	Co GeI	Core 2 Duo 2Ghz GeForce 8600M GT			e 2 Quad 2 Force 8800	2.4Ghz GTX	Intel Xeon 8 cores 3Ghz GeForce GTX 280		
Instance	4 r	nultiproce	ssors	16 multiprocessors			30 multiprocessors		
	CPU	GPU	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPU	$\mathrm{GPU}_{\mathrm{Tex}}$	CPU	GPÛ	$\mathrm{GPU}_{\mathrm{Tex}}$
eil101	2.2	$3.5_{\times 0.6}$	$1.8_{\times 1.2}$	1.6	$1.8_{ imes 0.9}$	$1.1_{\times 1.5}$	1.4	$0.7_{\times 2.1}$	$0.6_{\times 2.3}$
d198	10	$12_{\times 0.8}$	$6.9_{\times 1.4}$	7.2	$5.1_{\times 1.4}$	$3.2_{\times 2.3}$	5.8	$1.5_{\times 3.9}$	$1.3_{\times 4.4}$
pcb442	55	$87_{\times 0.6}$	$36_{\times 1.5}$	31	$24_{\times 1.3}$	$14_{\times 2.2}$	27	$6.7_{\times 4.0}$	$6.0_{\times 4.5}$
rat783	199	$315_{\times 0.6}$	$144_{\times 1.4}$	117	$75_{\times 1.6}$	$42_{\times 2.8}$	93	$22_{\times 4.1}$	$20_{\times 4.7}$
d1291	695	$881_{\times 0.8}$	$503_{\times 1.4}$	491	$227_{\times 2.2}$	140×3.5	365	82×4.5	$71_{\times 5.1}$
pr2392	3370	_	_	2320	$874_{\times 2.6}$	$531_{\times 4.4}$	2394	304×7.9	$286_{\times 8.4}$
fn14461	14823	_	_	11721	_	_	11281	$1171_{\times 10.0}$	$1125_{\times 11.0}$
rl5915	27936	_	_	20939	-	_	20712	_	_

Thread Control (1)

Increase the threads granularity ...

- ... with associating each thread to MANY neighbors
- ... to avoid memory overflow (e.g. hardware register limitation)

Thread Control (2)

- Dynamic heuristic for parameters auto-tuning
 - To prevent the program from crashing
 - To obtain extra performance

Algorithm 3 Dynamic parameters tuning heuristic

Require: nb_trials;

- 1: nb_threads := nearest_power_of_2 (solution_size);
- 2: while nb_threads <= neighborhood_size do
- 3: nb_threads_block := 32;
- 4: while nb_threads_block <= 512 do

5: repeat

- 6: LS iteration pre-treatment on host side
- 7: Generation and evaluation kernel on GPU
- 8: **if** GPU kernel failure **then**
- 9: Restore (best_nb_threads);
- Restore (best_nb_threads_block);
- 11: Exit procedure
- 12: end if
- 13: LS iteration post-treatment on host side
- 14: **until** Time measurements of nb_trials
- 15: if Best time improvement then
- 16: best_nb_threads := nb_threads;
- 17: best_nb_threads_block := nb_threads_block;
- 18: end if
- 19: nb_threads_block := nb_threads + 32;
- 20: end while
- 21: nb_threads := nb_threads * 2;
- 22: end while
- 23: Exit procedure

Ensure: best_nb_threads and best_nb_threads_block;

 Heuristic performed on the first iterations

 Vary the total number of threads (*2)

- Vary the number of threads per block (+32)
- Time measurements of each configuration for a certain number of trials
- Return the best configuration for tuning the rest of the algorithm
- If an error is detected, restore the previous best configuration found

Traveling Salesman Problem (2)

- Thread control
- Swap neighborhood: n*(n-1)/2 neighbors
- Delta evaluation: O(1)
- Permutation representation

