

Medium-term planning for an Alpine hydro storage power system in a market environment using the QUASAR stochastic optimizer

<u>Andreas Eichhorn</u>, VERBUND Trading GmbH, Vienna, Austria Nils Löhndorf, Vienna University of Economics and Business, Austria

Workshop on Hydro Scheduling, Trondheim, 17/09/2015

© VERBUND AG, www.verbund.com

The Company

VERBUND at a glance

95% production from renewable energy sources

approximately 3,000 employees

127 hydropower plants

Austria's leading electricity company

Strategic focus on

Austria an Germany epublic of Austria Largest hydropower producer in Bavaria

more than 300.000 residential customers – market leader in the industrial customer segment

No. 1 in fighting climate change among European powersupply companies

first green bond in German speaking Europe

51 % owned by the Republic of Austria

Austria-wide charging

infrastructure for electric vehicles

234 apprentices trained since 2009

Energy related products and services

Social responsibility: €1.3 million support for "VERBUND-Stromhilfefonds" of Caritas since 2009

Environmental management – top-10position of 160 energy companies analyzed by oekom research

Environmental measures -

€186 million investment in fishways so far

The Shares

Market Capitalisation (mio. €)

Shareholders' Structure

VERBUND Strategy: Profitable Growth through EcoExcellence

* Based on the current risk profile

Highlights

- Market capitalization ~ 5.3 billion Euro
- 151 power plants (incl. subscription rights) capacity of ~ 9,700 MW
- ~ 34 billion kWh total production (2014)
- ~ 870 million Euro investments 2015 1017, especially in Austria and Germany (power grid and efficiency enhancement of existing hydropower plants)
- 119,9 TWh sales volume in 2014, active in 12 European countries
- ~ 9.5 TWh to consumers (industry and households), currently approx. 322,000 household customers in Austria (~7 % market share) and 20 % market share industrial customers
- ~ 3,500 km of line length of the Austrian transmission grid
- Innovation leader for electricity: e-mobility, energy management

Key Figures

Generation from renewable hydropower

- 127 hydropower plants
- 91 % capacity from hydropower plants (7,700 MW)
- global reputation as hydropower specialist with long-term experience in planning, constructing and operating hydropower plants
- high environmental standards, high social and cultural responsibility - the sustainable rating agency oekom research lists VERBUND as a "prime investment".
- 30 % of the hydropower plant sites have been nominated nature conservation areas following construction of the power plant.

Germany

- largest electricity market in Europe and VERBUND's most important market outside Austria
- 21 wind power stations with 86 MW in Rhineland-Palatinate
- 2 sales offices in Munich and Düsseldorf catering to industry-customers and distributors in Germany
- AQUANTO joint venture of VERBUND and EnBW for distributing green electricity products and energy services

Europe

Romania

- Casimcea wind farm on the Black Sea coast
- total capacity of 226 MW

Albania

- 53 MW run-of-river power plant in Ashta -
- world largest power plant to feature matrix technology
- 50:50 joint venture of VERBUND and EVN

Hydropower plants: Construction and Efficiency Measures

- Modernization of its existing hydropower plants to increase their efficiency
- pumped storage power plant Reisseck II to be finished in 2015 430 MW, increase of capacity by ~ 40 %
- Modernization of Ybbs-Persenbeug, the oldest power plant along the Danube additional energy for 17.000 households
- Modernization of Töging Hydropower Plant in Bavaria
- continuing approval procedures for "Energiespeicher Riedl" (pumped storage power plant along the Danube river in Bavaria)

Environmental Measures

total investment in 2014: 47,2 million Euro

- improvement of continuity of water bodies
- improvement of fish habitats

LIFE+ Traisen:

- Austria's largest restoration project ever
- Redesign of the Traisen estuary at Altenwörth Power Plant
- 11 km new wetland area

"Fish Snail" Retznei

- Innovative fish ladder for smaller power plants
- Austrian Patent
- Cost-effective and environmentally friendly

Wind power complements hydropower

Austria

- 37 wind power stations in Bruck / Leitha, Petronell-Carnuntum and Hollern
- total capacity of 85 MW
- Wind farm Bruck-Göttlesbrunn with 21 MW will be finished by 2015

