New developments in Integrative Cooperative Search for rich vehicle routing problems

Teodor Crainic, Michel Gendreau, Nadia Lahrichi, Alireza Rahimi Vahed, Walter Rei, Thibaut Vidal

Chaire de recherche industrielle du **CRSNG** en management logistique

NSERC Industrial Research Chair in Logistics Management

ESG UQAM École des sciences de la gestion Université du Québec à Montréal

Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport

3rd Collab Workshop, Holmenkollen Park Hotel, 2011.05.10-12

Outline

- Overview of ICS
- MDPVRP and MDPVRPTW
- Integrators
- More on our hybrid genetic solver (HGSADC)
- Multi-objective ICS

ICS Fundamental Ideas & Concepts

- Decomposition by attribute
- Concurrent population evolution
- Solver specialization
- Cooperation with self-adjusting and guidance features

Decomposition by Attribute

- Simpler settings by fixing (ignoring) variables or constraints
 - "Eliminating" variables or constraints might yield the same sub-problems but impair the reconstruction of solutions
- Yields
 - Well-addressed, "classical" variants with state-ofthe-art algorithms
 - Formulations amenable to efficient algorithmic developments

Decomposition by Attribute (2)

- Each subproblem = Particular fixed attribute set
 - Addressed using effective specialized methods \rightarrow Partial Solvers
- Partial Solvers focus on the unfixed attributes
 → Partial Solutions
- Multiple search threads
 - One or several methods for each subproblem
 - Meta-heuristic or exact
- Central-memory cooperation

Decomposition by Attribute (3)

- Issues and challenges
 - Homogeneous vs. heterogeneous population
 - Purposeful evolution of partial solutions
 - Reconstruction & improvement of complete solutions

Shared-Memory ICS

MDPVRP and MDPVRPTW

- Multiple depots
 - Given number of homogeneous vehicles at each depot
- Periodic problem
 - Planning horizon of t "days" (periods)
 - For each customer: a list of acceptable visit day "patterns"
- Each customer must be assigned to a single depot and a single pattern and routes must be constructed for each depot & day, in such a way that the total cost of all the resulting routes is minimized

An Important Property \rightarrow Decomposition

- Any MDVRP(TW) or MDPVRP(TW) instance can be transformed into a (larger ...) PVRP(TW) instance
- One can use the same solution procedure to solve the 3 problems
- Natural decomposition of the MDPVRP(TW) into two subproblems:
 - $PVRP(TW) \rightarrow Fix depot assignments$
 - MDVRP(TW) \rightarrow Fix pattern assignments
- We can use the same solvers as Partial Solvers for the two subproblems and as Global Solver

Integrators

- Purpose: Recombining Partial Solutions to yield complete ones
- A key component of ICS
- Besides trivial integrators (Select and forward), two main threads of work:
 - Path relinking approach (next slides)
 - Mathematical programming-based models (under development)

Path Relinking Integrator

- Based on the classical concept of Path Relinking proposed by Glover
- The basic idea of PR is to explore solutions between good solutions found at earlier stages by another solution technique or earlier steps of the PR algorithm.
- In standard PR, an "iteration" of the method consists in selecting an initial and a guiding solutions from the current reference set and then slowly moving from the initial solution towards the guiding one.
- The reference set is updated as one proceeds by adding to it "better" solutions found along the way.

Path Relinking Integrator (2)

• The reference list, as the heart of the path relinking algorithm, is a collection of high quality and diverse solutions.

Path Relinking Integrator (3)

- Key point: when used as an integrator, PR could end up looking at infeasible solutions → these are allowed throughout.
- Two methods for updating the reference list:
 - Internal Update Method (IUM) is used whenever a high quality complete solution is generated by the searching mechanism of the path relinking algorithm.
 - External Update Method (EUM) is implemented whenever a new partial solution is obtained by the ith partial solver in the decomposition phase of the ICS solution methodology.

Path Relinking Integrator (4)

- Four different strategies for selecting the initial and guiding solutions.
- In the proposed algorithm, unlike the general path relinking, two moving mechanisms with different purposes are implemented in parallel.
 - Multi-echelon Searching Method (MSM)
 - Iterated neighbourhood search
- They differ in the way that they integrate features of the initial and the guiding solution.

Path Relinking Integrator (5)

- Testing this type of procedure raises serious methodological concerns.
- Initial tests were performed using solutions obtained from "snapshots" of the partial solution pools at different stages of earlier runs of ICS.
- The computational experiments revealed that the proposed path relinking algorithm performs remarkably well on all the problem instances tested.

The Genetic Search Solver

- Main features of the solver
 - "Giant tour with no delimiters" representation
 + split algorithm (Prins 2002)
 + pattern and depot chromosomes
 - Admits infeasible solutions with respect to capacity and route length constraint violations, with self-adjusting penalties
 - Offspring education: local search (route, patterns)
 - Population management mechanisms play a key role; the are also used in parent selection as well.

The Genetic Search Solver(2)

- Originally developed for solving MDPVRP, MDVRP and PVRP.
- The method was slightly modified to deal with classical VRPs.
- A meta-evolutionary method, the Evolutionary Strategy with Covariance Matrix Adaptation (CMA-ES) of Hansen and Ostermeier (2001) was used to calibrate parameter values.

