
Knut-Andreas Lie

An Introduction to Reservoir
Simulation Using MATLAB

User Guide for the Matlab Reservoir Simulation

Toolbox (MRST)

December 13, 2016

SINTEF ICT, Departement of Applied Mathematics
Oslo, Norway

Page: 1 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 2 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Petroleum production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Reservoir simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Outline of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 The first encounter with MRST . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Part I Geological Models and Grids

2 Modelling Reservoir Rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Formation of sedimentary rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Creation of crude oil and natural gas . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Multiscale modelling of permeable rocks . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Macroscopic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Representative elementary volumes . . . . . . . . . . . . . . . . . . 32
2.3.3 Microscopic models: The pore scale . . . . . . . . . . . . . . . . . . 33
2.3.4 Mesoscopic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Modelling rock properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Other parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Property modelling in MRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 Homogeneous models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Random and lognormal models . . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 10th SPE Comparative Solution Project: Model 2 . . . . . . 44
2.5.4 The Johansen Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5.5 SAIGUP: shallow-marine reservoirs . . . . . . . . . . . . . . . . . . 48

3 Grids in Subsurface Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Structured grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Unstructured grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Page: V job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



VI Contents

3.2.1 Delaunay tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Voronoi diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Other types of tessellations . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.4 Using an external mesh generator . . . . . . . . . . . . . . . . . . . 75

3.3 Stratigraphic grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 Corner-point grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.2 2.5D unstructured grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Grid structure in MRST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5 Examples of more complex grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Part II Single-Phase Flow

4 Mathematical Models and Basic Discretizations . . . . . . . . . . . 115
4.1 Fundamental concept: Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2 General flow equations for single-phase flow . . . . . . . . . . . . . . . . . 117
4.3 Auxiliary conditions and equations . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.1 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . 122
4.3.2 Injection and production wells . . . . . . . . . . . . . . . . . . . . . . 123
4.3.3 Field lines and time-of-flight . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.4 Tracers and volume partitions . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Basic finite-volume discretizations . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.4.1 Two-point flux-approximation . . . . . . . . . . . . . . . . . . . . . . . 131
4.4.2 Discrete div and grad operators . . . . . . . . . . . . . . . . . . . . 135
4.4.3 Time-of-flight and tracer . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Incompressible Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Basic data structures in a simulation model . . . . . . . . . . . . . . . . . 144

5.1.1 Fluid properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2 Reservoir states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.1.3 Fluid sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.1.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.1.5 Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Incompressible two-point pressure solver . . . . . . . . . . . . . . . . . . . . 150
5.3 Upwind solver for time-of-flight and tracer . . . . . . . . . . . . . . . . . . 153
5.4 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4.1 Quarter five-spot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.4.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.4.3 Structured versus unstructured stencils . . . . . . . . . . . . . . . 165
5.4.4 Using Peaceman well models . . . . . . . . . . . . . . . . . . . . . . . . 170

6 Consistent Discretizations on Polyhedral Grids . . . . . . . . . . . . 175
6.1 The mixed finite-element method . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1.1 Continuous formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.1.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Page: VI job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Contents VII

6.1.3 Hybrid formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.2 Consistent methods on mixed hybrid form . . . . . . . . . . . . . . . . . . 185
6.3 The mimetic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.3.1 General family of inner products . . . . . . . . . . . . . . . . . . . . 190
6.3.2 General parametric family . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3.3 Two-point type methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.3.4 Raviart–Thomas type inner product . . . . . . . . . . . . . . . . . 195
6.3.5 Default inner product in MRST . . . . . . . . . . . . . . . . . . . . . 196
6.3.6 Local-flux mimetic method . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3.7 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Single-Phase Flow and Rapid Prototyping . . . . . . . . . . . . . . . . . 201
7.1 Implicit discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2 A simulator based on automatic differentiation . . . . . . . . . . . . . . 203

7.2.1 Model setup and initial state . . . . . . . . . . . . . . . . . . . . . . . . 203
7.2.2 Discrete operators and equations . . . . . . . . . . . . . . . . . . . . 205
7.2.3 Well model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2.4 The simulation loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.3 Pressure-dependent viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.4 Non-Newtonian fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.5 Thermal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Part III Multiphase Flow

