SINTEF research activities on long-term hydrothermal scheduling

Birger Mo
SINTEF Energy Research
birger.mo@sintef.no

Two main research areas

Hydrothermal optimization and simulation models

- For a region (e.g. northern Europe)
 - Price forecasting
 - System analysis
 - Security of supply
 - Investment analysis
 - Consequences of climate change
 - Hydro scheduling

Long and medium-term hydro scheduling for a price taker

- Individual river system
 - Water values for scheduling
 - Reservoir, production, profit forecasting
 - Planning maintenance
 - Investment analysis

Hydrothermal optimization and simulation

- (Hydro) characteristics for a typical hydrothermal model of the Nordic system
 - More than 1000 modelled reservoirs
 - About 400-500 hydro plants
 - About 100 statistically different inflow series
 - More than 100 individual river systems
 - Time resolution: from a few hours to week
 - Planning horizon: Several years
 - Model divided into about 20 areas
 - Hydro aggregation
 - Transmission constraints
 - Several thousand transmission nodes (if included)

The Nordic Electrical System divided into areas in the EMPS model

Hydrothermal optimization and simulation models - existing approach

- EMPS model
 - Strategy part and simulation part
- Strategy part
 - SDP (water value for aggregated hydro in each area)
 - Heuristics to handle connection to other markets
- Simulation
 - Formal optimization for each week using aggregated hydro models
 - Heuristics for hydro-disaggregation, feedback to aggregated description
- Used by most players in the NordPool market
- Relatively fast, very good results

Market development

- Stronger coupling to Europe
- More new renewables
- More often operation closer to capacity limits
- Both short-term and long-term variations and uncertainties are important for the value of storages, prices and price differences
- Current EMPS model drawbacks
 - Not formal optimization –possible inconsistencies for smaller investment decisions
 - Formal optimization for aggregate models give to high flexibility
 - Disaggregation not adapted to short-term pumped storage operation

Tested alternative approaches

- SDDP based method for aggregated hydro models
 - Disaggregation using EMPS method
- SDDP based method with detailed hydro modelling
- For both approaches
 - Much longer computation time than EMPS
 - Poorer results, especially for extreme scenarios
 - NB!!! Results are verified for observed inflows
- SDDP modelling and statistical properties in time and space
- If simulation scenarios is sampled from the inflow model, the SDDP model give good results

Existing R&D projects

- 1. Simulator based on two-stage stochastic programming problems (SOVN)
 - Funding: Research Council of Norway and model users
 - Detailed hydro modelling
- 2. Price decoupling and use of local SDDP based models with exogenous stochastic price for each individual river system (ProdMarket)
 - Funding: SINTEF Energy Research
 - Detailed hydro modelling
- 3. Improving existing EMPS model
 - Funding: Research Council of Norway and model users
 - Heuristics
 - Aggregate model structure
 - Inflow used in water value calculation
 - Statistics
 - How is it calculated

SOVN model

- Simulation along observed *weather scenarios* by solving a sequence of stochastic optimization problems
 - Two-stage stochastic problems
 - Uncertainties known in the first-stage (week)
 - All uncertainty is resolved in the second stage
 - First-stage decision is implemented and state variables are updated
 - Rolling horizon, fixed problem size

Simulator Scheme

Simulator Scheme

Principle of the ProdMarket model

The whole power market - Watercourse 1 to n - Thermal production Demand Price forecast Cuts/water values Other market options (scenarios) Market simulation Watercourse 2 Watercourse 1 Watercourse n Stochastic price and inflow Stochastic price and inflow - Stochastic price and inflow Water modules in watercourse 1 Water modules in watercourse 2 Water modules in watercourse n Local seasonal/long-term Local seasonal/long-term Local seasonal/long-term scheduling, ProdRisk scheduling, ProdRisk scheduling, ProdRisk

Case study – case description

- A small Nordic system
- 50 water modules, reservoirs
 - Three watercourses
 - 2 064 MW production capacity
 - 6 000 GWh total storage capacity
- No restriction on transmission capacity
- 4 load periods within the week
- 156 weeks in simulation period
- 50 years in the inflow statistics
- High risk for rationing

Average simulated prices

Reservoir level – Percentiles for sum of all reservoirs

ProdMarket

Reservoir level [GWh] 100 150 200

EOPS

Reservoir level – Percentiles for the Vatnedal reservoir

ProdMarket

EOPS

Long and medium-term hydro-scheduling for a price taker

- Activities related to a SDDP based model with exogenous stochastic price (ProdRisk)
 - Linear model
 - Some non-linear features in simulation (head dependencies, PQ description)
- Two main research areas:
 - Consequences of new markets on long-term operation strategy and water values
 - Reserve capacity markets
 - Balancing energy markets
 - State and inflow dependent constraints
 - E.g. discharge capacity dependent on head
- Other: Time resolution, time delays, start-up costs

Technology for a better society

Aggregation and disaggregation

