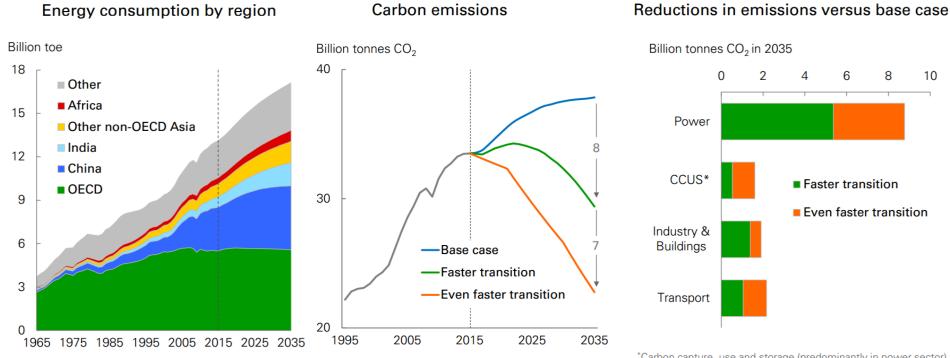
Fremtidens energiforsyning i Longyearbyen- 12-13 June 2017

UNIS CO₂ Lab of Arctic Norway Coal power with CO₂ storage? What about the natural gas?

Kim Senger (Associate Professor, UNIS) **Snorre Olaussen** (Professor, UNIS) Sverre Ohm (Adjunct Professor, UNIS, UiS) Alvar Braathen (Adjunct Professor, UNIS, Professor UiO) Leif Larsen (Professor, UiS)

> and the large project team and partners

Statkraft **Zundin**



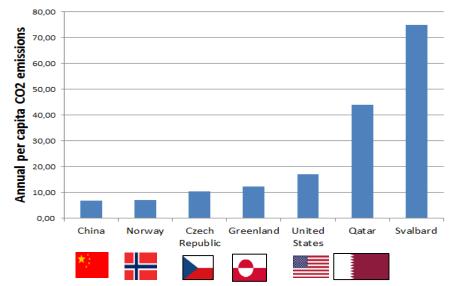
Growth requires energy and produces CO₂ emissions

- CCUS is expected to contribute to reducing global CO_2 emissions on the order of 1-2 billion tonnes by 2035 in order to reach Paris-treaty targets
- We cannot do this in Longyearbyen alone but the onshore site can help industrial projects elsewhere, particularly to test **injection** strategies and **monitoring** techniques

*Carbon capture, use and storage (predominantly in power sector)

https://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2017/bp-energy-outlook-2017.pdf Also available on AppStore and Google Play

CO₂ emissions on Svalbard


Some CO₂ figures to ponder:

Svalbard vs Norway:

- Svalbard has 10* larger CO₂ per capita footprint than mainland Norway
- Svalbard emits 0.4% of Norwegian emissions
 - More than 50% of CO₂ emissions are from point sources (i.e. coal fuelled power plants)

1 tur-retur flight Oslo-Longyearbyen (per pers.): Average annual car use, ca 18 000 km: Annual LYR power plant emissions, 2014: Annual CO₂ injection at Sleipner: Global CO₂ emissions, 2014:

Source: World Bank/SSB, year 2011-2015

What do we have on Svalbard (for energy)?

• Coal – a threat or opportunity?

Longyearbyen CO₂ lab project

- Initiated in 2007, Phase II completed in 2015 (report at co2ccs.unis.no)
- Coal source, Power plant, CO2 storage site all within a 7 km radius
- No land use conflict or NIMBY