8 Mathematical Models for Multiphase Flow . . . . . . . . . . . . . . . . 231
8.1 New physical properties and phenomena . . . . . . . . . . . . . . . . . . . . 232

8.1.1 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.1.2 Wettability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.1.3 Capillary pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.1.4 Relative permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.2 Flow equations for multiphase flow . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2.1 Single-component phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2.2 Multicomponent phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.3 Black-oil models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.3 Model reformulations for immiscible two-phase flow . . . . . . . . . . 248
8.3.1 Pressure formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.3.2 Fractional flow formulation in phase pressure . . . . . . . . . 249
8.3.3 Fractional flow formulation in global pressure . . . . . . . . . 254
8.3.4 Fractional flow formulation in phase potential . . . . . . . . . 255
8.3.5 Richards’ equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

8.4 The Buckley–Leverett theory of 1D displacements . . . . . . . . . . . 258
8.4.1 Horizontal displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.4.2 Gravity segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.4.3 Front tracking: semi-analytical solutions . . . . . . . . . . . . . . 267

Page: VII job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



VIII Contents

9 Discretizing Hyperbolic Transport Equations . . . . . . . . . . . . . . 275
9.1 A new solution concept: entropy-weak solutions . . . . . . . . . . . . . 276
9.2 Conservative finite-volume methods . . . . . . . . . . . . . . . . . . . . . . . . 278
9.3 A few classical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

9.3.1 Centered schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.3.2 Upwind or Godunov schemes . . . . . . . . . . . . . . . . . . . . . . . 282
9.3.3 Comparison of centered and upwind schemes . . . . . . . . . . 283
9.3.4 Implicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

9.4 Convergence of conservative methods . . . . . . . . . . . . . . . . . . . . . . 291
9.5 High-resolution schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

9.5.1 Flux-limiter schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.5.2 Slope-limiter schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
9.5.3 Semi-discrete schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

9.6 Discretization on unstructured polyhedral grids . . . . . . . . . . . . . 302

10 Solvers for Incompressible Immiscible Flow . . . . . . . . . . . . . . . . 305
10.1 Fluid objects for multiphase flow . . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.2 Sequential solution procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

10.2.1 Pressure solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.2.2 Saturation solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

10.3 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
10.3.1 Buckley–Leverett displacement . . . . . . . . . . . . . . . . . . . . . 315
10.3.2 Inverted gravity column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
10.3.3 Homogeneous quarter five-spot . . . . . . . . . . . . . . . . . . . . . . 320
10.3.4 Heterogeneous quarter five-spot: viscous fingering . . . . . 324
10.3.5 Buoyant migration of CO2 in a sloping sandbox . . . . . . . 327
10.3.6 Water coning and gravity override . . . . . . . . . . . . . . . . . . . 330
10.3.7 The effect of capillary forces – capillary fringe . . . . . . . . . 336
10.3.8 Norne: simplified simulation of a real-field model . . . . . . 340

10.4 Numerical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.4.1 Splitting errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.4.2 Grid-orientation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

11 Compressible Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Part IV Reservoir Engineering Workflows

12 Flow Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
12.1 Flow patterns and volumetric connections . . . . . . . . . . . . . . . . . . 360

12.1.1 Volumetric partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
12.1.2 Time-of-flight per tracer region: improved accuracy . . . . 364
12.1.3 Well-allocation factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

12.2 Measures of dynamic heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . 365
12.2.1 Flow and storage capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Page: VIII job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Contents IX

12.2.2 Lorenz coefficient and sweep efficiency . . . . . . . . . . . . . . . 368
12.2.3 Summary of diagnostic curves and measures . . . . . . . . . . 370

12.3 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12.3.1 Tarbert formation: volumetric connections . . . . . . . . . . . . 372
12.3.2 Layers of SPE10: heterogeneity and sweep improvement 376

12.4 Interactive flow diagnostics tools . . . . . . . . . . . . . . . . . . . . . . . . . . 381
12.4.1 Simple 2D example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
12.4.2 SAIGUP: flow patterns and volumetric connections . . . . 388

13 Grid Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.1 Partition vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

13.1.1 Uniform partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
13.1.2 Connected partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
13.1.3 Composite partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

13.2 Coarse grid representation in MRST . . . . . . . . . . . . . . . . . . . . . . . 399
13.2.1 Subdivision of coarse faces . . . . . . . . . . . . . . . . . . . . . . . . . . 400

