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High 
uncertainty 

High 
Impact 

High 
Risk 

 
Uncertainty: 
• Demand 
• Fuels 
• Hidrology 
• Prices 
• Outages 
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Decision making in power systems 



Chilean Central 
Interconnected System 
(SIC) 
Generation 

More than 14 GW 
54.6% thermal 
43.2% hydro 

Transmission 
14355 km of lines above 
66kV 

Demand 
7282 MW maximum 
92.2% of Chile’s 
population 

Operation 
Centrally dispatched 
Cost-based dispatch 
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Short-term hydrothermal 
generation scheduling (STHTGS) 

• Minimization of present operation costs plus 
future water costs 
 
 
 
 

• Subject to many constraints 
– e.g. demand satisfaction, water balance in reservoirs, 

DC-OPF, loading ramps, cascading hydro, and so on 
• FCF comes from mid/long term models 
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Short-term hydrothermal 
generation scheduling (STHTGS) 

• Daily or weekly horizon, hourly resolution 
 

• 2 types of variables 
– First stage, grouped in x𝑠𝑠  

• Unit commitments of thermal generators (integer) 
• Use of water in reservoirs (reservoir trajectories) 
• Need to decide now 

 
– Second stage, grouped in y𝑠𝑠 

• Generation dispatch, flows in lines, and so on 
• Can decide once uncertainty unfolds 

 
• Problem is MILP 
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Stochastic programming 
• Optimization under uncertainty 

– Uncertainty represented by S scenarios 
• Multivariate probability distributions represented by 

finite set of scenarios 
 
 

 
 

– Objective function: Expected value  
– Constraints must be satisfied for all scenarios 

EGS-DIE-UTFSM 



Stochastic programming 

• Deterministic 
– 𝑆𝑆  deterministic problems 
– x𝑠𝑠 different for each scenario 

 

 
• Stochastic 

– 𝑆𝑆  times larger than each deterministic problem 
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Stochastic programming 

• Stochastic problem 
 

 
– Each sub-problem is independent 
– We need to ensure that first stage variables are the same 

across scenarios 

• Solution: Non-anticipativity constraints 
 
 
– Sub-problems coupled by non-anticipativity constraints => 
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Problem decomposition 

Independent solutions 

Initial non-anticipative solution 

Update non-anticipative solution 
  
Convergence criterion 

Solve problem 
with 
augmented 
lagrangian 
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Progressive hedging 

• Most steps can be parallelized 
– Except calculation of non-anticipative candidate 

solution 
 

• Decomposition by scenario 
– Similarly sized sub-problems => Similar solution 

times 
– Although sometimes differences in MIP solution 

times 
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Parallelization 
• Implemented in Fortran 95 

– We are migrating to Pyomo 
• Solution of each sub-problem obtained with CPLEX 
• Parallelization using hybrid OpenMP and MPI model 

– OpenMP inside each node 
– MPI protocol through Open MPI between the nodes 
– Shared memory architecture 

• Using a single node 
• All processes have access to the same physical memory 

– Distributed memory architecture 
• Using both nodes of the cluster 
• Network communications used to access memory on the nodes 
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Simulation and problem size 

• Computational experiments in two nodes of a cluster 
– Each node has 2 Intel E5 Xeon processors with 6 cores each 
– Each of the two nodes has 12 cores available.  
– CPLEX uses 2 cores per thread, so each node can run up to 

6 CPLEX threads simultaneously 
• Problem size 

– 152 buses, 202 transmission lines, 330 generators (205 
thermal, 11 hydro with significant storage) 

– Weekly horizon, hourly resolution 
– Each sub-problem has 24691 rows, 367786 columns, with 

962716 non-zero coefficients 
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Shared memory results 
• Solution time grows 

linearly with  𝑆𝑆  
• Solution time decreases 

with more parallel 
threads 

• Improvement stops when 
there are more threads 
than available cores 

• To maintain decreasing 
trend, necessary to use 
more cores 
– Distributed memory 
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Distributed memory results 
Number of 
scenarios 

Simulation time Performa
nce gain Shared 

memory 
Distributed 

memory 
S=4 4.10 4.17 1.02 

S=6 4.35 5.40 1.24 

S=8 4.43 6.52 1.47 

S=10 4.67 7.15 1.53 

S=12 5.05 8.97 1.78 

• Faster than shared 
memory 

• Despite having twice as 
many cores available, it 
is not twice as fast as 
the shared memory 
scheme 

• Parallel overhead, i.e. 
time required to 
coordinate parallel tasks 
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Conclusions 

• Stochastic Short-Term Hydrothermal 
Generation Scheduling formulated as SMILP 

• In real-sized systems, stochastic problems 
cannot be solved without decomposition 

• PH showed good performance: 
– Few iterations needed for convergence 
– Sub-problems of similar size 
– Good opportunities for parallelism and HPC 
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Conclusions 

• Two parallelization schemes 
– Shared memory using OpenMP 
– Distributed memory using hybrid OpenMP/MPI 

• With shared memory 
– Scalability is limited by the number of cores 

• With distributed memory  
– Can keep scaling up, but twice the number of 

cores does not mean twice the speed 
– Some performance loss due to parallel overhead 
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Conclusions 

• With more integer variables variability of 
solution times may increase 
– Difficulty to parallelize 
– Solution 1: Asynchronic resolution of sub-

problems 
– Solution 2: Scenario grouping 
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Conclusions and further work 
• Application to other optimization problems: 

– Unit commitment 
– Expected profit maximization 
– Portfolio optimization 
– Mid- and long-term reservoir management 
– Investment 

 
• Our newest results suggest that: 

– Value of the stochastic solution between 1% and 3% 
– As more scenarios are used, the marginal benefits of a more 

accurate uncertainty representation keep decreasing  
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Questions? 
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