DH7A

DH 3

DH 8 DH 6

DH 5R

02 sequestration site

25 000 tons/vr

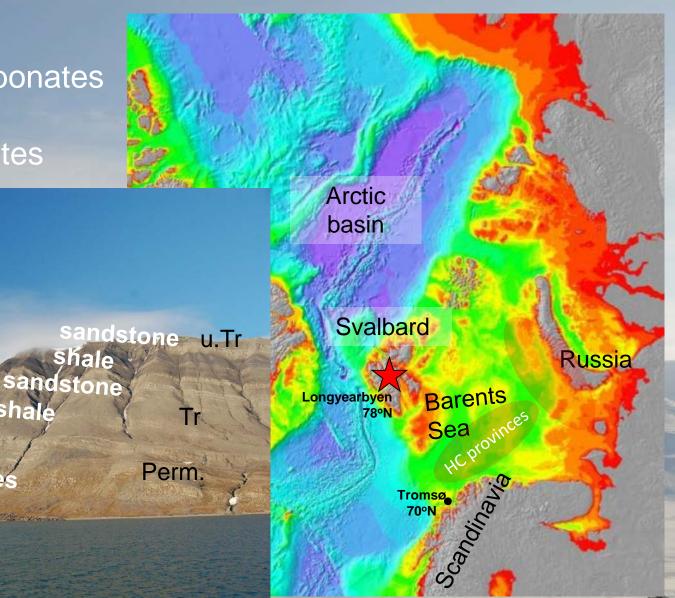
Power plant

Longyearbyen

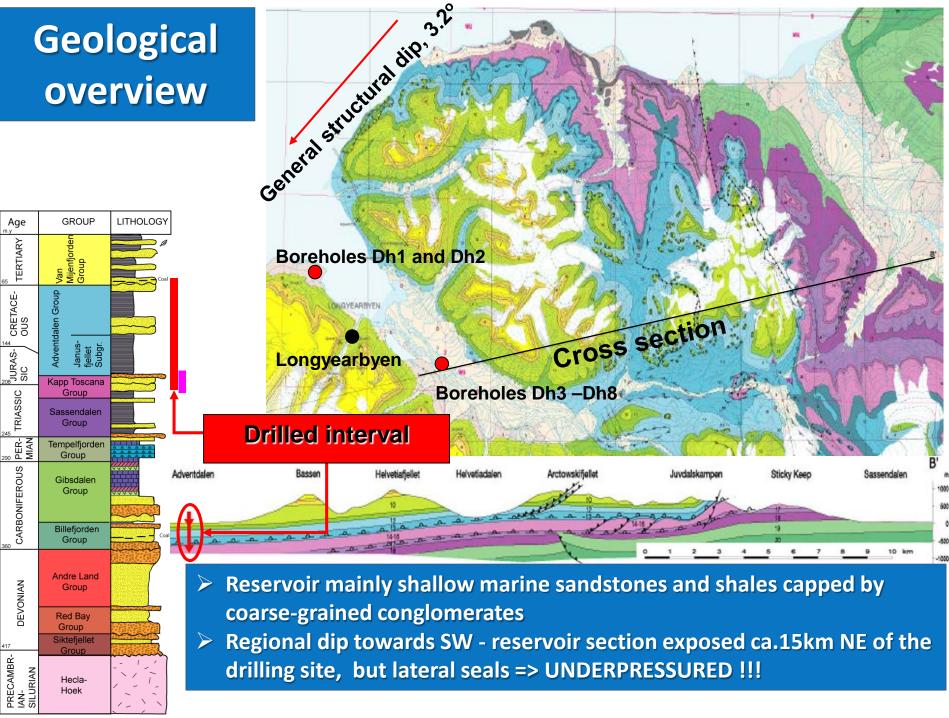
DH 1,2 /

Coal mines

60-80 000 tons CO₂/yr



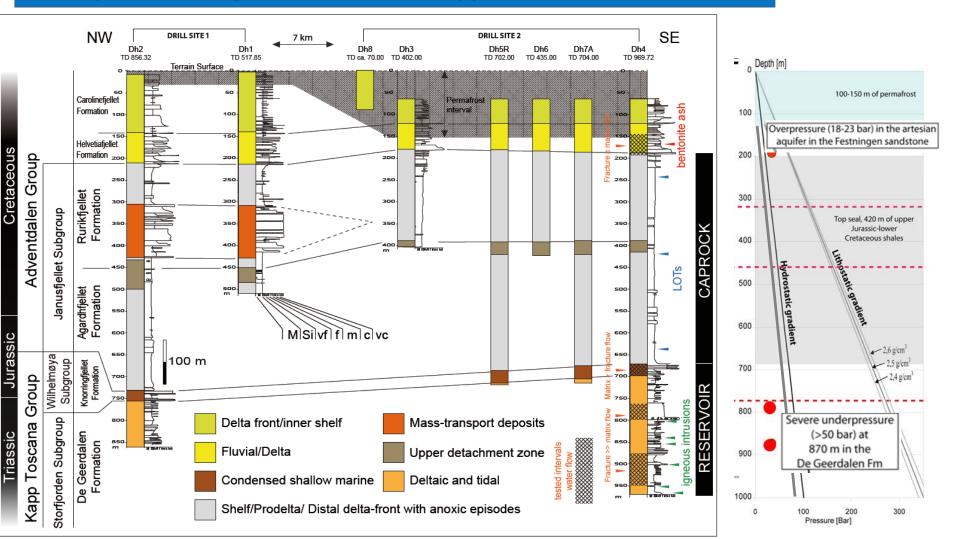
What do we need for CO₂ storage?