13.3 Coarsening of realistic reservoir models . . . . . . . . . . . . . . . . . . . . . 403
13.3.1 The Johansen aquifer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
13.3.2 The SAIGUP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

13.4 General advice and simple guidelines . . . . . . . . . . . . . . . . . . . . . . . 410

14 Upscaling Petrophysical Properties . . . . . . . . . . . . . . . . . . . . . . . . 413
14.1 Upscaling for reservoir simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 415
14.2 Upscaling additive properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
14.3 Upscaling absolute permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

14.3.1 Averaging methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
14.3.2 Flow-based upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

14.4 Upscaling transmissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
14.5 Global and local-global upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . 434
14.6 Upscaling examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

14.6.1 Flow diagnostics quality measure . . . . . . . . . . . . . . . . . . . . 437
14.6.2 Model with two rock types . . . . . . . . . . . . . . . . . . . . . . . . . 438
14.6.3 SPE10 with six wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
14.6.4 General advice and simple guidelines . . . . . . . . . . . . . . . . . 445

A The MATLAB Reservoir Simulation Toolbox . . . . . . . . . . . . . . 447
A.1 Getting started with the software . . . . . . . . . . . . . . . . . . . . . . . . . . 448

A.1.1 Core functionality and add-on modules . . . . . . . . . . . . . . . 448
A.1.2 Downloading and installing . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.1.3 Exploring the functionality and getting help . . . . . . . . . . 452
A.1.4 Release policy and version numbers . . . . . . . . . . . . . . . . . . 455
A.1.5 Software requirements and backward compatibility . . . . 456
A.1.6 Terms of usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

A.2 Public data sets and test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
A.3 More about modules and advanced functionality . . . . . . . . . . . . . 460

Page: IX job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



X Contents

A.3.1 Operating the module system . . . . . . . . . . . . . . . . . . . . . . . 460
A.3.2 What characterizes a module? . . . . . . . . . . . . . . . . . . . . . . 461
A.3.3 List of modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

A.4 Rapid prototyping using MATLAB and MRST . . . . . . . . . . . . . . 469
A.5 Automatic differentiation in MRST . . . . . . . . . . . . . . . . . . . . . . . . 472

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Page: X job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Preface

There are many books that describe mathematical models for flow in porous
media and present numerical methods that can be used to discretize and solve
the corresponding systems of partial differential equations; a comprehensive
list can be found in the bibliography. However, neither of these books fully
describe how you should implement these models and numerical methods to
form a robust and efficient simulator. Some books may present algorithms and
data structures, but most leave it up to you to figure out all the nitty-gritty
details you need to get your implementation up and running. Likewise, you
may read papers that present models or computational methods that may be
exactly what you need for your work. After the first enthusiasm, however, you
very often end up quite disappointed, or at least, I do when I realize that
the authors have not presented all the details of their model, or that it will
probably take me months to get my own implementation working.

In this book, I try to be a bit different and give a reasonably self-contained
introduction to the simulation of flow and transport in porous media that
also discusses how to implement the models and algorithms in a robust and
efficient manner. In the presentation, I have tried to let the discussion of
models and numerical methods go hand in hand with numerical examples
that come fully equipped with codes and data, so that you can rerun and
reproduce the results by yourself and use them as a starting point for your
own research and experiments. All examples in the book are based on the
Matlab Reservoir Simulation Toolbox (MRST), which has been developed
by my group and published online as free open-source code under the GNU
General Public License since 2009.

The book can alternatively be seen as a comprehensive user-guide to
MRST. Over the years, MRST has become surprisingly popular (the latest
releases typically have a few thousand unique downloads each) and has ex-
panded rapidly with new features. Unfortunately, the manuscript has not been
able to keep pace. The current version is up-to-date with respect to the latest
development in data structures and syntax, includes material on single-phase
and two-phase incompressible flow, and discusses workflow tools like upscaling

Page: 1 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2 Preface

and flow diagnostics. Simulation of compressible, three-phase flow is not yet
discussed, but I try to add more material whenever I have time or inspiration,
and the manuscript will hopefully be expanded to cover industry-standard
black-oil simulations in the not too distant future.

