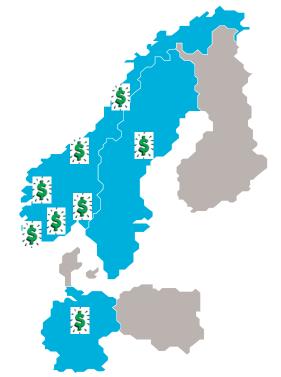
2015 Workshop on Hydro Scheduling in Competitive Electricity Markets

THE VALUE OF STOCHASTIC SHORT-TERM SCHEDULING

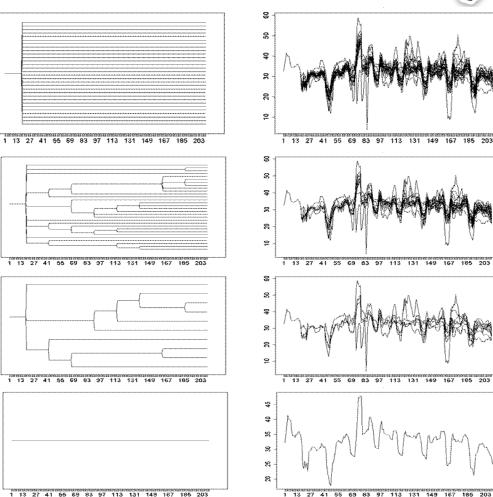

Tellef Juell Larsen, Statkraft Energi AS Trondheim, 17.-18. september 2015

Introduction

- Statkraft has been using SHOP as an operative tool since 2008
 - Input to the daily short-term bidding and planning
 - SHOP = Short-term Hydro Optimization Program
 - Developed by SINTEF
 - Algorithm: Sequential Mixed Integer Linear Programming (deterministic optimization)
- Our use of SHOP has gradually increased
 - About 80 users in Norway, Sweden and Germany
 - Models of 40 watercourses, with 132 plants and 196 reservoirs

Background

- A stochastic short-term optimization model has been developed (SHARM)
- Developed by SINTEF in cooperation with 5 Norwegian power companies


- > 2 projects
 - 2009-13: Prototype development. Presented at the conference in Bergen 2012
 - 2013-15: Evaluate the utility value (benefit) of stochastic short-term optimization
- This presentation shows the latest results of the evaluation in Statkraft

The SHARM-model

- SHARM is an expansion of the SHOP-model
- Both price and/or inflow can be modelled as stochastic inputs
- The uncertainty is represented by a scenario tree
 - Separate application for converting ensemble forecasts into scenariotrees with a user-defined branching
- Status SHARM
 - The SHARM-functionality is now implemented in SHOP
 - Will refer to SHARM as the
- 4 stochastic SHOP

Utility value

- The primary goal of the project has been to estimate the utility value (economical benefit) of using stochastic short-term optimization instead of deterministic
- > Typical questions we would like to answer are:
 - How much can modelling of uncertainty reduce the consequences of a bad forecast?
 - What is the pure value of stochastic optimization?
 - How much better (or worse) can the forecasting get?
 - How much does the calculation time increase when the tree size increase?
 - What is a good trade-off between increased calculation time and increased benefit?

Main challenge: Methodology

Challenge

Find a methodology suited for calculating the <u>incremental</u> benefit of modelling uncertainty

Solution

Use SHARM to calculate the value of different solutions made with different stochastic and deterministic representations of price and inflow

- Small differences
 - Needs high exactness => Puts SHARM to an ultimate test
- We have put much effort into
 - Tuning the methodology
 - Revealing errors and weaknesses in SHOP/SHARM
 - Developing an Excel-tool for automatic multi-run of SHARM

