

19

Zero Emissions Buildings and Neighborhoods

-1-

Igor Sartori

Longyearbyen, 13.06.2017

Energy efficiency first

• Part I SINTEF & NTNU

• Part II

Longyearbyen

• Part I SINTEF & NTNU

• Part II

Longyearbyen

2 FME centres

- FME = Forskningssenter for Miljøvennligenergi
- ZEB (2009 2016)
- ZEN (2017 2024)

The Research Centre on Zero Emission Buildings

THE RESEARCH CENTRE ON Zero Emission Neighbourhoods in Smart Cities

ZEB activities

- Advanced materials
- Climate adapted building envelopes
- Energy systems
- Users and implementation
- Concepts, strategy and pilot buildings
- Laboratories

VIP Leca Isoblokk

ZEB Living Lab

Membrane heat exchanger

ZEB Pilot buildings

ZEB example: Kjørbo

- Office building totally renovated
- Focus on choice of material
- Well insulated envelope and air tightness
- Simplified ventilation and heating system
- Solar panels on the roof

The path of energy efficiency

() SINTEF

ZEN activities

WORK PACKAGES

WP1: Analytical Framework for Design and Planning of ZEN

WP2 Policy measures, innovation and business models

Pilot Projects/Living Labs

Oslo: Furuset

Bergen: Zero Village Bergen

Elverum: Ydalir

Trondheim: Knowledge Axis

Bodø: Airport area

Steinkjer: Residental area

Evenstad: Campus

Population of 30 000 people Built floor area of more than 1 million m² ZEB Flexible Lab office building ZEB Living Lab residential building

10 Fremtidens Energiforsyning Longyearbyen - Workshop

Part I SINTEF & NTNU

• Part II Longyearbyen

Longyearbyen

Population:

- from 1000 in 1990s
- to 2000 today

Longyearbyen

Buildings, residential:

- 450 buildings
- 1000 dwellings
- @ average 80 m²/dwe
- Total = 80,000 m²

Longyearbyen

Buildings, non-residential:

- 650 buildings
 - 200 cabins
 - 150 garages
 - 150 industry

commercial

- 150 rest
- @ 600 m²/building
- Total = 180,000 m²

SINTEF

Energy use in Longyearbyen's buildings

Туре	Area [m²]	Thermal [GWh/y]	Electricity [GWh/y]	Thermal [kWh/m²y]	Electricity [kWh/m²y]	Total specific [kWh/m ² y]
Dwellings	80,000	50	10			
Commercial	180,000	15	30			
Total	260,000	65	40			

Energy use in Longyearbyen's buildings

Туре	Area [m²]	Thermal [GWh/y]	Electricity [GWh/y]	Thermal [kWh/m²y]	Electricity [kWh/m²y]	Total specific [kWh/m ² y]
Dwellings	80,000	50	10	625	125	750
Commercial	180,000	15	30	83	167	250
Total	260,000	65	40			

Energy efficiency potential

Energy intensity

	Oslo	Longyearbyen	
HDD Heating Degree Days	4,000	7,000	
Space heating TEK10 (Passive house) [kWh/m2y]	50 (15)	100 (30)	
Domestic Hot Water [kWh/m2y]	25	50	
Total thermal energy [kWh/m2y]	75	150	

Factor 4 reduction!

+ improved comfort

Building activity

- Dwelling stock
 - > 30% built after 2000
 - > 50% dwellings built 1970 1990
- Average lifetime
 Norway: 125 years
 Svalbard ??: 50 years ?
 (extreme weather, permafrost)
- Renovation or demolition + build new?

Longyearbyen in 20 years ?

+ 50 % population
+ 50 % building stock
- 50 % heating demand

No expansion of district heating needed + supply new buildings on return pipe with lower temperature

SINTEF

Does it cost more?

- TEK 10 is the required standard for all new constructions also in Longyearbyen
 - ightarrow no aditional cost
- Passive house additional cost ca. 1,000 kr/m² (varies for new / renovated and residential / commercial)
- New + renovated (or re-built) area: 100,000 m²
- Additional cost with Passive house
 - ightarrow ca. 100 mill NOK (0.1 billion NOK)

SINTEF

Energy efficiency first

Tank you for your attention!

igor.sartori@sintef.no

Teknologi for et bedre samfunn