I would like to thank my current and former colleagues at SINTEF
with whom I have collaborated over many year to develop MRST; primar-
ily B̊ard Skaflestad, Halvor Møll Nilsen, Jostein R. Natvig, Odd Andersen,
Olav Møyner, Stein Krogstad, and Xavier Raynaud. The chapter on flow di-
agnostics is the result of many discussions with Brad Mallison from Chevron.
I am also grateful to the University of Bergen and the Norwegian Univer-
sity of Science and Technology for funding through my Professor II positions.
Victor Calo and Yalchin Efendiev invited me to KAUST, where important
parts of the chapters on grids and petrophysics were written. Likewise, Mar-
got Gerritsen invited me to Stanford and gave me the opportunity to develop
Jolts videos that complement the material in the book. Last, but not least,
I would like to thank colleagues and students who have given suggestions,
pointed out errors and misprints, and given me inspiration to continue work-
ing. Even though your name is not mentioned here, I have not forgotten all
your important contributions.

Finally to the reader: I hereby grant you permission to use the manuscript
and the accompanying example scripts for your own educational purpose,
but please do not reuse or redistribute this material as a whole, or in parts,
without explicit permission. Moreover, notice that the current manuscript is
a snapshot of work in progress and is not complete. Some of the chapters have
been excluded on purpose since I am in negotiations with potential publishers.
Every now and then you may encounter some text that has been marked in
dark red color to indicate that it needs editing. The text will likely contain a
number of misprints and errors, and I would be grateful if you help to improve
the manuscript by sending me an email. Suggestions for other improvement
are also much welcome.

Oslo, Knut-Andreas Lie
December 13, 2016 Knut-Andreas.Lie@sintef.no

Page: 2 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1

Introduction

Modelling of flow processes in the subsurface is important for many applica-
tions. In fact, subsurface flow phenomena cover some of the most important
technological challenges of our time. The road toward sustainable use and
management of the earth’s groundwater reserves necessarily involves mod-
elling of groundwater hydrological systems. In particular, modelling is used
to acquire general knowledge of groundwater basins, quantify limits of sus-
tainable use, monitor transport of pollutants in the subsurface, and appraise
schemes for groundwater remediation.

A perhaps equally important problem is how to reduce emission of green-
house gases, such as CO2, into the atmosphere. Carbon sequestration in
porous media has been suggested as a possible means. The primary concern
related to storage of CO2 in subsurface rock formations is how fast the stored
CO2 will escape back to the atmosphere. Repositories do not need to store
CO2 forever, just long enough to allow the natural carbon cycle to reduce the
atmospheric CO2 to near pre-industrial level. Nevertheless, making a quali-
fied estimate of the leakage rates from potential CO2 storage facilities is a
nontrivial task, and demands interdisciplinary research and software based on
state-of-the-art numerical methods for modelling subsurface flow. Other ques-
tions of concern is whether the stored CO2 will leak into fresh-water aquifers
or migrate to habitated or different legislative areas.

A third challenge is petroleum production. The civilized world will very
likely continue to depend on the utilization of petroleum resources both as an
energy carrier and as a raw material for consumer products in the foreseeable
future. In recent years, conventional petroleum production has declined and
the rate of new major discoveries has been significantly reduced: Optimal
utilization of current fields and new discoveries is therefore of utter importance
to meet the demands for petroleum and lessen the pressure on exploration in
vulnerable areas like in the arctic regions. Likewise, there is a strong need to
understand how unconventional petroleum resources can be produced in an
economic way that minimizes the harm to the environment.

Page: 3 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4 1 Introduction

Reliable computer modeling of subsurface flow is much needed to overcome
these three challenges, but is also needed to exploit deep geothermal energy,
ensure safe storage of nuclear waster, improve remediation technologies to
remove contaminants from the subsurface, etc. Indeed, the need for tools that
help us understand flow processes in the subsurface is probably greater than
ever, and increasing. More than fifty years of prior research in this area has
led to some degree of agreement in terms of how subsurface flow processes
can be modelled adequately with numerical simulation technology. Herein, we
will mainly focus on modelling flow in oil and gas reservoirs, which is often
referred to as reservoir simulation. However, the general modelling framework
and the numerical methods that are discussed also apply to modelling other
types of flow in consolidated and saturated porous media.

