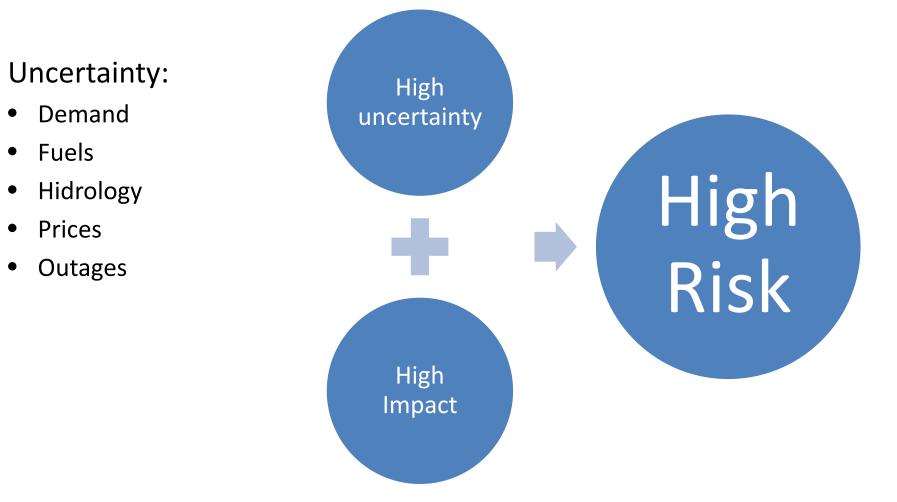

Short-term hydrothermal generation scheduling using a parallelized stochastic mixed-integer linear programming algorithm

Esteban Gil and Juan Araya


Departament of Electrical Engineering Advanced Center of Electrical and Electronic Engineering (AC3E)

> Universidad Técnica Federico Santa María (UTFSM) Valparaíso, Chile

Contents

Decision making in power systems

SISTEMA INTERCONECTADO CENTRAL

Chilean Central Interconnected System (SIC)

Generation

More than 14 GW

54.6% thermal

43.2% hydro

Transmission

14355 km of lines above 66kV

Demand

7282 MW maximum 92.2% of Chile's population

Operation

Centrally dispatched Cost-based dispatch

* Nationale su projectivose modules VPE dal 1 da dalle da 100 m la Discoler Accessión Francesa y Lindex de Dalado y producedo nomese carter puppiñese comingeneses que enforme relacionen proteches y francesa da Dale no compositiva en moto aques al Ende ta CAR no acuello me el el L'Inter Stat Martine de Taladones Dalemese?

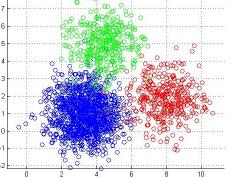
Short-term hydrothermal generation scheduling (STHTGS)

• Minimization of present operation costs plus future water costs

Minimize:

$$\sum_{t \in T} \{y_t + \sum_{r \in R} FCF_r(Vol_{T,r}) + \sum_{n \in N} VoLL \cdot USE_{t,n}\}$$

$$y_t = \sum_{g \in G} \{ C_g^{op} \cdot P_{t,g} + C_g^{on} \cdot Y_{t,g} + C_g^{off} \cdot Z_{t,g} \}$$


- Subject to many constraints
 - e.g. demand satisfaction, water balance in reservoirs, DC-OPF, loading ramps, cascading hydro, and so on
- FCF comes from mid/long term models

Short-term hydrothermal generation scheduling (STHTGS)

- Daily or weekly horizon, hourly resolution
- 2 types of variables
 - First stage, grouped in \mathbf{x}_s
 - Unit commitments of thermal generators (integer)
 - Use of water in reservoirs (reservoir trajectories)
 - Need to decide now
 - Second stage, grouped in \mathbf{y}_s
 - Generation dispatch, flows in lines, and so on
 - Can decide once uncertainty unfolds
- Problem is MILP

Stochastic programming

- Optimization under uncertainty
 - Uncertainty represented by S scenarios
 - Multivariate probability distributions represented by finite set of scenarios

- Objective function: Expected value
- Constraints must be satisfied for all scenarios

Stochastic programming

- Deterministic
 - -|S| deterministic problems
 - $-\mathbf{x}_s$ different for each scenario

Minimize: $\{\mathbf{c}_x \cdot \mathbf{x}_s + \mathbf{c}_y \cdot \mathbf{y}_s \} | \mathbf{x}_s, \mathbf{y}_s \in \mathbf{Q}_s$

- Stochastic
 - -|S| times larger than each deterministic problem

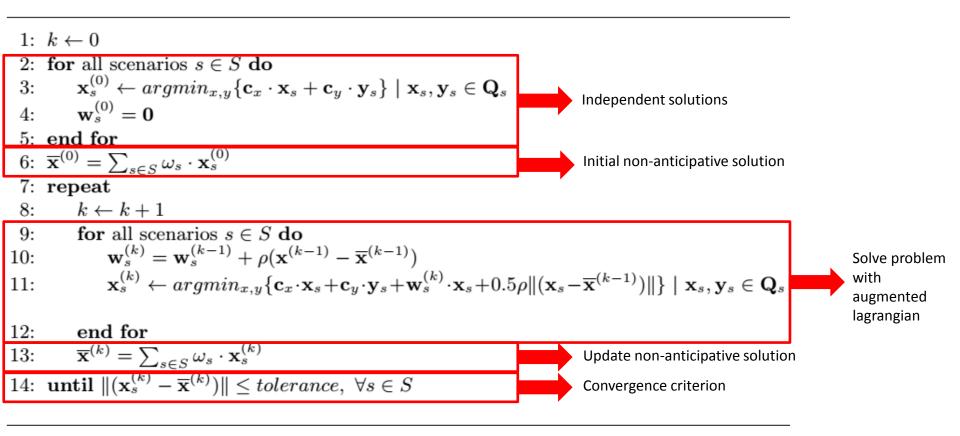
Minimize:
$$\sum_{s \in S} \omega_s \{ \mathbf{c}_x \cdot \mathbf{x}_s + \mathbf{c}_y \cdot \mathbf{y}_s \} \mid \mathbf{x}_s, \mathbf{y}_s \in \mathbf{Q}_s \ \forall s \in S$$

