Real-life case studies on transport and workforce optimization

Olli Bräysy (olli.braysy@jyu.fi)
University of Jyväskylä & Procomp
Solutions

Case study I

- A locally operating company producing and transporting meals and food products
- Modeled as pickup and delivery problem with time windows
 - Maximum route duration for part of orders
 - Backhauling
 - Split delivery
 - Tight time windows
 - Homogeneous fleet
 - Volume based capacity constraint
 - Working time regulations
 - Only one loading platform per pickup location
 - Short distances
 - About 5 main pickup locations and >200 delivery locations

Estimated savings

Current practice			Optimized solution	
Weekday	Vehicles	Time (h)	Vehicles	Time (h)
Monday	11	61	8	37,33
Tuesday	11	54,5	6	32,38
Wednesday	11	54,5	6	32,38
Thursday	11	61	8	37,33
Friday	11	54,5	6	32,38
Saturday	4	20	4	12,76
Sunday	4	20	4	12,76
Total	63	325,5	42	197,32
Savings			33%	39%

Practical problems

- Modeling the problem
 - Route duration vs. time windows
- Parking cost
- Service time adjustment
- Travel time adjustment
- Drivers' breaks
- Volume usage of each order vs. vehicle capacity
- Missing data

Case study 2

- School transportation
- Standard issues:
 - Time windows
 - Capacity
 - Max travel time...
- And
 - Optimal pickup location
 - Optimal delivery location
 - Big problem, over 150 routes each day

Results

- Savings depend on the desired travel time
- 9.2% less routes
- 25.7% savings in kilometers
- By allowing 10 minutes more time in vehicle
 - Additional 10% reduction in routes possible

Practical issues

- Vehicle slack time
 - Now set to 20%
- Bypassing school before planned drop off
- Gap:
 - Combining bus schedules

Case study 3

- Combined hub location and vehicle routing
- A set of potential terminal locations given
- Vehicle routes optimized for each combination
- Considers terminal chains
- Multi-driver teams
- Applied to nationwide transportation

Latest developments

- Stochastic problems
- Delivery volume optimization
- Trailer management
- Optimal delivery timings
- Periodic problems
- Speed ups
- Combining workforce optimization

Workforce management

- Creates rosters and schedules tasks for each shift with desired accuracy, considering:
 - Regulations and recommendations
 - Worker differences
 - Multiple objectives
 - Optimal shift start times
 - Circulation schemes
 - Different task types
 - Impact of timing
 - Any planning period length
 - Exceptions
 - Optimal break timing
 - Required workforce,...

Performance

- Linear scaling wrt. planning period length and number of tasks
- CPU time e.g. for one month and about 40 employees, 1 second
- Has been tested with 50 000 employees and one year period
- Applications in transportation and retail stores

Algorithmic approach

- Based on finding positions where improvement possible
- VNS scheme over multiple local search heuristics
- Roster and shift planning separated
- Special purpose methods
- Example: One-by-one segment re-insertion

Parallel computing

- Standard multi-core approach
- Common time-matrix
- Solution divided to partial solutions
- Share the best found solution
- Current implementation does not suit well for GPU computing
- Future plan: new data structures & pointbased approach

Parallel workforce optimization

- Based on splitting the problem or running multiple scenarios simultaneously
- Alternatively: move evaluation can be split or the different algorithms
- Future work: how to apply GPU & speedups