In the book, we will introduce and discuss basic physical properties and
mathematical models that are used to represent porous rocks and describe
flow processes on a macroscopic scale. The presentation will focus primarily
on physical processes that take place during hydrocarbon production. What
this means is that even though the mathematical models, numerical methods,
and software implementations presented can be applied to any of the appli-
cations outlined above, the specific examples use vocabulary, physical scales,
and balances of driving forces that are specific to petroleum production. As
an example of vocabulary, we can consider the ability of a porous medium
to transmit fluids. In petroleum engineering this is typically given in terms
of the ’permeability’, which is a pure rock property, whereas one in water
resource engineering is more concerned with the ’hydraulic conductivity’ that
also takes the viscosity and density of the fluid into account; in CO2 seques-
tration you can see both quantities used. As an example of physical scales,
let us compare oil production by water flooding and the question of long-
term geological storage of CO2. The hydrocarbons that make up petroleum
resources can only accumulate when their natural upward movement relative
to water is prevented by confinements in the overlying rocks, and hence the
fluid flow in a petroleum reservoir takes place in a relatively closed system.
Hydrocarbons will typically be produced for tens of years, during which the
main driving mechanism is viscous forces induced by the pressure difference
between the points where water is injected and oil is produced, which cause
water to displace oil over distances of hundred to thousands of meters. Huge
aquifer systems that stretch out for hundreds of kilometers are currently the
most promising candidates for large-scale geological storage. During the in-
jection phase, the flow processes of CO2 storage are almost identical to those
of petroleum production, albeit the operational constraints may differ, but as
the CO2 moves into the aquifer and the effects of the injection pressure ceases,
the fluid movement will be dominated by buoyant forces that will cause the
lighter CO2 phase to migrate upward in the open aquifer system, and poten-
tially continue to do so for thousands of years. In both cases, the governing
equations of the basic flow physics are the same, but the balances between

Page: 4 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.1 Petroleum production 5

physical forces are different, which should be accounted for when formulating
the overall mathematical models and appropriate numerical methods.

Techniques developed to study subsurface flow are also applicable to other
natural and man-made porous media such as soils, biological tissues and
plants, filters, fuel cells, concrete, textiles, polymer composites, etc. A par-
ticular interesting example is in-tissue drug delivery, where the challenge is to
minimize the volume swept by the injected fluid. This is the complete oppo-
site of the challenge in petroleum production, in which one seeks to maximize
the volumetric sweep of the injected fluid to push as much petroleum out as
possible.

1.1 Petroleum production

To provide context for the discussion that will follow later in the book, we will
briefly outline the various ways by which hydrocarbon can be produced from
a subsurface reservoir. Good reservoir rocks have large void spaces between
the mineral grains forming networks of connected pores that can store and
transmit large amounts of fluids. Conceptually, one can think of a hydrocarbon
reservoir as a bent, rigid sponge that is confined inside an insulating material
and has all its pores filled with hydrocarbons that may appear in the form of
oil or gas as illustrated in Figure 1.1. Natural gas will be dissolved in oil under
high pressure like carbon-dioxide inside a soda can. If the pressure inside the
pristine reservoir is above the bubble point, the oil is undersaturated and still
able to dissolve more gas. If the pressure is below the bubble point, the oil
will be fully saturated with gas and any excess gas will form a gas cap on top
of the oil since it is lighter. To extract oil from the reservoir, one drills a well
into the oil zone. The pristine pressure inside the reservoir may be sufficient
to push hydrocarbons up to the surface. Alternatively, one may have to pump
to lower the pressure beyond the point where oil starts flowing. How large the
pressure differential needs to be for oil to flow will depend on the permeability
of the rock; the higher the permeability is, the easier the hydrocarbons will
flow towards the well.

As oil is extracted, the pressure inside the reservoir will decay and the pro-
duction will gradually decline. However, declining pressure will often induce
physical processes that contribute to maintain the production:

� In a water drive, the pore space below the hydrocarbons is filled with
salt water that is slightly compressible, and hence will expand a little
as the reservoir pressure is lowered. If the total water volume is large
compared with the oil zone, even a small expansion will create significant
water volumes that will push oil towards the well and hence contribute to
maintain pressure. Sometimes the water is part of a large aquifer system
that has a natural influx that replenishes the extracted oil by water and
maintains pressure.