Reservoir rock - sandstone or carbonates Cap rock - Shales or evaporites

shale

carbonates

Geological overview



- 8 cored slim holes wells (Description and interpretation of 4,5 km cored section-one well TD 970m i.e. 960MSL)
- 4 units tested and analyzed with high pressured water injection (including two units with cross well flows)
- 3 leak-off-tests (LOT) tests for sealing properties
- 2D Seismics and micro seismic acquisition and monitoring
- Petrophysics, petrology, diagenesis
- Subsurface/outcrop link studies (tectonics, sedimentology, mapping of fractures) \bigcirc
- Reservoir modeling focused on dual porosity/permeability; matrix and fractures \bigcirc
- > 40 fully peer-reviewed journal articles, 17 affiliated PhD students, 3 affiliated Post-Docs, 21 MSc students, MSc/PhD level course on CO₂ sequestration
- Plugging & abandonment of wells following discovery of natural gas \bigcirc

Sedimentary system from drill cores

- Siliciclastic succession, with a naturally fractured reservoir at 670-970m
- > Caprock, including detachment in Agardhfjellet Fm, is a robust top seal
- Early Cretaceous igneous intrusion locally present

Reservoir-cap rock succession at Deltaneset-Hatten

Janusfjellet

Cap rock shale

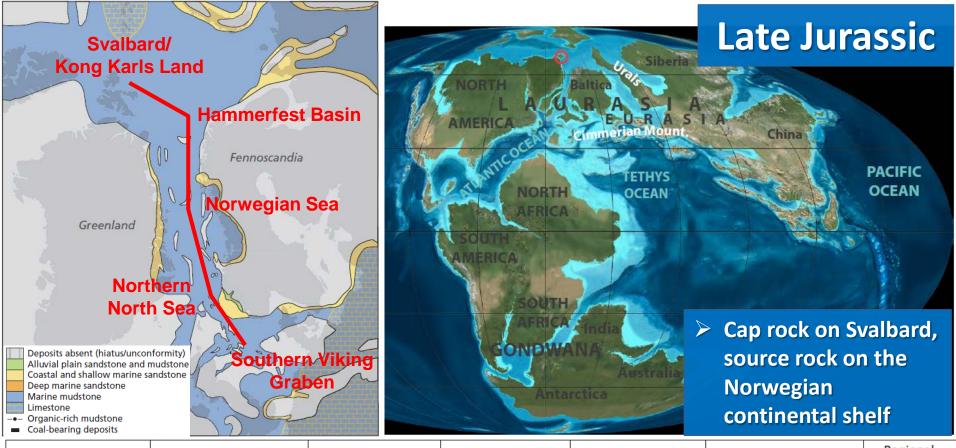
Adventdalen Group

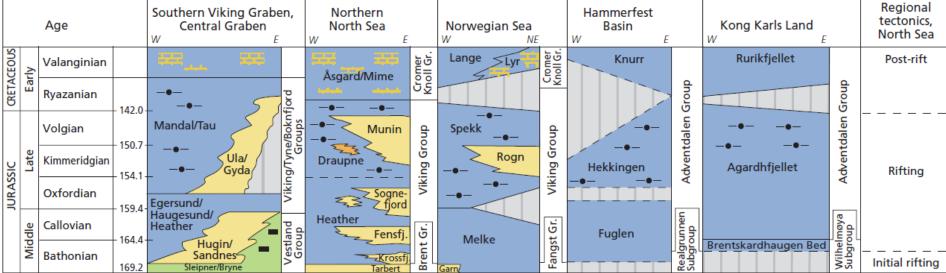
Reservoir sandstone

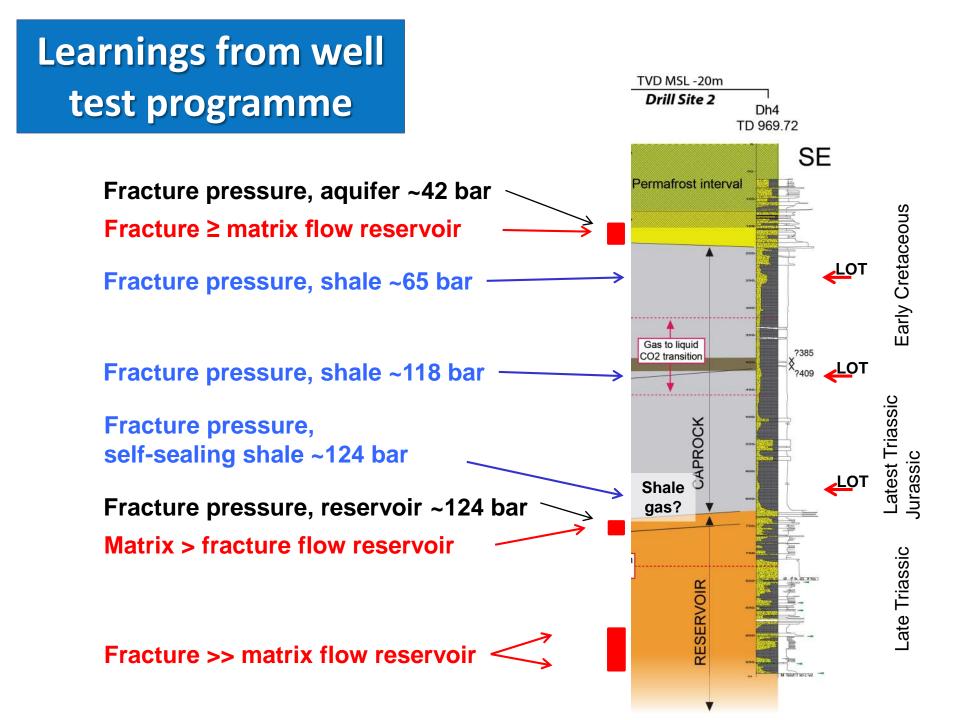
Kapp Toscana Group

DH4 stratigraphy

Hatten/Diabasodden dolerite stock (lgneous centre)


Feeder dyke


N


Photo: Winfried Dallmann

Net erosion of Barents shelf

- 30°E 40°E 50°E 10°E 20°E 75°N -75°N NBB 3 OB NKB HJH -70°N Source: SBB Henriksen et al. Net Erosion (2011) > 3000 m Zero net erosion < -3000 m -65°N 1000 200 400 km 100 Contour int.: 200 m 20°E 30°E 40°E 50°E 60°E HJH - Hjalmar Johansen Hight NZ - Novaya Zemlia OB - Olga Basin GH Gardarbanken High -800— Net erosion contour South Barents Basin NKB - Nordkapp Basin SP - Spitsbergen Gas discovery -1000 Net deposition contour LH - Loppa High SH - Stappen High Oil/gas discovery Wells NBB - North Barents Basin
- **Extensive tectonic and glacial-**related uplift and net erosion in Cenozoic
 - Net erosion of up to 3 km on Svalbard, 0-2 km on Barents shelf



Conclusions of CO₂ Pilot project

(for more see co2-ccs.unis.no Phase II report)

- An efficient seal for buoyant fluid (i.e. until 125 Bar) is confirmed
- Low pressure reservoir (might change phase of CO₂)- Depleted reservoir as produced field in North Sea