	(Core 2 Duo	2Ghz	Co	re 2 Ouad	2.4Ghz	Inte	el Xeon 8 con	res 3Ghz	
Instance	G	eForce 8600	OM GT	G	eForce 880	0 GTX	(GeForce GT	X 280	
Instance	4	multiproc	essors	10	6 multiproc	cessors	3	30 multiprocessors		
	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$	
eil101	2.2	$1.8_{\times 1.2}$	1.7×1.3	1.6	$1.1_{\times 1.5}$	$0.9_{\times 1.8}$	1.4	$0.6_{\times 2.3}$	$0.6_{\times 2.4}$	
d198	10	$6.9_{\times 1.4}$	$6.8_{\times 1.5}$	7.2	$3.2_{\times 2.3}$	$3.0_{\times 2.4}$	5.8	$1.3_{\times 4.4}$	$1.3_{\times 4.5}$	
pcb442	55	$36_{\times 1.5}$	$34_{\times 1.6}$	31	$14_{\times 2.2}$	$13_{\times 2.4}$	27	$6.0_{\times 4.5}$	$5.8_{\times 4.7}$	
rat783	199	$144_{\times 1.4}$	141×1.4	117	$42_{\times 2.8}$	$39_{\times 3.0}$	93	$20_{\times 4.7}$	$19_{\times 4.9}$	
d1291	695	$503_{\times 1.4}$	$498_{\times 1.4}$	491	140×3.5	133×3.7	365	$71_{\times 5.1}$	68×5.4	
pr2392	3370	_	1946×1.7	2320	$531_{\times 4.4}$	$519_{\times 4.5}$	2394	$286_{\times 8.4}$	278×8.6	
În14461	14823	_	7133×2.1	11721	_	$1789_{\times 6.6}$	11281	$1125_{\times 10.0}$	1110×10.2	
rl5915	27936	_	9142×3.1	20939	_	2471×8.5	20712	_	1461×14.2	

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Permuted Perceptron Problem

- 2-Hamming distance neighborhood
- n*(n-1)/2 neighbors
- Delta evaluation: O(n)
- Binary encoding
- Thread control

			-									
.	G	Core 2 Duo eForce 8600	2Ghz M GT	Co Co	ore 2 Quad GeForce 8800	2.4Ghz 0 GTX	(Intel Xeon GeForce GT	3Ghz X 280			
Instance	4	l multiproce	essors	16 multiprocessors			30 multiprocessors					
	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$	CPU	$\operatorname{GPU}_{\operatorname{Tex}}$	$\mathrm{GPU}_{\mathrm{TexTC}}$			
73-73	2.9	$0.8_{ imes 3.6}$	$0.8_{ imes 3.8}$	2.2	0.2×10.1	0.2×10.3	2.1	0.2×10.9	0.2×11.6			
81-81	4.2	$1.1_{\times 3.8}$	$1.0_{\times 4.2}$	2.8	$0.3_{ imes 10.4}$	0.3×10.9	2.7	0.2×12.2	$0.2_{\times 11.8}$			
101-117	11	$2.5_{\times 4.4}$	$2.4_{\times 4.6}$	7.3	$0.6_{ imes 12.4}$	0.6×13.7	7.0	$0.4_{ imes 18.1}$	$0.4_{ imes 19.9}$			
201-217	70	$15_{\times 4.7}$	$13_{\times 5.4}$	51	$3.3_{\times 15.4}$	$2.9_{\times 17.6}$	48	$1.9_{\times 25.3}$	1.6×30.1			
401-417	573	$103_{\times 5.4}$	$92_{\times 6.2}$	441	$24_{\times 18.3}$	$21_{\times 21.0}$	403	$14_{\times 28.8}$	$13_{\times 31.2}$			
601-617	3210	512×6.3	446×7.2	2520	$89_{\times 28.3}$	$78_{ imes 32.3}$	2049	$51_{\times 40.1}$	$45_{\times 45.3}$			
801-817	8615	$1245_{\times 6.9}$	1064×8.1	6929	212×32.8	182×38.1	5410	$128_{\times 42.3}$	$109_{\times 49.6}$			
1001-1017	17521	2421×7.2	2087×8.4	14461	409×35.2	$350_{\times 41.3}$	11075	252×43.9	216×51.3			
1301-1317	39465	4903×8.0	$4265_{\times 9.2}$	33155	911×36.2	$779_{\times 42.5}$	25016	$568_{\times 44.1}$	$485_{\times 51.7}$			
	1	X010						~	X01			