Stochastic programming

• Stochastic problem

Minimize:
$$\sum_{s \in S} \omega_s \{ \mathbf{c}_x \cdot \mathbf{x}_s + \mathbf{c}_y \cdot \mathbf{y}_s \} \mid \mathbf{x}_s, \mathbf{y}_s \in \mathbf{Q}_s \ \forall s \in S$$

- Each sub-problem is independent
- We need to ensure that first stage variables are the same across scenarios
- Solution: Non-anticipativity constraints


Minimize:
$$\sum_{s \in S} \omega_s \{ \mathbf{c}_x \cdot \mathbf{x}_s + \mathbf{c}_y \cdot \mathbf{y}_s \} \mid \mathbf{x}_s, \mathbf{y}_s \in \mathbf{Q}_s \; \forall s \in S$$

subject to $\mathbf{x}_i = \mathbf{x}_j \ \forall i, j \in S$

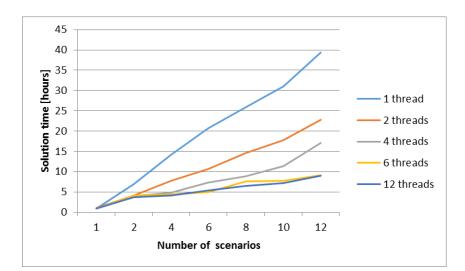
Sub-problems coupled by non-anticipativity constraints => decomposition

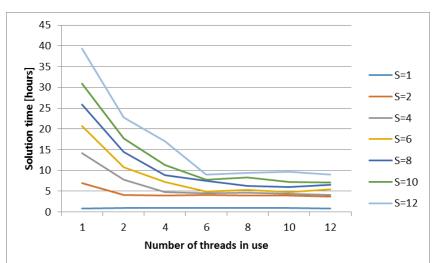
Problem decomposition

Progressive hedging algorithm

Progressive hedging

- Most steps can be parallelized
 - Except calculation of non-anticipative candidate solution
- Decomposition by scenario
 - Similarly sized sub-problems => Similar solution times
 - Although sometimes differences in MIP solution times


Parallelization


- Implemented in Fortran 95
 - We are migrating to Pyomo
- Solution of each sub-problem obtained with CPLEX
- Parallelization using hybrid OpenMP and MPI model
 - OpenMP inside each node
 - MPI protocol through Open MPI between the nodes
 - Shared memory architecture
 - Using a single node
 - All processes have access to the same physical memory
 - Distributed memory architecture
 - Using both nodes of the cluster
 - Network communications used to access memory on the nodes

Simulation and problem size

- Computational experiments in two nodes of a cluster
 - Each node has 2 Intel E5 Xeon processors with 6 cores each
 - Each of the two nodes has 12 cores available.
 - CPLEX uses 2 cores per thread, so each node can run up to 6 CPLEX threads simultaneously
- Problem size
 - 152 buses, 202 transmission lines, 330 generators (205 thermal, 11 hydro with significant storage)
 - Weekly horizon, hourly resolution
 - Each sub-problem has 24691 rows, 367786 columns, with 962716 non-zero coefficients

Shared memory results

- Solution time grows linearly with |S|
- Solution time decreases with more parallel threads
- Improvement stops when there are more threads than available cores
- To maintain decreasing trend, necessary to use more cores
 - Distributed memory

Distributed memory results

Number of scenarios	Simulation time		Performa
	Shared memory	Distributed memory	nce gain
S=4	4.10	4.17	1.02
S=6	4.35	5.40	1.24
S=8	4.43	6.52	1.47
S=10	4.67	7.15	1.53
S=12	5.05	8.97	1.78

- Faster than shared memory
- Despite having twice as many cores available, it is not twice as fast as the shared memory scheme
- Parallel overhead, i.e. time required to coordinate parallel tasks

Conclusions

- Stochastic Short-Term Hydrothermal Generation Scheduling formulated as SMILP
- In real-sized systems, stochastic problems cannot be solved without decomposition
- PH showed good performance:
 - Few iterations needed for convergence
 - Sub-problems of similar size
 - Good opportunities for parallelism and HPC

Conclusions

- Two parallelization schemes
 - Shared memory using OpenMP
 - Distributed memory using hybrid OpenMP/MPI
- With shared memory
 - Scalability is limited by the number of cores
- With distributed memory
 - Can keep scaling up, but twice the number of cores does not mean twice the speed
 - Some performance loss due to parallel overhead

Conclusions

- With more integer variables variability of solution times may increase
 - Difficulty to parallelize
 - Solution 1: Asynchronic resolution of subproblems
 - Solution 2: Scenario grouping

Conclusions and further work

- Application to other optimization problems:
 - Unit commitment
 - Expected profit maximization
 - Portfolio optimization
 - Mid- and long-term reservoir management
 - Investment
- Our newest results suggest that:
 - Value of the stochastic solution between 1% and 3%
 - As more scenarios are used, the marginal benefits of a more accurate uncertainty representation keep decreasing

Questions?