
1
Advances in Metaheuristics

on GPU

Thé Van Luong, El-Ghazali Talbi and
Nouredine Melab

DOLPHIN Project Team

May 2011

2

Exact Algorithms Heuristics

Branch
and X

Dynamic
programming

CP Specific heuristics Metaheuristics

Solution-based Population-based

Local
searches

GRASP
Evolutionary

algorithms
Ant

colony
…

Interests in optimization methods

…

Branch and
bound

Branch and
cut

…

3

Iteration-level
parallel model

Algorithmic-level
parallel model

Solution-level
parallel model

Parallel models for metaheuristics

M1

M2

M3

M4

M5
f(s1)

f(s2)

f(s3)
f(sn)

f1(sn)
fm(sn)

444
GPU Computing

 Used in the past for graphics and video applications …

 … but now popular for many other applications such as
scientific computing [Owens et al. 2008]

 In the metaheuristics field:

 Few existing works (Genetic algorithms [T-T. Wong 2006], Genetic
programming [Harding et al. 2009], …), light tentative for the Tabu
search algorithm [Zhu et al. 2009]

 Popularity due to the publication of the CUDA development
toolkit allowing …

 … GPU programming in a C-like language [Garland et al. 2008]

5

GPU

Constant
Memory

Texture
Memory

Global
Memory

Block 0

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

Block 1

Shared Memory

Local
Memory

Thread 0

Registers

Local
Memory

Thread 1

Registers

CPU

Many-cores and a hierarchy of memories

Memory
type

Access
latency

Size

Global Medium Big

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

- Highly parallel multi-
threaded many core

- High memory bandwidth
compared to CPU

- Different levels of memory
(different latencies)

66
Objective and challenging issues

 Re-think the parallel models to take into account the
characteristics of GPU

 Three major challenges …

 Challenge 1: efficient CPU-GPU cooperation

 Work partitioning between CPU and GPU, data transfer optimization

 Challenge 2: efficient parallelism control

 Threads generation control (memory constraints)

 Efficient mapping between work units and threads Ids

 Challenge 3: efficient memory management

 Which data on which memory (latency and capacity constraints) ?

77

Iteration-level Algorithmic-level

Local
search

algorithms

Local
search

algorithms

Evolutionary
algorithms

Evolutionary
algorithms

Works completed

 Re-design of parallel models on GPU …

 … which allows to produce a bunch of general methods:

 Hill climbing, tabu search, VNS, multi-start LS, …

 GAs, EDAs, island model for GAs, …

888

 1 international journal.

 9 international conference proceedings.

 1 national conference proceeding.

 2 conference abstracts.

 7 workshops and talks.

 1 research report.

 Application to 9 combinatorial problems and 10 continuous
tests functions.

 Speed-ups from experiments provide promising results :

 Up to x50 for combinatorial problems

 Up to x2000 for continuous test functions

Works completed (2)

GTX 280
(2008 configuration)

9

Generate a solution

Full evaluation

Select a neighbor of the
solution

Evaluation

Next neighbor ?

Replace the solution by
the chosen neighbor

STOP ?

END

Yes

No

Yes

No

Current solution

Group of
neighbors

Iteration-level parallel model

… Need of massively parallel computing on

very large neighborhoods

10

CPU

Neighborhood
evaluation

0 1 2 … m

Init solution

End ?
no

Full evaluation

Replacement

yes

T0 T1 T2 Tm

Evaluation function

GPU

Threads Block

G
lo

b
a
l M

e
m

o
ry

g
lo

b
a

l s
o

lu
tio

n
, g

lo
b

a
l

fitn
e

s
s
e

s
, d

a
ta

 in
p

u
ts

copy solution

copy results

Parallelization scheme on GPU (1)

11

 Keypoints:

 Generation of the neighborhood on the GPU side to
minimize the CPUGPU data transfer

 If possible, thread reduction for the best solution
selection to minimize the GPUCPU data transfer