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Comparison with Other Parallel and Distributed Architectures

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Parallel Implementations

 Different parallel approaches and implementations have been proposed for local search algorithms on different architectures:

- Massively Parallel Processors [e.g. Chakrapani et al. 1993]
- Networks or Clusters of Workstations [e.g. T. Crainic et al. 1995]
- Shared Memory or SMP machines [e.g. T. James et al. 2009].
- Large-scale computational grids [N. Melab et al. 2007].

• Emergence of heterogeneous <u>COWs</u> and <u>computational grids</u> as standard platforms for high-performance computing.

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE I EN AUTOMATIQUE

COWs and grids

- Machines on COWs and grids have been selected to have the same computational power than the previous GPU configurations.
- A Myri-10G gigabit ethernet connects the different machines of the COWs .
- For the grid, the high-performance computing Grid'5000 has been used involving respectively two, five and seven French sites.

Architactura	Configuration	1	Configuration	2	Configuration	3	
Architecture	Machines	gflops	Machines	gflops	Machines	gflops	
CDU	Core 2 Duo T5800	76.8	Core 2 Quad Q6600	28/	Intel Xeon E5450	081 12	
GIU	GeForce 8600M GT	70.0	GeForce 8800 GTX	304	GeForce GTX 280	901.12	
COWe	Intel Xeon E5440	00 656	4 Intel Xeon E5440	362 621	11 Intel Xeon E5440	005 226	
COWS	8 cores	90.000	32 cores	302.024	88 cores	993.236	
					2 Intel Xeon E5520		
) 90.656	Amd Opteron 2218		2 AMD Opteron 2218		
			Intel Xeon E5520		2 Intel Xeon E5520		
Grid	2 Intel Xeon E5440		2 Intel Xeon E5420	406.368	4 Intel Xeon E5520	979.104	
	2×4 cores		Intel Xeon E5440		Intel Xeon X5570		
			40 cores		Intel Xeon E5520		
					96 cores		
		IN			centre de recherche		
		ET					

Parallelization Scheme

 Parallelization: the neighborhood is decomposed into different partitions of equal size which are distributed among the cores of the different machines.

• The parallelization is synchronous and one has to wait for the termination of the exploration of all partitions.

 An hybrid OpenMP/MPI version has been produced to take advantage of both multi-core and distributed environments.

> NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE F EN AUTOMATIQUE

Cluster of Worstations (1)

- Permuted perceptron problem
- 2-Hamming distance neighborhood
- n*(n-1)/2 neighbors
- Delta evaluation: O(n)
- Binary encoding

	In	itel Xeon 2.8	83Ghz	4 In	tel Xeon 2.	83 Ghz	11]	Intel Xeon 2	2.83Ghz
Instance		8 cores		32 cores			88 cores		
Instance	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	COW	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	COW	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	COW
73-73	2.9	$0.8_{ imes 3.6}$	$0.9_{ imes 3.5}$	2.2	0.2×10.1	1.4×1.6	2.1	0.2×10.9	$5.4_{ imes 0.4}$
81-81	4.2	$1.1_{\times 3.8}$	$1.2_{\times 3.6}$	2.8	0.3×10.4	$1.6_{\times 1.8}$	2.7	$0.2_{\times 12.2}$	$5.6_{\times 0.5}$
101-117	11	$2.5_{\times 4.4}$	$2.9_{\times 3.8}$	7.3	$0.6_{\times 12.4}$	$1.9_{\times 3.8}$	7.0	$0.4_{\times 18.1}$	$6.0_{\times 1.2}$
201-217	70	$15_{\times 4.7}$	18×3.9	51	$3.3_{\times 15.4}$	$6.2_{\times 8.2}$	48	$1.9_{\times 25.3}$	$7.6_{ imes 6.3}$
401-417	573	103×5.4	$139_{\times 4.1}$	441	24×18.3	$39_{\times 11.3}$	403	$14_{\times 28.8}$	21×19.2
601-617	3210	512×6.3	966×3.3	2520	$89_{\times 28.3}$	258×9.8	2049	$51_{\times 40.1}$	$115_{\times 17.8}$
801-817	8615	$1245_{\times 6.9}$	2828×3.0	6929	212×32.8	737×9.4	5410	$128_{\times 42.3}$	$322_{\times 16.8}$
1001-1017	17521	2421×7.2	$6307_{\times 2.8}$	14461	$409_{\times 35.2}$	$1708_{\times 8.5}$	11075	$252_{\times 43.9}$	$793_{\times 14.0}$
1301-1317	39465	4903×8.0	$15257_{\times 2.6}$	33155	911×36.2	$3968_{\times 8.4}$	25016	$568_{\times 44.1}$	$1807_{ imes 13.8}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Cluster of Worstations (2)

