

Quantitative Analysis of Decision Parameters - Short-term Hydropower Scheduling

Master's thesis submitted June 20th 23:59:59 2014 Supervisors: Tellef Juell Larsen (Statkraft) & Olav B. Fosso (NTNU)

Martin Kristiansen PhD Candidate Norwegian University of Science and Technology (NTNU) martin.kristiansen@ntnu.no

Problem Outline

- Background
 - What is the value of using a stochastic optmization model for ST hydropower scheduling?
 - Earlier studies shows an imporvement potential in the range of 0.5 7 % on total profits/income
- Methodology
 - Use a deterministic model (SHOP*)
 - Quantify the maximum theoretical value of having perfect information about decision variables (e.g. price and inflow)
- Expectations
 - Eariler studies use too naive benchmarks in terms of level of detail and flexibility

*SHOP = Short-term Hydropower Optimization Program

Conceptual Illustration

Improvement potential?

O NTNU Norwegian University of Science and Technology

Case Study

Considering different...

- System descriptions (degree of regulation, capacity)
 - With distincive properties in terms of flexibility and available capacity
 - E.g. a medium river system or a price area
- Market situations (energy/effect deficit/surplus)
 - Price level and volatility
 - Price deviations
 - High wind/solar production
 - Holidays (red calendar)

Case study

Name: **Leirdøla** Capacity: 184 GWh Degree of reg.: 0.4

Name: **Vik** Capacity: 413 GWh Degree of reg.: 0 – 0.5

NTNU Norwegian University of Science and Technology

D NTNU Norwegian University of Science and Technology

Results – Price Uncertainty

- Income potential for river systems with..
 - Low flexibility
 - 0 % for systems operating near limits (e.g. low/high reservoir levels)
 - Higher flexibility (without forecast information)
 - 0.75 % (low capacity) to..
 - 1.78 % (high capcity)
 - Higher flexibility (with forecast information)
 - 0.05 % (low capacity) to..
 - 0.24 % (high capcity)
 - ...also more dependent on price level and price volatility
- Income potential for price areas
 - Spans from 0.14 % (NO3) to 1.47 % (NO2)

Results – Inflow Uncertainty (Leirdøla)

- Zero value for day-ahead operations
 - ...as long as the system has enough capacity to store the expected inflow
- About 0.69 % income potential (maximum)
 - ...when the water level is near its higher limits (spillage risk)
- But how likely is actually «extreme» inflow scenarios (compared with «extreme» price scenarios)?
 - 40 % price deviations VS 100 m3/s @ Leirdøla

THANK YOU!

O NTNU Norwegian University of Science and Technology

Future work

- Same analysis, but over a longer operational period
 - Capture positive and negative concidences over time
 - Ex: « A poor deciocion can turn out to be good, anyway..»
- Include intraday market (flexibility)

Use SHOP to evaluate LT strategies?

- With respect to water values during energy surplus/deficit
 - SHOP can calculate max/min contribution to the supply side in the market
 - Reveal forced production (not accounted for in LT models)
 - Increase water value when unforeseen forced production?
 - How does this then affect the price level in the nearest future? Increase? (producers will most likely increase their sell bids..)

Use MC from SHOP as water value?

- Upfront flood- and inflow seasons where LT guiding is sensitive to ST decisions and weather
 - Do a multi-scenario price optimizations and weight the MC
 - Indicate up- or downregulation of the LT water value

The river system's price sensitivity, defining the *feasible solution space for theoretical improvement potentials*. The average value is calculated between the maximum and minimum tangents.

 Table 1 - The average theoretical improvement potential for the feasible solution space (between tangent values) in EUR and

 % of spot sales

Case	Leirdøla		Vik		Røssåga		
Feasible Solution Space	5,531	0.7480%	9,322	1.4670%	58,113	1.7825%	

The river system's *seasonal variations and price forecast's improvement potential*. Average values of the price forecasts S2 to S8.

Table 2 - The average theoretical improvement potential for the seasonal variations, in EUR and % of spot sales

Case	Leirdøla		Vik		Røssåga	
High reservoir levels, January	353	0.0915%	453	0.0628%	414	0.0150%
Low reservoir levels, May	895	0.6738%	35	0.0187%	1,391	0.0582%
Medium reservoir levels, July	545	0.0823%	574	0.0993%	2,142	0.0927%
Average	598	0.2826%	354	0.0603%	1,316	0.0553%

The river systems analysed in the price volatility cases, representing *price forecast's improvement potential*. Calculated as average values of the price scenarios S2 to S8.

Table 1 - Summary of the price volatility cases, average theoretical improvement potential in EUR and % of spot sales

Case	Leirdøla		Vik		Røssåga	
Low volatility, low price	0	0.0000%	127	0.0175%	109.155	0.0044%
Low volatility, high price	0	0.0000%	776	0.0957%	677	0.0180%
High volatility, low price	115	0.0247%	592	0.5330%	2,311	0.1136%
High volatility, high price	1,388	0.1877%	1,985	0.3124%	4,492	0.1352%
Average	376	0.0531%	870	0.2397%	1,897	0.0678%

The price areas analysed in the wind power cases, representing *price forecast's improvement potential*. Calculated as average values from the price scenarios S2 to S8.

Table 2 - Summary of the wind production cases, average theoretical improvement potential in EUR and % of spot sales

Case	NO2		NO3		NO4	
Low wind production (26/7)	95,139	1.4382%	1,167	0.0318%	4,991	0.0515%
High wind production (24/12)	122,705	1.4989%	6,026	0.2491%	22,354	0.2748%
Average	108,922	1.4685%	3,597	0.1404%	13,672	0.1632%