 Efficient parallelism control control: mapping
neighboring onto threads ids, efficient kernel for fitness
evaluation – incremental evaluation

 Efficient memory management (e.g. use of texture
memory or L2 cache for Fermi cards)

Parallelization scheme on GPU (2)

12

 Cons:

 Data transfers at each iteration

 Definitely not better than an optimized problem-dependent
implementation (data reorganization, alignment requirements,
register pressure, …)

 Pros:

 Common parallelization to many local search algorithms

 Application to many class of problems and local search algorithms

 Clear separation of concepts specific to the local search and
specific to the parallelization -> framework

GPU Computing for Parallel Local Search Metaheuristic Algorithms
IEEE Transactions on Computers (under revision)

Parallelization scheme on GPU (3)

1313
Outline

 Application to Combinatorial Problems

 Application to Continuous Problems

 Thread Control Optimization

 Comparison with Other Parallel and Distributed
Architectures

 Application to Other Algorithms

 Application to Multiobjective Optimization Problems

 Integration of GPU-based Concepts in the ParadisEO
Platform

14141414

Application to Combinatorial
Problems

1515

Parameter settings

Hardware configurations

 Configuration 1: laptop (2006)
 Core 2 Duo 2 Ghz + 8600M GT 4 multiprocessors (32 cores)

 Configuration 2 : desktop-computer (2007)
 Core 2 Quad 2.4 Ghz + 8800 GTX 16 multiprocessors (128 cores)

 Configuration 3 : workstation (2008)
 Intel Xeon 3 Ghz + GTX 280 30 multiprocessors (240 cores)

 Tabu Search and parameters

 Neighborhood generation and evaluation on GPU

 10.000 iterations, 30 runs

16

Quadratic Assignment Problem

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Permutation representation

17

Permuted Perceptron Problem (1)

 1-Hamming distance neighborhood: n neighbors

 Delta evaluation: O(n)

 Binary encoding

18

Permuted Perceptron Problem (2)

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors

19

Permuted Perceptron Problem (3)

 3-Hamming distance neighborhood

 n*(n-1)*(n-2)/6 neighbors

202020

Application to Continuous
Problems

21

X2

X1

A candidate solution

A neighbor

Continuous Neighborhood

 Vector of real values

Neighbors are taken by
random selection of one
point inside each crown
[Siarry et al.]

22
Continuous Weierstrass Function (1)

Neighbor evaluation: O(n²)

 Vector of real values

No data inputs

 Continuous neighborhood: 10000 neighbors

23
Continuous Weierstrass Function (2)

 Dimension Problem: 2

 Vary the neighborhood size

2424

Thread Control
Optimization

25
Traveling Salesman Problem

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(1)

 Permutation representation

26

17 12 84 6 13 21113 10 10 713

Solution

Neighborhood

11 13 195 12 14 29198 19 11 13

14 11 513 4 18 241516 13 19 6

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

 Increase the threads granularity …

… with associating each thread to MANY neighbors

… to avoid memory overflow (e.g. hardware register limitation)

Thread Control (1)

27

Kernel

executionKernel call

…

…

…

…

Iteration 1

Iteration 2

Iteration 3

Iteration i

n threads

2n threads

4n threads

m threads

Iteration i+1

2m threads

Thread Control (2)

Kernel

executionKernel call

Kernel

executionKernel call

Kernel

executionKernel call

Kernel

executionKernel call

… …

 Dynamic heuristic for parameters auto-tuning

 To prevent the program from crashing

 To obtain extra performance

0.18s

0.12s

0.14s

0.04s

crash

28

Heuristic performed on
the first iterations

 Vary the total number
of threads (*2)

 Vary the number of
threads per block (+32)

 Time measurements of
each configuration for a
certain number of trials

 Return the best
configuration for tuning
the rest of the algorithm

 If an error is detected,
restore the previous best
configuration found

Traveling Salesman Problem (2)