Analysis of the data transfers including synchronizations

	Inte	el Xeon 2.83	Ghz	4 Int	el Xeon 2.8	3 Ghz	11 Intel Xeon 2.83Ghz			
Instance		8 cores			32 cores		88 cores			
	process	transfers	workers	process	transfers	workers	process	transfers	workers	
73-73	4.2%	45.7%	50.1%	1.8%	93.0%	5.2%	0.7%	98.8%	0.5%	
81-81	3.3%	45.3%	51.4%	2.3%	91.9%	5.8%	0.7%	98.7%	0.6%	
101-117	2.6%	43.1%	54.3%	3.9%	83.8%	12.3%	1.2%	97.4%	1.4%	
201-217	1.9%	42.4%	55.7%	5.7%	67.8%	26.5%	4.6%	88.2%	7.2%	
401-417	1.8%	39.6%	58.6%	6.5%	57.1%	36.4%	12.1%	63.8%	24.1%	
601-617	0.9%	52.0%	47.1%	3.5%	64.9%	31.6%	7.8%	71.7%	20.5%	
801-817	0.6%	56.5%	42.9%	2.3%	67.4%	30.3%	5.3%	75.4%	19.3%	
1001-1017	0.5%	59.4%	40.1%	1.9%	70.7%	27.4%	4.0%	79.9%	16.1%	
1301-1317	0.4%	62.5%	37.1%	1.6%	71.3%	27.1%	3.5%	80.6%	15.9%	

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Computational Grid

	2 Int	el Xeon QC	2.83Ghz	Config	guration 5 1	nachines	Configuration 12 machines			
Instanco		8 cores			40 cores		96 cores			
mstance	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	Grid	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	Grid	CPU	$\mathrm{GPU}_{\mathrm{Tex}}$	Grid	
73-73	2.9	0.8×3.6	$1.1_{\times 2.6}$	2.2	0.2×10.1	1.8×1.2	2.1	0.2×10.9	$7.3_{ imes 0.3}$	
81-81	4.2	$1.1_{\times 3.8}$	$1.4_{\times 3.0}$	2.8	$0.3_{\times 10.4}$	$2.0_{\times 1.4}$	2.7	$0.2_{\times 12.2}$	$7.6_{\times 0.4}$	
101-117	11	$2.5_{\times 4.4}$	$3.5_{\times 3.1}$	7.3	$0.6_{ imes 12.4}$	$2.4_{\times 3.0}$	7.0	$0.4_{\times 18.1}$	$8.1_{\times 0.9}$	
201-217	70	$15_{\times 4.7}$	$22_{\times 3.2}$	51	$3.3_{\times 15.4}$	$7.8_{ imes 6.5}$	48	$1.9_{\times 25.3}$	$10_{\times 4.7}$	
401-417	573	$103_{\times 5.4}$	$167_{\times 3.4}$	441	$24_{\times 18.3}$	$49_{\times 9.0}$	403	14×28.8	$28_{\times 14.4}$	
601-617	3210	512×6.3	$1159_{\times 2.8}$	2520	$89_{\times 28.3}$	323×7.8	2049	$51_{\times 40.1}$	155×13.2	
801-817	8615	$1245_{\times 6.9}$	$3394_{\times 2.5}$	6929	212×32.8	922×7.5	5410	$128_{\times 42.3}$	$425_{\times 12.7}$	
1001-1017	17521	2421×7.2	$7568_{\times 2.3}$	14461	$409_{\times 35.2}$	$2135_{\times 6.8}$	11075	$252_{\times 43.9}$	1071×10.3	
1301-1317	39465	4903×8.0	$18308_{\times 2.2}$	33155	911×36.2	4960×6.7	25016	$568_{\times 44.1}$	$2439_{\times 10.2}$	

