

IEA Annex 30 Workshop, Herten, April 20-21, 2015.

"Power to Gas" needs a common understanding

The business cases of the individual P2G approaches differ notably.

© Siemens AG 2014 All rights reserved.

- process gas

- injection into the NG grid

Hydrogen is a multi-purpose energy carrier for industry, mobility and grid services

- Chemical synthesis (e.g. ammonia, fertilizer, methanol)
- Petrochemical processes (e.g. cracking)
- Flat glass, nonferrous metal (protective and reductive gas)
- Food & Beverages (hardening)

H₂ application: a sustainable fuel for transport concepts

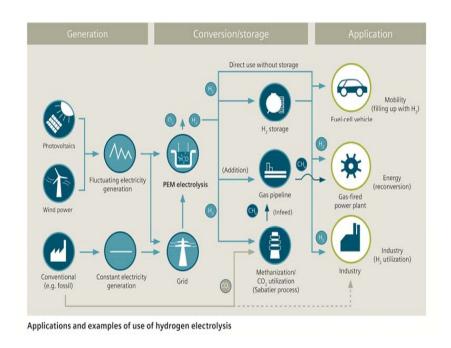
- CO₂ free mobility; Renewable fuel concepts
- Sustainable and pollution-free Public Transport
- Fuel Cell based in-plant logistics (forklifts, floor conveyors)
- Reliable, safe e-mobility: "fast-to-refuel" cars with long ranges

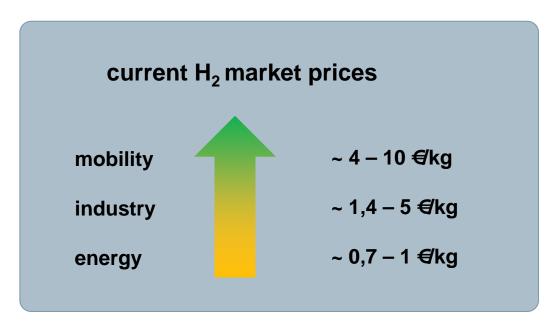
H₂ conversion: stabilizes the power grid

- Grid balancing capability (dynamical behavior in milliseconds)
- Optimization of asset utilization in renewable energies
- Storage of medium- and long-term overcapacities (TWh)
- Power-to-hydrogen and Power-to-gas as future key concepts

© Siemens AG 2014 All rights reserved.

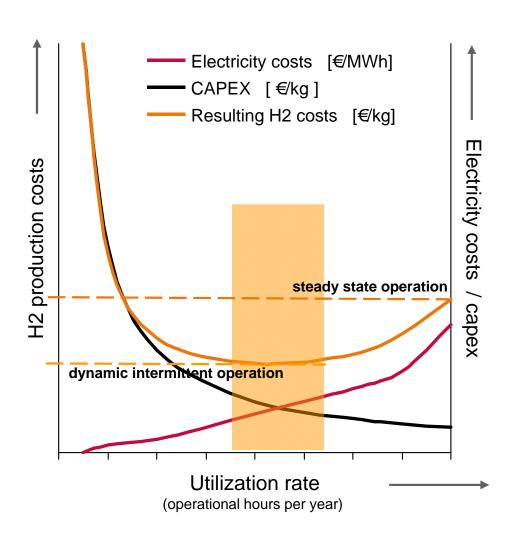
PEM water electrolyzer technology – a perfect match with renewable energy requirements to convert electrical into chemical power


H₂ drives the convergence between energy & industry markets


© Siemens AG 2014 All rights reserved.

Page 4

The different use cases for green hydrogen follow a `merit order´ principle

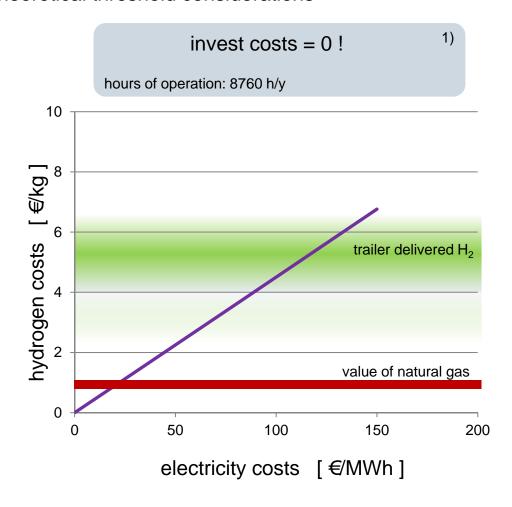


- Compared to re-electrification ("power to power") the use of hydrogen in industry or mobility leads more easily to a positive business case.
- The three use cases have different maturity, market potential and market starting points.

© Siemens AG 2014 All rights reserved.

Utilization rate, CAPEX and Electricity Costs Impact on the H₂ Costs

Key statements


- The H₂ production costs are mainly dependent from electricity costs, operational hours and capex.
- dynamic operation can yield incentives from "Regelenergie" and further select attractive low price periods for intermittent operation. This leads to lower H₂ production costs
- In order to benchmark different technologies a comparison of capex costs only is misleading.

Page 6

H₂ production via electrolysis Economy of operation

Theoretical threshold considerations

further assumptions:

1) maintenance costs = 0; efficiency electrolyzer system = 70 % vs HHV;

© Siemens AG 2014 All rights reserved.

The publically available cost targets of electrolyzer technology

1/2

KPI for water electrolysis

		State-of- the-art	2017	2020	2023
KPI 1	H2 production electrolysis, energy consumption (kWh/kg) @ rated power	57-60 @100kg/d	55 @500kg/d	52 @1000+kg/d	50 @1000+kg/ d
KPI 2	H2 production electrolysis, CAPEX @ rated power including ancillary equipements and comissioning	8.0 ME/(t/d)	3,7 M€/(t/d)	2.0 M€/(t/d)	1.5 M€/(t/d)
KPI 3	H2 production electrolysis, efficiency degradation @ rated power and considering 8000 H operations / year	2% - 4% / year	2% / year	1,5% / year	<1% / year
KPI 4	H2 production electrolysis, flexibility with a degradation < 2% year (refer to KPI 3)	5% - 100% of nominal power	5% - 150% of nominal power	0% - 200% of nominal power	0% - 300% of nominal power
KPI 5	H2 production electrolysis, hot start from min to max power (refer to KPI 4)	1 minute	10 sec	2 sec	<1sec
	H2 production electrolysis, cold start	5 minutes	2 minutes	30 sec	10 sec

source: FCH JU

Before defining cost targets for electrolyzer technology we have to clearly define the following:

what belongs to the electrolyzer system?

proposal: - stack(s)

- BOP (water separation cycle including pumps, sensors, heat exchangers, water and gas purification)
- rectifiers, transformers (incl. housing)
- control system including safety supervision
- commissioning
- "costs" means sales price

The publically available cost targets of electrolyzer technology

2/2

source NOW (Germany) - draft:

2018:	1000 € /kW	corresponds to 2,32 Mio €/t*d
2021:	800 € /kW	corresponds to 1,85 Mio €/t*d
2025:	600 € /kW	corresponds to 1,39 Mio €/t*d

source FCH-JU (EU):

2014:	corresponds to 3450 €/kW	8,0 Mio €/t*d
2017:	corresponds to 1600 €/kW	3,7 Mio €/t*d
2020:	corresponds to 860 €/kW	2,0 Mio €/t*d
2023:	corresponds to 650 €/kW	1,5 Mio €/t*d