- Storage capacity and injectivity is confirmed – though CO₂ injection is needed to reduce risk related to CO₂ behaviour in subsurface
- **Fractures** are the main fluid flow conduits, very low matrix permeability
- Unconventional segmented reservoir
- Natural gas is present in the subsurface

Siliciclastic succession, with a naturally fractured reservoir at 670-970m

Caprock, including detachment fault in Agardhfjellet Fm, is a robust top seal

The road ahead – visions of an Arctic Energy lab

- Research themes building on Phase II results
 - Focussed fieldwork on structural mapping of fracture and fault systems within the cap rock shale
 - Detailed mapping of the structural heterogeneities within the lower part of the cap rock, notably sand injectites
 - Hyperspectral imaging of core material to determine clay mineralogy and its lateral and vertical variation
 - Geophysical characterization (2D seismic, TEM/MT/CSMT etc.) of shale
 - Rock physical characterization of shales and comparison to less severely buried equivalent units in the Barents Sea
- Long-term visions requiring longer-term financing. Ambitions to become:
 - an international test site for onshore CO₂ storage in conventional and unconventional reservoirs
 - a test site for testing CO₂ monitoring and injection techniques on the field-scale
 - a unique laboratory of the entire CCS value chain from coal to the storage unit(s)
 - UNIS CO₂ lab becomes the place where young people go to experience field based studies on carbon capture and storage
 - An onshore shale-laboratory

Thank you for your attention!

kims@unis.no co2-ccs.unis.no

Photo: Anja Fleig

Local learning – global applications

Project	Operator	Date started	CO₂ injected (Mtpa)	Main challenge	Role of UNIS CO ₂ lab Storage Pilot
UNIS CO ₂ Lab	UNIS	???	Max 0.085	Access to CO ₂	N/A
Industrial-scale CCS projects (http://www.globalccsinstitute.com/projects/large-scale-ccs-projects#map)					
Sleipner	Statoil	1996	0.9	No monitoring well	Monitoring focus.
Weyburn, CA	Canovus/ Apache	2000	3.0	Public opinion	Learnings from monitoring
In Salah	Sonatrach/BP/Statoil	2004	0	Political situation	?
Snøhvit	Statoil	2008	0.7	No monitoring well. Injectivity issues.	Monitoring, storage, injectivity.
Lula, Brazil	Petrobras	2013	0.7	?	Monitoring, storage, injectivity.
Boundary Dam	Saskpower	2014	1.0	?	Storage pilot using coal.
Uthmaniyah, Saudi Arabia	Saudi Aramco	2015	0.8	?	Monitoring, storage, injectivity.
Gorgon, Aus	Chevron	2017?	3.4-4.0	?	Monitoring, storage, injectivity.