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Application to Other Algorithms

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Iterated Local Search for the Q3AP

Instance	Nug12	Nug13	Nug15	Nug18	Nug22
Best known value	580	1912	2230	17836	42476
# solutions	49/50	37/50	50/50 31/50		50/50
CPU time	256 s	1879 s	1360 s	17447 s	16147 s
GPUTex time	15 s	64 s	38 s	415 s	353 s
Acceleration	x 17.3	x 29.2	x 36.0	x 42.0	x 45.7

Iterative local search (100 iters) + tabu search (5000 iters)

- Competitive algorithm
- Configuration: GTX 280

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Hybrid Genetic Algorithm for the QAP

Instance	tai30a	tai35a	tai40a	tai50a	tai60a	tai80a	tai100a
Best known value	1818146	2522002	3139370	4938796	7205962	13511780	21052466
# solutions	27/30	23/30	18/30	10/30	6/30	4/30	2/30
CPU time	1h15min	2h24min	3h54min	10h2min	20h17min	66h	177h
GPUTex time	8min50s	12min56s	18min16s	45min	1h30min	4h45min	12h6min
Acceleration	x 8.5	x 11.1	x 12.8	x 13.2	x 13.4	x 13.8	x 14.6

- 10 individuals 10 generations
- Evolutionary algorithm + iterative local search (3 iters) + tabu search (10000 iters)
- Neighborhood based on a 3-exchange operator
- Competitive algorithm
- Configuration: GTX 280

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

centre de recherche LILLE - NORD EUROPE 40

Multiobjective Optimization Problems

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Aggregated Tabu Search

Multiobjective Flowshop Scheduling

 3 objectives (makespan, total tardiness and number of jobs delayed with regard to their due date)
 Taillard instances extended

- 10000 global iterations per algorithm and 30 runs
- Configuration: GTX 280

Instance	20-10	20-20	50-10	50-20	100-10	100-20	200-10	200-20
CPU time	0.9s	1.9s	16s	32s	144s	271s	1190s	2221s
GPUTex time	1.7s	4.3s	6s	7.8s	11.5s	21s	77s	139s
Acceleration	x 0.6	x 0.7	x 3.8	x 4.1	x 12.6	x 12.9	x 15.4	x 16.0

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

PLS-1 (dominating neighbors)

- Pareto Multiobjective Local Search
- Only the dominating neighbors are added in the archive
- Archiving on CPU

Instance	20-10	20-20	50-10	50-20	100-10	100-20	200-10	200-20
CPU time	1.0s	1.9s	17s	33s	140s	275s	1172s	2196s
GPUTex time	1.7s	3.0s	4.3s	7.8s	11.7s	21s	78s	140s
Acceleration	x 0.6	x 0.6	x 3.8	x 4.2	x 12.0	x 13.1	x 15.1	x 15.7
# non- dominated solutions	11	13	19	20	31	34	61	71

PLS-1 (non-dominated neighbors)

- Pareto Multiobjective Local Search
- Only the non-dominated neighbors are added in the archive
- Archiving on CPU