 Thread control

 Swap neighborhood: n*(n-1)/2 neighbors

 Delta evaluation: O(1)

 Permutation representation

29

30

Permuted Perceptron Problem

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Binary encoding

 Thread control

313131

Comparison with Other
Parallel and Distributed

Architectures

32

 Different parallel approaches and implementations have been
proposed for local search algorithms on different architectures:
Massively Parallel Processors [e.g. Chakrapani et al. 1993]
Networks or Clusters of Workstations [e.g. T. Crainic et al. 1995]
 Shared Memory or SMP machines [e.g. T. James et al. 2009].
 Large-scale computational grids [N. Melab et al. 2007].

 Emergence of heterogeneous COWs and computational grids as
standard platforms for high-performance computing.

Parallel Implementations

33

Machines on COWs and grids have been selected to have the
same computational power than the previous GPU configurations.

 A Myri-10G gigabit ethernet connects the different machines
of the COWs .

 For the grid, the high-performance computing Grid’5000 has
been used involving respectively two, five and seven French sites.

COWs and grids

34

Parallelization Scheme

 Parallelization: the neighborhood is decomposed into different
partitions of equal size which are distributed among the cores of
the different machines.

 The parallelization is synchronous and one has to wait for the
termination of the exploration of all partitions.

An hybrid OpenMP/MPI version has been produced to take
advantage of both multi-core and distributed environments.

35

Cluster of Worstations (1)

 Permuted perceptron problem

 2-Hamming distance neighborhood

 n*(n-1)/2 neighbors

 Delta evaluation: O(n)

 Binary encoding

36

Cluster of Worstations (2)

 Analysis of the data transfers including synchronizations

37

Computational Grid

383838

Application to Other
Algorithms

3939

Instance Nug12 Nug13 Nug15 Nug18 Nug22

Best known value 580 1912 2230 17836 42476

solutions 49/50 37/50 50/50 31/50 50/50

CPU time 256 s 1879 s 1360 s 17447 s 16147 s

GPUTex time 15 s 64 s 38 s 415 s 353 s

Acceleration x 17.3 x 29.2 x 36.0 x 42.0 x 45.7

Iterated Local Search for the Q3AP

 Iterative local search (100 iters) + tabu search (5000 iters)
 Competitive algorithm
 Configuration: GTX 280

4040

Instance tai30a tai35a tai40a tai50a tai60a tai80a tai100a

Best known
value

1818146 2522002 3139370 4938796 7205962 13511780 21052466

solutions 27/30 23/30 18/30 10/30 6/30 4/30 2/30

CPU time 1h15min 2h24min 3h54min 10h2min 20h17min 66h 177h

GPUTex time 8min50s 12min56s 18min16s 45min 1h30min 4h45min 12h6min

Acceleration x 8.5 x 11.1 x 12.8 x 13.2 x 13.4 x 13.8 x 14.6

 10 individuals – 10 generations
 Evolutionary algorithm + iterative local search (3 iters) + tabu search
(10000 iters)
Neighborhood based on a 3-exchange operator
 Competitive algorithm
 Configuration: GTX 280

Hybrid Genetic Algorithm for the QAP

414141

Multiobjective
Optimization

Problems

42

Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 0.9s 1.9s 16s 32s 144s 271s 1190s 2221s

GPUTex time 1.7s 4.3s 6s 7.8s 11.5s 21s 77s 139s

Acceleration x 0.6 x 0.7 x 3.8 x 4.1 x 12.6 x 12.9 x 15.4 x 16.0

Aggregated Tabu Search

Multiobjective Flowshop Scheduling
 3 objectives (makespan, total tardiness and number of
jobs delayed with regard to their due date)
 Taillard instances extended

 10000 global iterations per algorithm and 30 runs
 Configuration: GTX 280

43
PLS-1 (dominating neighbors)

Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 1.0s 1.9s 17s 33s 140s 275s 1172s 2196s

