
Nils Ræder

Trondheim / 2023-11-29

Contents

• Goals

• How we (plan to) do it

• Current state of things

• Lessons learned

• Examples

2

We want SHOP to make decisions on which we will perform
automated trading and planning processes

We need

• Trust - to run SHOP with confidence

• Consistent quality

• Only good quality data enters production environments

• Reproducibility

• To debug and improve

• Transparency

• All input data are available to answer questions

• Results easily available and comparable across time and model
permutations

• Monitoring and alerting

3

• The tolerance for errors is very low once we use the results for
automated trading, planning

• The system architecture, design and technologies must

• Limit the potential for errors

• Encourage data validation

• Limit overall complexity

• A big source of confusion and errors can be too many degrees of
freedom

• Sources of errors include

• Unintended variation of software versions (SHOP, license, CPLEX,
Python, python dependencies, operating system, …)

• Ability to make changes that are not a part of a consistent whole

✓ A single SHOP instance to serve all production needs

✓ High-level functionality for mutating models

4

(Trust, but verify)

• During development, testing and ad-hoc analyses we use SHOP
any way we choose to

• In production setting we employ “SHOP as a service”

• Any automated system or person who wants to run a production
grade optimization can call this service to ensure the correct set-
up is used

• The service can be called to:

• Build and execute a model

• Build and return a model

• Receive and execute a model

5

✓

Users

Interface (HTTPS)

Authentication

Data validation

Apply high-level transformations

SHOP

Build models from templates

Automated

systems
“Run RJUKAN with

CUTS, PRESPOT,

HIGH INFLOW”

Storage

Input data

sources

• During development, testing and ad-hoc analyses we use SHOP
any way we choose to

• In production setting we employ “SHOP as a service”

• Any automated system or person who wants to run a production
grade optimization can call this service to ensure the correct set-
up is used

• The service can be called to:

• Build and execute a model

• Build and return a model

• Receive and execute a model

6

✓

Users

Interface (HTTPS)

Authentication

Data validation

Apply high-level transformations

SHOP

Build models from templates

Automated

systems
“Run RJUKAN with

CUTS, PRESPOT,

HIGH INFLOW”

Storage

Input data

sources

• Meaningful updates to a model may require changes at multiple
locations

• To go from a static energy_value_input to a
water_value_input based on cuts we need to:

• Remove energy_value_input from reservoirs

• Add water_value_input to reservoirs

• Create the cut_groups

• Add inflow_series to the model

• Connect cut_groups to reservoirs

• Connect inflow_series to reservoirs

• Connect inflow_series to cut_groups

• This is not too hard, but we want certainty that the changes are
applied as a consistent whole

✓

Users

Interface (HTTPS)

Authentication

Data validation

Apply high-level transformations

SHOP

Build models from templates

Automated

systems
“Run RJUKAN with

CUTS, PRESPOT,

HIGH INFLOW”

Storage

Input data

sources

• We want to reproduce SHOP cases for debugging,
improvements, validation when changing SHOP version etc.

• We want to compare input data across time, and trace any
problems back to the data sources

✓ Save the input data

8

• We want the stored input data to represent what entered the
SHOP kernel

• The interactive interface of PySHOP is great, but …

• PySHOP transforms data

• Inserting data using the ModelBuilder framework is a gradual
additive process where order may be important

✓We build the complete input data before it ever enters SHOP

9

✓

• We only need two function in PySHOP* ** *** ****

• ShopSession.load_yaml(…)

• ShopSession.dump_yaml(…)

* In reality we also use the execute_full_command and
get_messages methods since we inspect the logs and results
between each iteration of the optimization

** In the first versions of SuperSHOP we used the ModelBuilder
interface to get and set data. The addition of a YAML spec has
made the set up easier and less error prone.

*** We also use the GetAttributeInfo and GetObjectInfo
methods to build a pure python version of the SHOP data structure.
It’s about 20k lines of python models.

**** We use an extensive set of PySHOP functionality for testing,
debugging, development, …

10

✓

- Having a pure python model of the SHOP data structure allow us
to maintain the first goal

- Client applications and end user applications have a working data
model that is independent of PySHOP, SHOP, CPLEX, license
files etc.

- Easier to debug

- Easier to maintain

- We run a (much shorter) script to update all the models every
time we migrate to a new SHOP version

11

😳

✓

- Having a pure python model of the SHOP data structure allow us
to maintain the first goal

- Client applications and end user applications have a working data
model that is independent of PySHOP, SHOP, CPLEX, license
files etc.

- Easier to debug

- Easier to maintain

- We run a (much shorter) script to update all the models every
time we migrate to a new SHOP version

12

😳

✓

- The data model validates and transforms data →→

- Using this framework, we can easily build, change and interrogate
SHOP models independently of PySHOP, SHOP etc.

- Model data can be submitted for execution to

- The data model also simplifies data storage since the serialized
YAML document is interchangeable with SHOP YAML

13

✓

• Results, along with inputs, logs and metadata is uploaded to a
centralized storage

• The storage solution can be used for documenting and sharing
non-production models

• Complete model data is stored as JSON documents in cold
storage

• The metadata is stored in a hot database

• We can query the metadata to find models of interest and use the
filename to load the complete data set from cold storage

• The metadata table is also the source for monitoring, which allow
us to detect performance regressions and problems early ⬇

14

(a compressed YAML model)

(run time in seconds)

15

16

17

18

19

Static data shown

as reference

20

Static data shown

as reference

21

Static data shown

as reference

• The most important interface of SuperSHOP is the python API
which allow interactive data discovery and prototyping

• Streamlit (demoed previously) didn’t scale well with when when
deployed to the cloud, we have switched frontend framework

• A data model that is independent of SHOP simplifies the creation
of dashboards, client applications and data pipelines

• Metadata is important!

• Previous versions of SuperSHOP were built on pydantic models

• Transition from v1 to v2 was a pain

• We still use pydantic for some data validation/transformation

• I highly recommend pydantic!

22

Source 23