Instance	20-10	20-20	50-10	50-20	100-10	100-20	200-10	200-20
CPU time	1.2s	2.0s	21s	39s	253s	312s	1361s	2672s
GPUTex time	1.8s	3.0s	8.2s	13.2s	49s	59s	218s	378s
Acceleration	x 0.7	x 0.7	x 2.5	x 3.0	x 5.1	x 5.3	x 6.4	x 7.1
# non- dominated solutions	77	83	396	596	1350	1530	1597	2061

centre de recherche LILLE - NORD EUROPE 44

Analysis of the time spent for archiving

Taratana		\mathbf{PLS}_{\succ}			PLS_{\prec}	
Instance	Evaluation	Archiving	LS process	Evaluation	Archiving	LS process
20-10	99.2%	0.7%	0.1%	95.2%	4.7%	0.1%
20 - 20	99.4%	0.5%	0.1%	98.2%	1.7%	0.1%
50 - 10	99.5%	0.4%	0.1%	89.7%	10.2%	0.1%
50 - 20	99.7%	0.2%	0.1%	94.2%	5.7%	0.1%
100-10	99.8%	0.1%	0.1%	88.2%	11.8%	0.1%
100-20	99.85%	0.1%	0.05%	93.6%	6.35%	0.05%
200-10	99.9%	0.05%	0.05%	92.3%	7.65%	0.05%
200-20	99.9%	0.05%	0.05%	94.2%	5.75%	0.05%

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Integration of GPU-based Concepts in the ParadisEO Platform

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Integration in ParadisEO

One engineer position: Boufaras Karima (Feb 2010 – Feb 2012)

Results of the Platform (1)

- Quadratic assignment problem
- Neighborhood based on a 2-exchange operator
- Configuration: GTX 280
- Tabu search 10000 iterations

T	Para	disE	D-MO	Opti	mized	version	Perf.	gap
Instance	CPU	GPU	Acc.	CPU	GPU	Acc.	CPU	GPU
tai30a	0.8	0.9	$\times 0.9$	0.7	0.7	$\times 1.0$	13%	23%
tai40a	1.9	1.2	imes 1.6	1.7	1.0	imes1.7	11%	17%
tai50a	3.6	1.6	imes 2.2	3.0	1.3	imes 2.3	17%	19%
tai60a	6.0	2.0	imes 3.0	5.0	1.6	imes 3.1	17%	20%
tai80a	15.1	2.8	$ imes {f 5.4}$	12.3	2.1	imes 5.8	19%	25%
tai100a	31.7	3.8	imes 8.3	26.0	2.8	imes 9.2	18%	27%
tai150b	119.7	8.9	imes 13.4	98.1	6.5	imes 15.1	18%	27%

Results of the Platform (2)

- Permuted perceptron problem (7 smallest instances)
- Neighborhood based on a Hamming distance of two
- Configuration: GTX 480
- Tabu search 10000 iterations

Instance	Par	ParadisEO-MO			mized v	ersion	Perf. degradation		
Instance	CPU	GPU	Acc.	CPU	GPU	Acc.	CPU	GPU	
73-73	19.8	2.4	×8.2	17.1	1.3	×13.1	86%	54%	
81-81	26	2.8	×9.3	22	1.6	×13.8	84%	57%	
101-117	61	3.9	×15.6	51	2.2	×23.2	83%	56%	
121-137	106	5.2	×20.4	91	2.9	×31.3	86%	56%	
151-167	193	8.0	×24.1	134	4.1	×32.7	69%	51%	
171-187	305	11.3	×26.9	208	5.6	×37.1	68%	49%	
201-217	455	17.6	×29.5	343	8.2	×41.8	75%	46%	

Actual Features

- First version will be released this month.
- Transparent use of GPU in local search algorithms.
- Flexibility and easiness of reuse at implementation.
- Support binary and permutation-based problems.

http://paradiseo.gforge.inria.fr

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

THANK YOU FOR YOUR ATTENTION

Mapping tables

 Pre-defined neighborhoods for binary and permutation representations.

k-exchanges and k-Hamming distances neighborhoods.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