The Genetic Search Solver(3)

• Some results

Table 2

2 HGSADC performance on PVRP instances

	CGL (1 run)	HDH (Avg. 10 runs)			ALP	HGSADC (Avg. 10 runs)		
	15.10 ³ it	10 ⁷ it	10 ⁸ it	10 ⁹ it		10 ⁴ it	2 <i>.</i> 10 ⁴ it	5.10 ⁴ it
Time	4.28 min				3.64 min	5.56 min	13.74 min	2821 min
Gap	+1.82%	+1.45%	+0.76%	+0.39%	+1.40%	+0.20%	+0.12%	+0.07%

 Table 3
 HGSADC performance on MDVRP instances

	CGL (1 run)	PR (Avg.	. 10 runs)	HGSADC (Avg. 10 runs)			
	15.10 ³ it	25.10 ³ it	50.10 ³ it	10 ⁴ it	2.10 ⁴ it	5.10 ⁴ it	
Time	small	1.97 min	3.54 min	4.24 min	8.99 min	19.11 min	
Gap	+0.96%	+0.52%	+0.34%	-0.01%	-0.04%	-0.06%	

The Genetic Search Solver(4)

Table EC.5

• More results

				Average	verage			BKS		
Inst	n	Р	MB	NB	HGSADC	T(min)	prev BKS	HGSADC		
		(1 run)	(1 run)	(10 runs)	(10 ru	ns)	_	(all exp.)		
p01	50	524.61	524.61	524.61	524.61	0.43	524.61	524.61		
p02	75	835.26	835.26	835.61	835.26	0.96	835.26	835.26		
p03	100	826.14	826.14	826.14	826.14	1.27	826.14	826.14		
p04	150	1031.63	1028.42	1028.42	1028.42	2.87	1028.42	1028.42		
p05	199	1300.23	1291.29	1291.84	1294.06	5.94	1291.29	1291.45		
p06	50	555.43	555.43	555.43	555.43	0.48	555.43	555.43		
p07	75	912.3	909.68	910.41	909.68	1.09	909.68	909.68		
p08	100	865.94	865.94	865.94	865.94	1.14	865.94	865.94		
p09	150	1164.25	1162.55	1162.56	1162.55	2.53	1162.55	1162.55		
p10	199	1420.2	1401.12	1398.3	1400.23	8.22	1395.85	1395.85		
p11	120	1042.11	1042.11	1042.11	1042.11	1.15	1042.11	1042.11		
p12	100	819.56	819.56	819.56	819.56	0.84	819.56	819.56		
p13	120	1542.97	1541.14	1542.99	1543.07	2.83	1541.14	1541.14		
p14	100	866.37	866.37	866.37	866.37	1.19	866.37	866.37		
pr01	240	5648.04	5627.54	5632.05	5627.00	11.68	5626.81	5623.47		
pr02	320	8459.73	8447.92	8440.25	8446.65	20.75	8431.66	<u>8404.61</u>		
pr03	400	11036.22	11036.22	11036.22	11036.22	27.99	11036.22	11036.22		
pr04	480	13728.80	13624.52	13618.55	13624.52	43.67	1359288	13624.53		
pr05	200	6460.98	6460.98	6460.98	6460.98	2.56	6460.98	6460.98		
pr06	280	8412.90	8412.88	8413.41	8412.90	8.38	8404.26	8412.90		
pr07	360	10267.50	10195.56	10186.93	10157.63	22.94	1015658	<u>10102.7</u>		
pr08	440	11865.40	11663.55	11691.54	11646.58	40.67	1166355	<u>11635.3</u>		
pr09	255	596.89	583.39	581.46	581.79	16.22	580.02	<u>579.71</u>		
pr10	323	751.41	741.56	739.56	739.86	25.86	738.44	<u>736.26</u>		
pr11	399	939.74	918.45	916.27	916.44	45.61	914.03	<u>912.84</u>		
pr12	483	1152.88	1107.19	1108.21	1106.73	95.67	1104.84	<u>1102.69</u>		
pr13	252	877.71	859.11	858.42	859.64	9.36	857.19	857.19		
pr14	320	1089.93	1081.31	1080.84	1082.41	14.12	1080.55	1080.55		
pr15	396	1371.61	1345.23	1344.32	1343.52	39.15	1340.24	<u>1337.92</u>		
pr16	480	1650.94	1622.69	1622.26	1621.02	58.27	1616.33	<u>1612.50</u>		
pr17	240	717.09	707.79	707.78	708.09	7.06	707.76	707.76		
pr18	300	1018.74	998.73	995.91	998.44	14.40	995.13	995.13		
pr19	360	1385.60	1366.86	1366.70	1367.83	27.91	1365.97	<u>1365.60</u>		
pr20	420	1846.55	1820.09	1821.65	1822.02	38.23	1819.99	<u>1818.32</u>		
Avg	Gap	+1.00%	+0.13%	+0.10%	+0.11	%				
Avg ⁻	Time	_	14.20 min	17.64 min	17.691	min				

Results for Christofides et al. (1979) and Golden et al. (1998) CVRP instances

Multi-objective ICS

- We want to tackle MDPVRPs with multiple objectives:
 - Minimize the number of vehicles
 - Minimize total distance
- We can extend ICS to deal with that.

Multi-objective ICS(2)

Perspectives

- Complete work on math programming integrators.
- Thoroughly calibrate and test ICS.
- Pursue multi-criteria work.