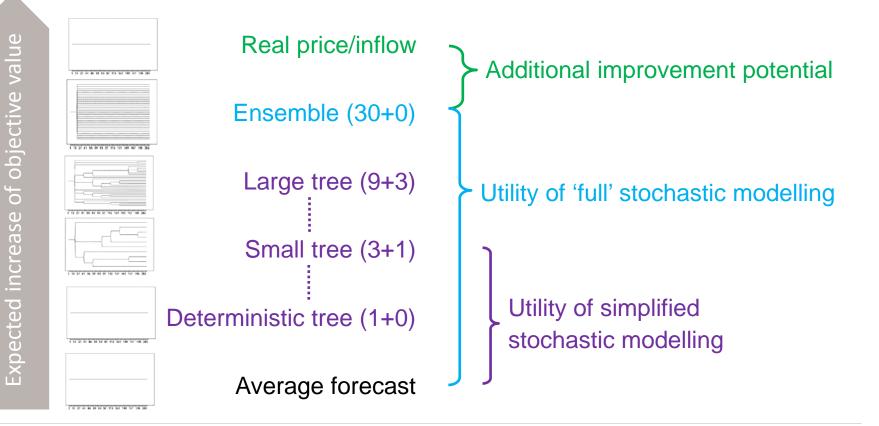
Proposed methodology

1. Plan calculations

- SHARM is run for different scenarios of price and inflow, both stochastic and deterministic variants
- The resulting plan for the <u>next day</u> of each scenario represents the decision that would be made using the corresponding price or inflow as a forecast

2. Value calculations

- The plan of each scenario
 is converted to a load
 requirement
- SHARM is run again <u>twice</u>
 for all scenarios (with the load requirement) for both:
 - the full ensemble
 - the real price/inflow
- The objective functions now represent the value of each plan/load decision


3. Utility calculations

- The differences in
 objective values give
 the relative utility values
- This method should give the utility value of
- stochastic modelling
- with and without influence of the forecast quality
- for one single day
- applied to 'price dependent bidding'

Calculating utility values

8 Nomenclature: 30+0 = 30 branches fist day, 0 new branches each day

Analysis details

- One selected river system with high expected profit
 - A single plant with low discharge capacity
- Analysed for 12 random days of the past year, one day in each month
- Based on forecast ensembles with 30 scenarios (both for price and inflow)
 - Inflow with daily resolution, price with hourly resolution
- Price and inflow are analysed independently, not combined
- Optimization has 8 days horizon with stochastics
 - Stochastics starts next day (the day of planning)
 - Common plan requirement in the optimization
- MIP is not used

Inflow results - ensemble as reference*

Value of plan compared to

[**∉**day]

-29

-16

-71

-60

-18

-38

-47

-78

-3

-52

-51

-87

-24

-46

-49

-123

-282 -180

ensemble (30+0)

Tree 30+0

Tree 9+3

Tree 9+2

Tree 9+1

Tree 9+0

Tree 5+3

Tree 5+2 Tree 5+1

Tree 5+0

Tree 3+3

Tree 3+2 Tree 3+1

Tree 3+0

Tree 1+3 Tree 1+2

Tree 1+1

Tree 1+0

Random

Average

10

- Increased branching 1. day improves the benefit
 - Increased branching per day improves the benefit
 - All variants of stochastic modelling are better than all variants of deterministic modelling!
 - The deterministic equivalent (Tree1+0) is the best deterministic variant
 - The random scenario gives the lowest benefit of the deterministic variants
 - The value of full stochastic modelling compared to the deterministic average is 180 €/day (0,3% of the load value)

Results

Inflow results - real inflow as reference*

Value of plan compared	
to real inflow	[€ day]
Real inflow	-
Tree 30+0	-5 808
Tree 9+3	-6 208
Tree 9+2	-5 986
Tree 9+1	-6 479
Tree 9+0	-6 424
Tree 5+3	-6 078
Tree 5+2	-6 308
Tree 5+1	-6 355
Tree 5+0	-6 601
Tree 3+3	-5 696
Tree 3+2	-6 368
Tree 3+1	-6 204
Tree 3+0	-6 486
Tree 1+3	-5 495
Tree 1+2	-6 433
Tree 1+1	-6 300
Tree 1+0	-7 079
Random	-5 568
Average	-7 334

No clear improvement with increased branching

- The best tree is with branching 1+3
- This is due to the tree construction algorithm
- The random scenario is the best deterministic variant
 - Even better than the full tree
 - This is due to luck in a few dominant analyses
- All variants of stochastic modelling are better than the deterministic equivalent (1+0) and the deterministic average
 - Stochastic modelling reduces the effect of bad forecasting!
- The value of full stochastic modelling compared to the deterministic average is ≈ 1500 €/day (2,6% of the load value)
- Even with full stochastic modelling the improvement potential of inflow forecasting is ≈5800 €/day

Price results - ensemble as reference*

Value of plan compared to	
ensemble (30+0)	[€ day]
Tree 30+0	-
Tree 9+3	-7
Tree 9+2	-8
Tree 9+1	-13
Tree 9+0	-12
Tree 5+3	-18
Tree 5+2	-18
Tree 5+1	-19
Tree 5+0	-12
Tree 3+3	-17
Tree 3+2	-21
Tree 3+1	-22
Tree 3+0	-6
Tree 1+3	-15
Tree 1+2	-24
Tree 1+1	-17
Tree 1+0	-20
Random	-300
Average	-6

- All stochastic variants have small utility values, and has no significant variation with different branching
- A random scenario of the ensemble is much worse than all other variants
- The deterministic equivalent (1+0) and the average are equal to using stochastic equivalents
 - There is no value stochastic optimization!

