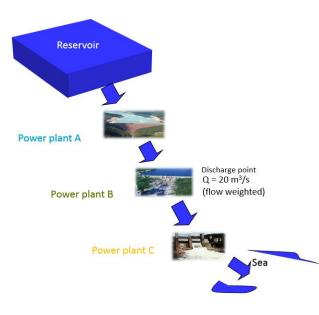


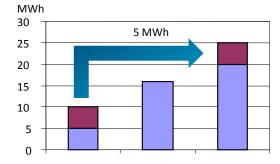
Power swaps in Hydro Ulf Brännlund T

Helping utilities work smarter

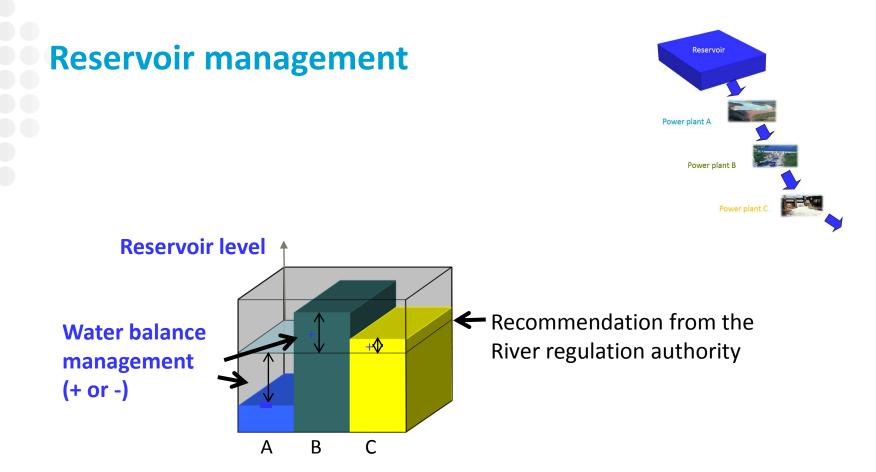
Powel Optimal Hydro

- Previously known as Hotshot
- An optimization model for short term hydro-electric production planning
- Similar to Sintef's Shop
 - Different way to handle head dependency of production
 - Different way to solve large problems (LP + DynP)
- Uses Cplex to solve LP/MIP




- Swedish way to handle rivers with mixed ownership. ("Kraftbyten")
- Purpose: Each producer should be able to plan its production as if it was alone in the river.
- How:
 - Each producer bids for discharge.
 - Common authority adjust bids.
 - Compensation is made through *physical* power.
 - Authority keeps track of each producer's water balance.

Power swaps



	А	В	С	Total
Equivalent (MW/(m3/s))	0,5	0,8	1	2,3
Nominated discharge (m3/s)	10	20	25	
Nominated prod (MW)	5	16	25	46
Weighted flow				20
Actual production (MW)	10	16	20	46
Power swap	-5	0	5	0

Power plant A Power plant B Power plant C

Nominations

- One point in the river called "Release point" (*Swedish: Tappningspunkt*)
 - Total flow from one reservoir
- The nominations are typically for 6, 8 or 24 hours averages.
- The nomination can be made before and after spot trade
- The river regulation authority takes in all the nominations and calculate "adjusted release".

Issues with optimizer

- Should make the planning simpler *but* user's of Shop face:
 - After adjustment: Constraint on "average discharge".
 - Before nomination: My and the other's decisions on discharge levels introduce new constraints on the average discharge.
 - What discharge should I wish for?
 - What will the effect be on the power swap?
 - How does this effect my plan/spot bid?

- Each time period for nomination is denoted by t
- T(t) is the set of "hours" that belong to t

Introduce variables for nominations and adjusted release:

 q_t^N and q_t^A

Actual flow in release point. Also to be determined by optimizer.

The adjusted release need to be kept by the short term optimizer:

$$q_t^A = \sum_{\tau \in T(t)} q_{\tau} / |T(t)|$$

 e^{M} = My equivalent e^{O} = Other's equivalent q_{t}^{O} = Other's nomination

$$\frac{(e^{M}q_{t}^{N}+e^{O}q_{t}^{O})}{(e^{M}+e^{O})}=q_{t}^{A}$$

 q_t^O is educated guess, or given by previous nominations and adjusted release:

$$q_t^O = (q_t^{APrev} (e^M + e^O) - e^M q_t^{NPrev})/e^O$$

Power swap

$$p_t = e^M (q_t^N - q_t^A)$$

$p_t > 0$ means we receive power $p_t < 0$ means we give away power

 p_t accounted for in balance for all hours $\tau \in T(t)$.

Cost for nomination

- Two choices
 - The nomination is accounted for in "artificial reservoir" using normal water value evaluation.
 - Cost of water.

In the objective you are charged a cost for requesting more than the adjusted release: $c_t(q_t^N - q_t^A)$.

All relations are linear!

•
$$q_t^A = (\sum_{\tau \in T(t)} q_\tau) / |T(t)|$$

•
$$\frac{(e^Mq_t^N + e^Oq_t^O)}{(e^M + e^O)} = q_t^A$$

•
$$p_t = e^M (q_t^N - q_t^A)$$

No problem for optimizer!

Spill

If my nomination causes spill then my equivalent is reduced:

$$p_t = \begin{cases} e^M (q_t^N - q_t^A) \text{ if } q_t^A \leq q_t^{Ref} \\ e^M (q_t^N - q_t^A) - e^{Loss} \left(q_t^A - q_t^{Ref} \right) \text{ if } q_t^A \geq q_t^{Ref} \end{cases}$$

q_t^{Ref} is called spill reference (parameter)
Power swap may be accounted for at other time periods

Implementation in Powel Optimal Hydro

- Setup in Sim
- A reservoir is assigned to be release point.
- All parameters e^M, e^O, e^{Loss}, c, q^{Ref}, q^M_{min}, q^M_{max},... are (breakpoint) time series associated with release point (reservoir).
- A special time series called "Power Swap flag" determines the discretization.
- Results (nomination, adjusted release and power swap) are available as time series on the reservoir.

Summary

- Optimize your power swap nomination together with normal production planning.
- Optimal Hydro calculates optimal nomination, adjusted release and the power swap.
- Power swap accounted for in balance and priced accordingly.
- Flexible implementation.
- Also available in Powel Optimal SpotBid.

