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Stochastic Dynamic Optimization 

§  Dynamic decision problem with T time stages 

§  Model formulation using value / cost-to-go functions 

§  Numerical solution 
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From Trees to Lattices 
Scenario Generation for Stochastic Optimization 
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Scenario Tree  Scenario Lattice  

State-time-history graph with 
63 nodes and 32 scenarios 

State-time graph with 
21 nodes and 720 scenarios 



Scenario Lattices 
A Compressed Scenario Representation 

§  Lattices carry no information 
about the history of the 
process 

§  Suitable for Markov processes 
where 

§  Covers all state space type 
stochastic models: 
§  Autoregressive models 
§  Dynamic factor models 
§  Exponential smoothing 
§  Hidden Markov models 
§  Stochastic volatility models 
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Scenario Lattice  
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Stochastic Optimization on Lattices 
From optimal decisions to value functions 

§  Decisions dependent on path leading to node n 

§  Past decisions aggregate into a resource state (inventory, reservoir, …) 

§  Decisions are based on current state of the ‘world’ 

§  Markov Decision Process (MDP) if the random process is memoryless 
and the value depends only on the current state 
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Approximate Dual Dynamic Programming 
A solution strategy using scenario lattices 

Each node of the lattice holds 
a value function 
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V(S,ξ) 

S 

True Value Function 

Hyperplane at S*
  

S* 

Approximate the value function as 
minimum of a set of hyperplanes 

1.  Construct a scenario lattice from a stochastic process 

2.  Find an approximate value function for each node 



How Do We Fit a Lattice From Data? 

§  Parametric approach 
1.  Estimate a Markovian time series process 
2.  Reduce the continuous Markovian process to a lattice 
3.  Determine an optimal policy using ADDP 
4.  Evaluate the policy on the original time series model 

§  Data-driven approach 
1.  Estimate a lattice directly from data 
2.  Determine an optimal policy using ADDP 

Skip scenario reduction  
+  

No policy validation needed 
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Multivariate Time Series Models 

§  Time series models with many variables 
§  Vector autoregressive (VAR) models 
§  Vector error correction (VEC) models  
§  Multifactor models of state space type 

§  Dynamic factor model 
§  Markovian time series model 
§  Observations as linear combination of a few hidden factors 
§  Less parameters through dimensionality reduction 
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Dynamic Factor Model 

t:  time index 
Ft:  vector of factors 
A:  transition matrix 
Xt:  vector of observations 
V:  dynamic factor loadings 
B:  parameter matrix of exogenous predictors 
Zt:  exogenous predictors 
ut,vt: error term 
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Ft = AFt�1 + ut

Xt = V Ft +BZt + vt



Dynamic Factor Lattice 

§  Building blocks 
§  Represent factor space by set of discrete factors 
§  Replace linear state transition equation with 

transition matrices 

§  Learning a lattice from data 
1.  Choose optimal quantizers of the data at stage t 
2.  Count transitions between observations in the 

neighborhood of quantizers at successive stages 
3.  We use a moving time window of 30 days of observed 

transitions to obtain a large enough sample 
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Source: verbund.com 

Verbund Case Study 

§  Inflow data 
§  Historical data from 1990 to 2012 
§  Daily incremental inflows of 50 rivers 

§  Verbund hydropower plants in Austria 
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Methodology 

1.  Transformation 
§  Negative inflows prohibit Box-Cox transformation 
§  Inverse hyperbolic sine transformation 

2.  Time series regression 
§  Seasonal component as Fourier series 
§  Model selection using BIC 

3.  Missing values 
§  Singular value decomposition 
§  Threshold value selected via cross-validation 

4.  Dynamic Factor Model 
§  Static approach using PCA 
§  3 factors capture 75% of the variance 

5.  Lattice 
§  50 states + 364 transition matrices 
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Original vs Reduced Time Series 
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Original vs Simulated Time Series 
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Data à Factors à Lattice 



Kernel Density Estimation 
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Mean daily inflows 

Mean annual inflows 

– original data     – lattice simulation 



Conclusion 

§  Results 
§  A small number of discrete states is sufficient to explain a 

high-dimensional inflow process. 
§  Factors achieve longitudinal smoothing which helps to 

extract long-range information 

§  Outlook 
§  Semi-parametric extensions to overcome sparse state 

transition samples 

§  Future Work 
§  How do we measure the goodness of fit of a lattice? 
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Quantego QUASAR 
A general-purpose stochastic optimizer 