Romania

- Casimcea windpark with 88 stations
- total capacity of 226 MW

Germany

- 21 wind power stations in Rhineland-Palatinate
- total capacity of 86 MW

Trading and Retail

- VERBUND is one of Europe's most successful electricity traders in Austria and Europe
- Market Leader B2B in Austria and Germany (Big Businesses and Utilities).
- VERBUND's own electricity is marketed via stock exchanges, as well as directly to re-distributors and key accounts.
- Trade activities in more than 120 TWh of electric energy in 2014 in 12 European countries
- ~ 56 % of the electricity sales take place in Austria Germany is the second largest market for VERBUND
- Innovative Services and Solutions complete the VERBUND portfolio

Hydro Storage Power Plants

Hydro Power Plants in Austria and Germany

High mountains hydro power plants with big reservoirs (yearly storages)

coupeled with smaller ones (weekly- / daily storages)

and run-of-river plants \downarrow

Power plants in Austria and Germany

Storage Power plants in Austria: Group Zemm/Ziller (Tyrol)

Storage Power plants in Austria: Group Malta/Reißeck (Carinthia)

Storage Power plants in Austria: Kaprun/Schwarzach (Salzburg)

Yearly Cycle of a Typical VERBUND Mountain Hydro Reservoir

 \rightarrow Seasonal inflow has to be distributed optimally over the year (plus: decide when to pump) subject to volume restrictions

© VERBUND AG, www.verbund.com

Electricity Market Environment

Market Characteristics in Austria & Germany

Day-ahead spot market (auction) is a liquid market \rightarrow most important market

- → Almost no volume risk, all positions (sales, Forwards) can be cleared here; netting with physical production
- → Physical production is scheduled *independently* of
 - sales positions
 - hedging / Forwards position
- \rightarrow Physical production is mainly driven by day-ahead spot prices

Intra-day market (continuous trading) is less liquid, much more volatile

 \rightarrow further opportunities for flexible plants / storages

Control reserve / ancillary service market: week-ahead auction, pay-as-bid

 \rightarrow further opportunities for flexible plants / storages

Market Characteristics in Austria & Germany

© VERBUND AG, www.verbund.com

Optimization Models for Planning, Scheduleing, Dispatch

Hourly time discretization (imposed by the market):

Most commercially available optimization software tools:

- Input: one (deterministic) scenario (hourly power price forecast, inflows, renewable generation ...)
- Output: one schedule for each turbine, reservoir ...
- Optionally: run several deterministic decisions
- Perfect foresight, non-robust decisions
- In practice: situation and input data change very rapidly (renewable production, intra-day prices, ancillary services / reserve calls, ...)
- Decisions to take? Auctions?

Weekly Market Decision Structure in Austria

Optimization in Practice: Short-term vs. Medium-term

Medium-term Modelling with Stochastic Optimization / ADDP / SDDP

Major Challenges in Medium-term Optimization

in a market environment from a practical point of view: 1000s of details \rightarrow

- Complexity of technical modeling (e.g. non-convexities @hydro storage plants)
- Long planning horizons (required for yearly storages) in hourly discretization (required because of small storages)
- Linking of storage power plants by
 - hydrological coupling
 - control reserve constraints (no separation of problem possible)
- **Uncertainty** of future input data (inflows, power prices, ...)
- Market Structures:
 - several markets (Forwards, ancillary services / reserve, day-ahead spot, intra-day, ...)
 - sequences of auctions + continuous trading
 - rapidly changing market environments \rightarrow short data history for calibration of statist. models
 - game theoretic aspects

Stochastic Optimization

Optimization textbooks \rightarrow *Multistage Stochastic Programming*:

- Data that is uncertain now can be observed in the future
- Statistical information about this data is available now
- \rightarrow Matches very well the market decision structures

Multi-Stage Stochastic Optimization

Abstracts standard formulation with stochastic process [data_t := c_t, A_{t0}, A_{t1}, b_t] (t=1,...,T):

Multi-Stage Stochastic Optimization

Abstracts standard formulation with stochastic process [data_t := c_t, A_{t0}, A_{t1}, b_t] (t=1,...,T):

© VERBUND AG, www.verbund.com

ADDP/SDDP (Approximate / Stochastic Dual Dynamic Programming)

[Pereira & Pinto 1991], [Löhndorf, Wozabal, Minner 2013] based on recursive formulation + *Markov property*:

$$C_{t}(x_{t-1}, \text{data}_{1,\dots,t-1}) = \mathbf{E}_{\text{data}_{t} | \text{data}_{1,\dots,t-1}} \left[\min \left\{ c_{t}' x_{t} + C_{t+1}(x_{t}, \text{data}_{1,\dots,t}) \middle| \begin{array}{c} x_{t} \in \mathbb{R}^{n_{t}} \\ A_{t,0} x_{t} + A_{t,1} x_{t-1} \ge b_{t} \end{array} \right\} \right]$$

Piecwise linear

True C_t

03.09.2015

Storage Content

36

understimator

 The *Future Cost Functions* C_t are monotonically decreasing and convex w.r.t. storage contets and inflow.

