

A Study of the Balancing Capability of Hydro Power Systems HSCEM 2015, 17 September 2015

Mikael Amelin

Agenda

- Background
- Model of the Swedish hydro power system
- Balancing capability of a river system
- Future challenges

Background

Wind and hydro power in Sweden

- Swedish planning target for 2020: possibility to have 30 TWh wind power
 - Parliament decision from 2009.
 - Wind power generation in Sweden:
 2.5 TWh (2009)
 11.6 TWh (2014)
- A large-scale development of nondispatchable generation will need more balancing resources.
- 30 TWh wind power equals about 12 000 MW installed capacity.
 - Sweden has around 16 600 MW hydro power.

Background

Research questions

- At which level of wind power expansion is it motivated to strengthen the transmission capability from Northern to Southern Sweden?
- What is the balancing capability of the Swedish hydro power north of cut 2?
- What is the balancing capability of the entire Swedish hydro system?

Background

Flexibility of a river system

- Each individual hydro power plant is very flexible.
- Operation of a river system needs to take into account hydrology and court decisions.

Model of the Swedish hydro power system

Main characteristics

- The model includes 256 hydro power plants with a total installed capacity of 15 640 MW.
- Linear optimisation model.
- Sweden divided in four areas.
- Perfect information.
- Time period: 1 week, divided in 168 hours.
- Decision variables: Hydro generation, reservoir levels, spillage, transmission.
- Data: Wind power and thermal generation, demand, transmission limits.
- Installed wind power varied between 0 and 12 000 MW.

Model of the Swedish hydro power system

Optimisation problem

maximise hydro power generation subject to

load balance per area

hydrological balance per reservoir

operational limitations for hydro power

reservoir level per reservoir at the end of the week

Model of the Swedish hydro power system Conclusions

- Some spillage cannot be avoided due to operational limits and is therefore not depending on wind power level.
- Some spillage has a small correlation to wind power level, but can be avoided by changing final reservoir levels.
 - More water can be stored during winter weeks and used later when there is free transmission capacity.
- Some spillage is caused by transmission limits.
- No clear limitation has been observed in the balancing capability of the hydro system.

Problem description

- How large variations in load and wind power generation can be balanced by a single river system?
- Which factors are influencing the balancing capability?
 - Reservoir size.
 - Water delay time.
 - Operational limitations.
- Is it possible to define an index which describes the balancing capability of a river system?

Model

- River system with total installed capacity 1 000 MW.
- Load and wind power data series (maximal net load 1 000 MW).

Optimisation problem:

minimise spillage + unserved load + unused wind power subject to

load balance

hydrological balance per reservoir

operational limitations for hydro power

minimal final reservoir levels

Testing

- Real load and wind power profiles ⇒ increasing wind power level does not cause spillage but unused wind power (when wind power > load).
- Net load as square wave.

Preliminary results

Increase the amplitude of the square wave until the hydro power cannot follow the variations (either resulting in spillage or unserved power).

Test river	T [h]	Max [MWh/h	Min [MWh/h]
"Lule"	2	950	100
"Lule"	8	900	100
"Skellefte"	2	850	50
"Skellefte"	8	750	50

Future challenges

- Daily hydro power scheduling under uncertainty
 - Bidding strategies for day-ahead, intraday and realtime markets.
 - Rules that encourage technical balancing capability to be offered to the market.
- Links between daily, weekly and seasonal planning of hydro power.