5th International Workshop on Hydro Scheduling in Competitive Electricity Markets

Modelling Minimum Pressure Height in Short-Term Hydropower Production Planning

Frederic Dorn, Hossein Farahmand, Hans Ivar Skjelbred, Michael M. Belsnes

Sira-Kvina water system

Sira-Kvina water system

Sira-Kvina water system

SHOP

S

 $\left| - \right|$

Available extensions

Short-term hydropower scheduling

Authors Michael M. Belsnes Frederic Dorn

SHOP Available extensions

Short-term hydropower scheduling

) SINTEF

Authors Michael M. Belsnes

Frederic Dorr

0

 Polynomial efficiency description Pelton turbines Reserve constraints on area with needle combinations level Modeling of Reserve schedule on generator forbidden zones level • Soft min/max constraints Dynamic PQ segmentation · Common outlet Cut corrections · Pumping in connection with a · Value of water in transit junction · Feeding fee · Tide dependent plant head Contracts Junction below plant · Multiple load and markets Marginal cost curves Shared ownership

Today Tomorrow Monitoring and real time bidding t=12 t=24 t=0 t=48 Preparing spot bid Scheduling tomorrow

() SINTEF

Authors Michael M. Belsnes Frederic Dorn

SHOP

Short-term hydropower scheduling

- Maximize income if market is present or minimize the cost for covering a load obligation ;
- Optimal generation schedules for the generation assets in the system;
- Find the exact balance betweenefficiency of the hydropower plantsand the resource cost including theoptimal unit commitment sequence.

Authors

Michael M. Belsnes Frederic Dorn Hans Ivar Skjelbred

SINTEF

SHOP

Short-term hydropower scheduling

Nonlinear problem with state dependency introduced by the relation between the reservoir levels and the decision variables;

Linear programming, mixed integer programming.

Authors

Michael M. Belsnes Frederic Dorn Hans Ivar Skjelbred

() SINTEF

Short term hydro power scheduling

Short term hydro power scheduling

The optimal discharge from the plant depends on the plant efficiency.

 \checkmark

The efficiency depends on the net plant head.

\downarrow

The net plant head depends on reservoir content up and downstream.

 \downarrow

Reservoir content depends on the value of the decision variables (discharge).

Minimum pressure restriction above Tonstad

Minimum pressure restriction above Tonstad

Minimum pressure restriction above Tonstad

Phase I : pressure gauge

In the LP-model the following equation is linearized:

$$\mathbf{H}_{\min} \leq \mathbf{h}_{\mathrm{rsv}} - \boldsymbol{\alpha}_1 \cdot (\mathbf{Q} - \mathbf{q}_{\mathrm{cr}}) \cdot \left| \mathbf{Q} - \mathbf{q}_{\mathrm{cr}} \right|$$

- q_cr is handled as fix inflow per timestep in the model.
- only the MIP model is implemented.
- The head loss is added to the busbar equation.

Phase II – Junction and pressure point

Junction:

$$h_{O} - \alpha_{O} \cdot Q_{O} |Q_{O}| = h_{H} - \alpha_{H} \cdot Q_{H} |Q_{H}|$$

Pressure point:

$$\mathbf{H}_{\min} \leq \mathbf{h}_{O} - \boldsymbol{\alpha}_{O} \cdot \mathbf{Q}_{O} \left| \mathbf{Q}_{O} \right| - \boldsymbol{\alpha}_{1} \cdot (\mathbf{Q} - \mathbf{q}_{cr}) \cdot \left| \mathbf{Q} - \mathbf{q}_{cr} \right|$$

Phase II – Junction and pressure point

Pressure point:

$$\mathbf{H}_{\min} \le \mathbf{h}_{O} - \boldsymbol{\alpha}_{O} \cdot \mathbf{Q}_{O} \left| \mathbf{Q}_{O} \right| - \boldsymbol{\alpha}_{1} \cdot (\mathbf{Q} - \mathbf{q}_{cr}) \cdot \left| \mathbf{Q} - \mathbf{q}_{cr} \right| \quad (1)$$

$$\mathbf{H}_{\min} \leq \mathbf{h}_{\mathrm{H}} - \boldsymbol{\alpha}_{\mathrm{H}} \cdot \mathbf{Q}_{\mathrm{H}} \left| \mathbf{Q}_{\mathrm{H}} \right| - \boldsymbol{\alpha}_{1} \cdot (\mathbf{Q} - \mathbf{q}_{\mathrm{cr}}) \cdot \left| \mathbf{Q} - \mathbf{q}_{\mathrm{cr}} \right| \quad (2)$$

- Water value 66 NOK/MWh.
- Minimum pressure height 479 m.
- Installed capacity 960 MW (4x160MW + 1x320MW)

- Water value 66 NOK/MWh.
- Minimum pressure height 479 m.
- Installed capacity 960 MW (4x160MW + 1x320MW)

Test results Case II: High production

- Water value **20** NOK/MWh.
- Minimum pressure height 479 m.
- Installed capacity 960 MW (4x160MW + 1x320MW)

Test results Case II: High production

Test results Case II: High production

Case III: Minimum pressure below junction

- Water value 27.34 NOK/MWh in all the three reservoirs.
- Minimum pressure height **471** m.
- Installed capacity 960 MW (4x160MW + 1x320MW)

Case III: Minimum pressure below junction

Case III: Minimum pressure below junction

Summary

We presented a model with which one is able to calculate an optimal short-term production plan for minimum pressure restriction above a plant.

Future work: Optimizing balancing power under minimum restriction.

Technology for a better society