- Idea: Iterative approximation of C_t from below by (multi-dimensional) *cutting planes* (cuts) calculated from (dual) shadow prices of balance eq.
- Cuts will be calculated only at certain presumptively relevant x positions (determined by simulation runs)
- Stochasticity of power prices not via cuts, but via ordinary (primal) Stoch. Dynamic Programming

© VERBUND AG, www.verbund.com

ADDP/SDDP (Approximate / Stochastic Dual Dynamic Programming)

Algorithm:

- Fix a *recombining scenario tree / lattice* (carrying inflows and prices) together with some sample paths
- Iterate n=1,2,3,...
 - "Forward Pass" (simulation based on existing cuts) along the sample paths, determine x-position for new cuts

- "Backward Pass" allong all nodes:
 - determine y-position and slope (=shadow price) for new cuts
 - Add new cuts to the list
- Eliminate superflowus cuts

ADDP/SDDP (Approximate / Stochastic Dual Dynamic Programming)

- "Forward Pass" bzw. "Backward Pass" yield upper and lower bounds, resp.;
- bounds converge in practice:

Medium-Term Stochastic Optimization

- Short-term optimization has to be anticipated (consistency!)
- Strong simplifications necessary (LP, Markov, ...)
- Stochastic Programming is attractive here to anticipate
 - short-term uncertainty
 - different medium-term trends (oil price, economic trends, wet vs. dry years, ...)
 - optional character of storage plants
- Stochastic Programming with non-recombining scenario tree: Limited #branchings! (but sufficient for anticipating different medium-term trends)
- ADDP/SDDP methods with *recombinig scenario trees / lattices* useful in practice

Medium-Term Stochastic Optimization @VERBUND

- ADDP model based on the QUASAR Java API by <u>Quantego.com</u> (Löhndorf)
- horizon: 1 up to 3 years, hourly discretization
- everything has to be *linear* (i.e., piecewise linear convex)
- 1 power price per hour and scenario (EPEX spot day-ahead)
- control reserve / ancillary services as fixed constraints
- approximate modelling of effect of storages on run-of-river plants and flow times

Stochastic Inflow Model

Cf. presentation of Nils Löhndorf / Quantego

Stochastic Price Model

(alomost the) same model as for the inflows!

Idea:

- 1. Interpret hourly prices as a 24 dimensional daily time series
- 2. Using the same type of model as for inflows, i.e.,
 - Fourier analysis (here for yearly and weekly cycles)
 - PCA of the residuals
 - directly fit a Markov chain to the principle components!
- 3. In addition: *bootstrap* daily patterns from historical data
- 4. Final shift such that for each hour expectation = Price Forward Curve

Input to Stochastic Optimization: Cartesian product of inflow and price model

Stochastic Price Model

Optimization Results

Results Stochastic Medium-term Optimization

Output: Scenarios storage content over 1 year

© VERBUND AG, www.verbund.com

Results Stochastic Medium-term Optimization

Output: Scenarios water values over 1 Jahr

Results Stochastic Medium-term Optimization

Output: Scenarios storage content over 1 year

© VERBUND AG, www.verbund.com

Results Stochastic Medium-term Optimization

Output: Scenarios storage content over 1 year

© VERBUND AG, www.verbund.com

Results Stochastic Medium-term Optimization

Output: Scenarios storage content over 2 years

Results Stochastic Medium-term Optimization

Output: Scenarios storage content over 3 years

© VERBUND AG, www.verbund.com

Results Stochastic Medium-term Optimization

Conclusions

Medium-term stochastic optimization in hourly discretization is reasonably possible with Stochastic ADDP / QUASAR by <u>Quantego.com</u>, even for bigger real hydro power systems.

Outlook:

- More accurate (piecewise linear convex) approximation of nonlinearities of power plants
- More accurate (piecewise linear convex) modelling of spinning reserve
- Explicit modelling of day-ahead auction and intra-day prices:

