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Stochastic Dynamic Optimization

= Dynamic decision problem with T time stages
€= (&,...,67) with &(w) € R™ and € = (£1,...,&)

x = (r1,...,27) decisions with z* = (z1,...,7¢) and z; € X;

x; measurable w.r.t. o(&%)

= Model formulation using value / cost-to-go functions

VT(xT_lagT) — wglea§T RT($T7£T)

‘/t(xt_l,ft) = mélé}é Rt(xt,ﬁt) ‘|—E [%+1($t,€t+1)|§t] . Vt: 1 S t<T

= Numerical solution
Integrals E |Viq1(zt, £411)|¢¢] have to be calculated
Discretization of ¢ required for numerical solutions
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From Trees to Lattices

Scenario Generation for Stochastic Optimization

Scenario Tree
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State-time-history graph with State-time graph with
63 nodes and 32 scenarios 21 nodes and 720 scenarios
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Scenario Lattices

A Compressed Scenario Representation

= |attices carry no information
about the history of the

process

Scenario Lattice

= Suitable for Markov processes
where

P(&1 € AlEY) = P(&t41 € Aly)

= Covers all state space type
stochastic models:
= Autoregressive models

= Dynamic factor models
= Exponential smoothing
= Hidden Markov models
= Stochastic volatility models
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Stochastic Optimization on Lattices

From optimal decisions to value functions

Decisions dependent on path leading to node n
Ln = $n($n_1>§t)

Past decisions aggregate into a resource state (inventory, reservoir, ...)
Se(r1,&1, -, xe—1,6—1) = Se(St—1, Te—1,&-1)

Decisions are based on current state of the ‘world’
T(T1,815 -5 Te—1,8-1,&) = T¢(St, &)

Markov Decision Process (MDP) if the random process is memoryless
and the value depends only on the current state

E [%(xt_laftﬂft_l] = E [V2(St, &) [&¢—1]
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Approximate Dual Dynamic Programming “U

A solution strategy using scenario lattices FRIE:

1. Construct a scenario lattice from a stochastic process

2. Find an approximate value function for each node

Each node of the lattice holds Approximate the value function as
a value function minimum of a set of hyperplanes

True Value Function
:\
Hyperplane at S*
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= Parametric approach
1. Estimate a Markovian time series process
2. Reduce the continuous Markovian process to a lattice
3. Determine an optimal policy using ADDP
4. Evaluate the policy on the original time series model

= Data-driven approach
1. Estimate a lattice directly from data
2. Determine an optimal policy using ADDP

Skip scenario reduction
_|_
No policy validation needed
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Multivariate Time Series Models

= Time series models with many variables
= Vector autoregressive (VAR) models
= Vector error correction (VEC) models
= Multifactor models of state space type

= Dynamic factor model
= Markovian time series model
= Observations as linear combination of a few hidden factors
= Less parameters through dimensionality reduction
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Dynamic Factor Model

t: time index

F.:  vector of factors

A: transition matrix

Xi: vector of observations

V: dynamic factor loadings

B: parameter matrix of exogenous predictors
Z.: exogenous predictors

U, V,: error term

Fy=AF 1+
Xt — VFt + BZt -+ Uy
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Dynamic Factor Lattice

= Building blocks
= Represent factor space by set of discrete factors F

= Replace linear state transition equation with
transition matrices P,(F;|F;_1)

= | earning a lattice from data
1. Choose optimal quantizers of the data at stage t

2. Count transitions between observations in the
neighborhood of quantizers at successive stages

3. We use a moving time window of 30 days of observed
transitions to obtain a large enough sample
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Verbund Case Study

= Inflow data
= Historical data from 1990 to 2012
= Daily incremental inflows of 50 rivers

= Verbund hydropower plants in Austria
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Methodology

1. Transformation
= Negative inflows prohibit Box-Cox transformation
= Inverse hyperbolic sine transformation

2. Time series regression
= Seasonal component as Fourier series
= Model selection using BIC

3. Missing values
= Singular value decomposition
= Threshold value selected via cross-validation

4. Dynamic Factor Model
= Static approach using PCA
= 3 factors capture 75% of the variance

5. Lattice
= 50 states + 364 transition matrices
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Danube (data)

Original vs Reduced Time Series
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East Alpine (data)
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Original vs Simulated Time Series

Danube (data) . o } . . East Alpine (data)

Danube (lattice) , o : , - East Alpine (lattice)




Data - Factors - Lattice e
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Original East Alpine (1) . ) . Reduced East Alpine (1) . ) ~ Lattice East Alpine (1)

" ; ; ; ; - - :IMM .: :Im
Original East Alpine (2) . } . Reduced East Alpine (2) . } . Lattice East Alpine (2)

Ofigina:zl Eas:t Alp:ine (:3) Re:duce:d Ea:st Alg:)ine (3) L;'atticé Eas:t Alpine (:-:3)

Oi’iginz:al Eas:t Alp:ine (:4) Re:duce:d Ea:st Al;:)ine (4) L:atticé Eas:t Alpine (4)
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IRTSCHAFTS

Kernel Density Estimation “U
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Mean daily inflows
East Alpine (1) _

East Alpine (2) East Alpine (3) East Alpine (4)
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Mean annual inflows
East Alpine (1)

 East Alpine (2)

East Alpine (3)

_ k . EastAlpine(4) =~ EastAlpine(5)

— original data
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Conclusion

= Results

= A small number of discrete states is sufficient to explain a
high-dimensional inflow process.

= Factors achieve longitudinal smoothing which helps to
extract long-range information

= OQutlook

= Semi-parametric extensions to overcome sparse state
transition samples

= Future Work
= How do we measure the goodness of fit of a lattice?
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Quantego QUASAR
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