Modelling start/stop in short-term multimarket hydropower scheduling

Marte Fodstad, Arild Helseth, Arild Lote Henden - SINTEF Energy Research

5th International Workshop on Hydro Scheduling in Competitive Electricity Markets Trondheim, September 17th-18th, 2015

Background

- Mainly day-ahead trading
- Increasing share of wind production
- Increasing integration with rest of Europe
 - Cables
 - Market coupling
- Expects increasing variability and volumes in short-term markets
 - Intra day
 - Reserves
 - Balancing

- Business opportunities for hydropower producers
- Changed operating patterns

Start/stop properties

- Binary spinning state
- Minimum production rate
- Start-up cost
- Ramping rate
- Minimum up/down-time
- Shut-down cost
- Down-time dependent start-up cost
- Logical dependencies between generators/pumps

Start/stop modelling

- No start/stop ("noSS")
 - No minimum production
 - No start-up cost
- 2. Binary start/stop ("0/1")
- Linear approximation ("linearSS")
 - Incentive to stay above Q

$$\begin{aligned} c_t &\geq C(u_t^L - u_{t-1}^L) \\ Qu_t^L + \left(\overline{Q} - \underline{Q}\right)u_t^H &= q_t \\ u_t^L &\geq u_t^H \\ 0 &\leq u_t^L, u_t^H \leq 1 \end{aligned}$$

Warland&Huuse, 2008

Test case – a Norwegian water couse

Trade and market modelling

- Day-ahead (DA) and balancing market (BM) by price
- Balancing market
 - Activation given by price difference
 - Day-ahead price > balancing market price => down regulation
 - Day-ahead price < balancing market price => up regulation
- Allocation, no bidding
 - Increasing allocation with increasing price

Scenario tree generation

- Highly inspired by Boomsma, Juul & Fleten (2014) in EJOR
- Prices from Nord Pool Spot, 2013-2014, Southern Norway (NO2)
- Time series model
 - Day-ahead price: SARIMA
 - Balancing price: SARIMAX
 - Joint trend and seasonality correction
- Procedure:
 - Sample day-ahead
 - Scenario reduction day-ahead
 - Sample balancing market
 - Scenario reduction balancing market
 - Remove arbitrage possibilities

Test setup

- 34 one-day scenario trees generated
 - 225 scenarios (15 day-ahead x 15 balancing market)
- September/October
- Initial reservoir level: 90%

- Compares model run
 - with and without balancing market (+BM vs -BM)
 - with different start/stop modelling

Value of Balancing Market (BM)

Value of Balancing Market (BM)

Comparison of start/stop models

Observations

- Linear better than noSS (red vs green)
- Without BM better than with (circles vs squares)
- Introduction of BM reduces approximation quality

Spinning states

Operation below minimum production

Solution times

- Standard solver (CPLEX) without any tuning or algorithmic efforts
- 204 instances
 - 9 instances removed due to failure (out of memory)
 - Most 0/1 time limited [24 h]
- Binary start/stop slow and memory consuming
 - Even harder with BM
- LinearSS 3-4 times slower than noSS

Conclusion and further work

- Preliminary "conclusions"
 - Linear ok for valuation, but worse with BM
 - Objective function value good
 - Solution time ok
 - Operating decisions not ok for scheduling
 - BM currently limited value
- Further work
 - Sensitivity to start cost
 - Different seasons

References

• Warland, G., Huuse, E. S., "Including thermal unit start-up costs in a long-term hydrothermal scheduling model", 16th PSCC, Glasgov, Scotland, July 14-18, 2008