Price results - real price as reference*

Value of plan compared	
to real price	[€ day]
Real price	-
Tree 30+0	-46
Tree 9+3	-45
Tree 9+2	-45
Tree 9+1	-92
Tree 9+0	-89
Tree 5+3	-74
Tree 5+2	-92
Tree 5+1	-74
Tree 5+0	-82
Tree 3+3	-54
Tree 3+2	-77
Tree 3+1	-84
Tree 3+0	-79
Tree 1+3	-55
Tree 1+2	-51
Tree 1+1	-64
Tree 1+0	-94
Random	-623
Average	-85

13

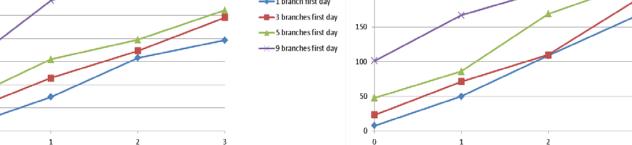
- Again small utility values with no significant variation of different branching
 - A weak suggestion that increased branching per day improves the utility value
- The random scenario is still much worse than all other variants
- The value of full stochastic modelling compared to the deterministic average is ≈40 €/day
 - The consequences of a bad forecast has little improvement
- With full stochastic modelling the improvement potential of inflow forecasting is only ≈50 €/day
- The forecast model is good

[sec]

18

10

Ŕ


6

0

16 14 12

Calculation times

200 -----1 branch first day 150 → 9 branches first day

[sec]

300

2.50

n

The calculation time increases almost linearly

New branches per day

- with the number of new branches per day
- with the number of branches first day

Calculation times

1 branch first day

— 5 branches first day

9 branches first day

Calculation times

New branches per day

Conclusions

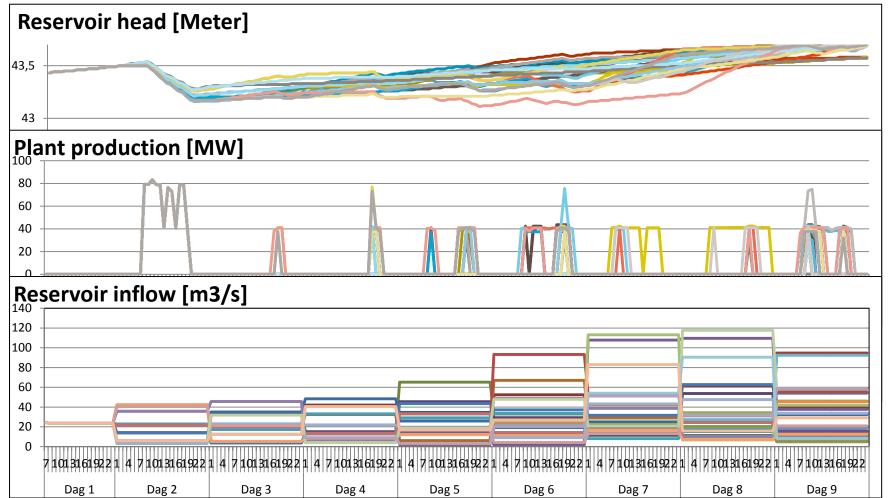
- Stochastic optimization in SHOP is working!
 - Stochastic modelling can reduce the effect of bad forecasting
- Stochastic modelling of price seems to unnecessary (in this case)
- The tree size seems to be of little importance
- SHOP is pretty accurate (despite the successive linearization)

- Still some concerns
- Calculation times increases fast with branching (even without MIP)
- Simple analysis: One river system, only 12 days
- The results are only valid for price dependent bidding
- Still some unsolved inconsistencies in other analyses
- More testing is recommended
 - Other topologies
 - On real areas of use (not price dependent bidding)
 - With combined and correlated price and inflow

Tellef Juell Larsen, PhD

R&D-responsible short-term energy management MNP, Market Nordic Production optimisation

__DIRECT +47 24 06 70 78 __MOBILE +47 90 96 45 96


Statkraft AS Lilleakerveien 6, Postboks 200 Lilleaker, 0216 Oslo

www.statkraft.com

SHARM results

