

What is the best thermal energy storage? A Guideline to find it out.

Thermal Energy Storage Workshop at SINTEF Energy Trondheim 12.11.2021

> Stefan Krimmel (s.Krimmel@gmx.com) TU-Vienna, CCTES-Luzern, SINTEF Industry

Personal background

2015 Dipl.-Ing. Mechanical Engineering for Power Plants – RWTH Aachen, Germany

2015-2018

CC TEVT, University of supplied sciences in Lucerne, Switzerland

- sorption processes for energetic application
- drying processes

2018-2021

- CC TES, University of supplied sciences in Lucerne, Switzerland

2018-(2022)

Technical university of Vienna, Austria

- PhD student
 - Direct contact latent thermal energy storage

2021-2021 SINTEF Industry, Trondheim, Norway

Background for the next 10 minutes

http://iea-es.org/publications/final-report-annex-30/

https://www.mdpi.com/2076-3417/10/16/5519

Variety of thermal energy storages

https://balkanenergy.net/product/waterheater-tesy-model-profi-line-volume-200Ifree-standing-one-heat-exchanger-1

Seasonal snow storage, Sundsvall, Sweden

Lävemann, E. (2015). Mobile Sorptionsspeicher zur industriellen Abwärmenutzung - Grundlagen und Demonstrationsanlage - MobS II.

Truck with direct contact latent TES trailer, Japan

Sailing heat barge, study, Netherlands

https://cowa-ts.com/de#technology

Latent heat storage TESIN, DLR © FW Brökelmann

What is the storage for? - Integration goal

1. Identification of THE problem that could be solved/reduced by a thermal storage or identification of THE value that you could create by a thermal storage (a storage could decouple and/or levelized thermal demand and supply)

- 2. Identification of the benefit, if the problem is be solved/reduced (try to quantify)
- 3. Raw business model and concept for storage integration

Examples of integration goals

- 24 decoupling demand from supply -
- 19 CO₂ reduction
- 7 waste heat utilization
- 7 heat quality
- 3 reduction of equipment size

peak shaving decoupling load from supply flexibility energy balance market increase runtime of equipment

Measure the quality of a storage

PROCESS DESCRIPTION	ON RIPTION	#- h+	f '				-				
Inte An PROCESS I	DESCRIPTION										
KEY PERFORMANCE INDICATORS											
Stakeholder:		Process operato				Grid op	erator	Government			
К	(PI 1:	Maximum delta-T during (dis)charge				Storage	capacity	CO2 reductions			
К	(PI 2:	Storage capacity				Power		Fossil fuel replacement			
к	(PI 3:	Power				Dispatch	ability				
К	(PI 4:	LCOE reduction				Capacity factor					
KPI 5:		Dispatchability									
Par Mit Stc Not T	lechnology rea	readiness level TRL			3 - 5	5					
CA Par Mil Res s	itorage capacit	city MWh 2800			0						
CA CA Par Sto N	Nominal power	r	MW	235							
	Response time	of TES	minute	s < 1							
KE CA Sto Par S	Storage efficier	ncy	%	> 98	>98 			\mathbf{V} /			
	Vinimum cycle	e length of T	TES h	< 18	3	•	JJJ	\wedge /			
	APEX por con	tability	Elk\M/b	10	able		1				
	CAPEX per cap	minal power	r €/kW	92							
	torage materi	al cost per	%	30							
	KEY PERFORMANCE INDICATORS										
	Stakeh	nolder: Pi	rocess opera	tor	Grid o	perator	Government				
	KPI 1: Ma dur KPI 2: Sto		Maximum delta-T during (dis)charge		Storage capacity		CO2 reductions				
			torage capacity		Power		Fossil fuel replacement				
		wer		Dispatchability		,					
		KPI 4: LC	I 4: LCOE reduction		Capaci	ty factor					
		KPI 5: Di	Dispatchability								

KPI 1 that includes	Power Capacity Economic	CO2
Thermal power storage power storage efficiency storage density Storage capacity Storage capacity Storage capacity Storage capacity Storage capacity storage capacity	Thermal power system durability storage efficiency storage density storage density Storage capacity Storage capacity storage capacity Reliability Process Flexibility	Cost of delivered heat temperature level storage efficiency storage efficiency solid material life cycle Reduced fossil fuel use peak saving Heating cost Heat price fuel reduction
storage capacity	peak saving	fleibility of energy system
Storage capacity	outlet temperature	Environmental benefit
Storage capacity recycling of heat (energy effiency) partial load suitability Net economic Benefit of TES for Building Owner	Net economic Benefit of TES for Utility Net economic benefit (peak shaving, equipment downsizing) Lifetime Industrial process flexibility (grid balancing)	Energy efficiency efficiency CO2 reduction CO2 mitigation per ton of steel produced
Net economic benefit (peak shaving, equipment	increase in startup time	CO2 mitigation
Net economic Benefit	improved grid stability	CO2 mitigation
maximum delta-T during (dis)charge	fewer fossil fuels burned	CO2 mitigation
Max/min temperatures Max/min temperature	Energy efficiency improvement of product efficiency	CO2 emissions reductions CO2 emissions reductions
material storage density	Dispatchable power	discharging
economic incentive (control balance & day ahead energy markets, startup costs) economic benefit (waste heat usage) economic benefit (LCOE reduction) Discharge time cost saving caused by energy saving (Dis)charge time	l Dispatchability discharge power Difference between charging/discharging temperature	(Dis)charge time

Complexity of key performance indicators – be careful by interpretation and comparisons

 $\Delta t_{0-100} = f(track, tyres, weather, wight, ...)$ Values deviate by about 30%
Comparison only under
"exact similar" conditions
(human factor)

Comparison of key performance indicators

Conclusion

What is the best thermal energy storage?

The best storage can be at maximum as good as the concept.

The best concept do not need a storage.

If you need a storage, be sure that you know the benefit/value of the storage.

Quantify the benefit/value of the storage.

Who is paying for this benefit/value? (Business model)

Key performance parameters could help to identify a storage technology but must be interpretated carefully.

Direct contact promise to: high power, capacity and economic

Key parameters to describe TES

Conflict: Transient behavior vs. single (constant) key parameter

Subsequent: It could not exist a single independent key parameter

Effect: Key parameter depends to additional parameters

Analog Example: Acceleration @ cars: value vs. races

Values deviate by about 30%

Comparison only under "exact similar" conditions (human factor)

Definition of physical boundaries

06 kg
/ 1 33 0/
$1/271 \mathrm{kg}$
lids

https://balkanenergy.net/product/water-heater-tesy-model-profi-line-volume-200I-free-standing-one-heat-exchanger-1

. . .

Folie 14, 16.05.2013

-The best storage is no storage -Each storage need an invest of: - capital -CO₂-Emission

- - material resources
 - -construction time
- Remind the goal of project!
 Reducing CO2-Emissions (System boundary)
 Increase quality of heat/cold supply

Formulate as minimum two concepts to reach the goal
 Use virtual optimal storages
 Give them technical

Methodik

Oberer, latenter Bruchteilzyklus: $\Delta T = 15K \dot{m} = 80 \& 160 \text{ kg/h} (\text{DC03-D026})$

Unterer Bruchteilzyklus: Erstarrungsbild nach 47 Zyklen $\Delta T = 15$ K $\dot{m} = 240$ kg/h (DC03-D028)

0

Nach 37 Zyklen $\Delta T = 5K \dot{m} = 80 \text{ kg/h}$