GPUTex time 1.7s 3.0s 4.3s 7.8s 11.7s 21s 78s 140s

Acceleration x 0.6 x 0.6 x 3.8 x 4.2 x 12.0 x 13.1 x 15.1 x 15.7

non-
dominated
solutions

11 13 19 20 31 34 61 71

 Pareto Multiobjective Local Search

 Only the dominating neighbors are added in the archive

 Archiving on CPU

4444
PLS-1 (non-dominated neighbors)

Instance 20-10 20-20 50-10 50-20 100-10 100-20 200-10 200-20

CPU time 1.2s 2.0s 21s 39s 253s 312s 1361s 2672s

GPUTex time 1.8s 3.0s 8.2s 13.2s 49s 59s 218s 378s

Acceleration x 0.7 x 0.7 x 2.5 x 3.0 x 5.1 x 5.3 x 6.4 x 7.1

non-
dominated
solutions

77 83 396 596 1350 1530 1597 2061

 Pareto Multiobjective Local Search

 Only the non-dominated neighbors are added in the archive

 Archiving on CPU

45

 Analysis of the time spent for archiving

PLS-1

4646

Integration of GPU-based
Concepts in the

ParadisEO Platform

47

Integration in ParadisEO

ParadisEO-PEO

ParadisEO-EO

ParadisEO-MOEO ParadisEO-MO

P
a
ra

d
is

E
O

-G
P

U

One engineer position: Boufaras Karima
(Feb 2010 – Feb 2012)

Software

Hardware

<<host>>

CPU

<<device>>

GPU

ParadisEO

MO

ParadisEO

GPU

<<actor>>

User

Predefined neighbor

and neighborhood

Evaluation

Specific data

(1)

(2)

(3)

(1) Allocate and copy of data

(2) Parallel neighborhood evaluation

(3) Copy of evaluation results

CUDA

Solution

representation

Solution

evaluation

Neighbor

evaluation

Neighborhood

Problem data

inputs

ParadisEO-MO
Components defined

by the user

ParadisEO-MO-GPU
Extra modifications

provided by the user

• Keywords

• Keywords

• Explicit calls to

allocation wrapper

• Linearizing

multidimensional

arrays

• Explicit call to

mapping function

• Keywords

• Explicit calls to

allocation wrapper

ParadisEO-MO-GPU
Generic components provided

and hidden to the user

Memory allocation

and deallocation

Data transfers

Parallel evaluation

of the

neighborhood

Neighborhood

results

Mapping

functions

Memory

management

50

Results of the Platform (1)

 Quadratic assignment problem

Neighborhood based on a 2-exchange operator

 Configuration: GTX 280

 Tabu search 10000 iterations

51

Results of the Platform (2)

 Permuted perceptron problem (7 smallest instances)

Neighborhood based on a Hamming distance of two

 Configuration: GTX 480

 Tabu search 10000 iterations

52

Actual Features

 First version will be released this month.

Transparent use of GPU in local search algorithms.

 Flexibility and easiness of reuse at implementation.

 Support binary and permutation-based problems.

http://paradiseo.gforge.inria.fr

53

THANK YOU FOR YOUR ATTENTION

the_neighborhood:

moGPUNeighborhood

the_eval:

moGPUEval

GeForceGT:

Device

kernel:

moGPUKernelEval

set_mapping()

send_mapping()

init_data()

worker_eval:

moGPUEvalFunc

N threads

N threads

N threads

N threads

N threads

get_id()

worker_result(id)

get_data(id)

launch_kernel()

worker_eval(id)

neigh_eval()

copy_results()

do_computation(id)

0 1 2 3 .. 8 9

0 0 0 0 .. 1 2 1 1 1 2 .. 3 3 2 3 4 3 … 4 4

Indexed neighborhood

Mapping table

Neighborhood size

Mapping tables

 Pre-defined neighborhoods for binary and permutation
representations.

 k-exchanges and k-Hamming distances neighborhoods.