Page: 5 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



6 1 Introduction

Gas

Oil

Aquifer
w/brine

Caprock

Fig. 1.1. Conceptual illustration of a petroleum reservoir during primary produc-
tion. Over millions of years, hydrocarbons have accumulated under a caprock that
has low ability to transmit fluids and therefore prevents their upward movement.
Inside the trap, the fluids will be distributed according to density, with light gas on
top, oil in the middle, and brine at the bottom. If the difference in pressure between
the oil zone and the well is sufficiently high, the oil will flow naturally out of the
reservoir. As oil is produced, the pressure inside the reservoir will decline, which
in turn may introduce other mechanisms that contribute to maintain pressure and
push more oil out of the well.

� Solution gas drive works like when you shake and open a soda can. Initially,
the pristine oil will be in a pure liquid state and contain no free gas. The
extraction of fluids will gradually lower the reservoir pressure below the
bubble point, which causes free gas to develop and form expanding gas
bubbles that force oil into the well. Inside the well, the gas bubble rise
with the oil and make the combined fluid lighter and hence easier to push
upward to the surface. At a certain point, however, the bubbles may reach
a critical volume fraction and start to flow as a single gas phase that has
lower viscosity than the oil and hence moves faster. This rapidly depletes
the energy stored inside the reservoir and causes the production to falter.
Gas coming out of solution can also migrate to the top of the structure
and form a gas cap above the oil that pushes down on the liquid oil and
hence contributes to maintain pressure.

� In a gas cap drive, the reservoir contains more gas than what can be
dissolved in the oil. When pressure is lowered the gas cap expands and
pushes oil into the well. Over time, the gas cap will gradually infiltrate the
oil and cause the well to produce increasing amounts of gas.

� If a reservoir is highly permeable, gravity will force oil to move downward
relative to gas and upward relative to water. This is called gravity drive.

� In a combination drive there is water below the oil zone and a gas cap
above that both will push oil to the well at the same time as the reservoir
pressure is reduced.

Page: 6 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.1 Petroleum production 7

Gas

Oil

Gas
injection

Water
injection

Fig. 1.2. Conceptual illustration of voidage replacement, which is an example of
a secondary production strategy in which gas and/or water is injected to maintain
the reservoir pressure.

These natural (or primary) drive mechanisms will only be able to maintain the
pressure for a limited period and the production will gradually falter as the
reservoir pressure declines. How fast the pressure declines and how much oil
one can extract before the production ceases, varies with the drive mechanism.
Solution gas drives can have a relatively rapid decline, whereas water and gas
cap drives are able to maintain production for longer periods. Normally only
30% of the oil can be extracted using primary drive mechanisms.

To keep up the production and increase the recovery factor, most reser-
voirs will use some kind of engineered drive mechanisms. Figure 1.2 illustrates
two examples of voidage replacement in which water and/or gas is injected
to support pressure in the reservoir. Water can also be injected to sweep the
reservoir, displace the oil, and push it towards the wells. In some cases, one
may choose to inject produced formation water that is contaminated with hy-
drocarbons and solid particles and hence must be disposed of in some manner.
Alternatively, or one can extract formation water from a nearby aquifer. In
offshore production it is also common to inject seawater. A common problem
for all waterflooding methods is to maximize the sweep efficiency so that wa-
ter does not move rapidly through high-flow zones in the reservoir and leaves
behind large volumes of unswept, mobile oil. Maintaining good sweep effi-
ciency is particularly challenging for reservoirs containing high-viscosity oil.
If injected water has low viscosity, it will tend to form viscous fingers that
rapidly expand through the oil and cause early water breakthrough in the
production wells. (Think of water being poured into a cup of honey). To im-
prove the sweep efficiency, one can add polymers to the water to increase its
viscosity and improve the mobility ratio between the injected and displaced
fluid. Polymers have also been used to create flow diversions by plugging high-
flow zones so that the injected fluid contacts and displaces more oil. For heavy

Page: 7 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8 1 Introduction

oils, adverse mobility ratios can be improved by using steam injection or some
other thermal method to heat the oil to reduce its viscosity.

Water flooding, polymer injection, and steam injection are all examples
of methods for so-called enhanced oil recovery (EOR). Another example is
miscible and chemical injection, where one uses a solvent or surfactant that
mixes with the oil in the reservoir to make it flow more readily. The solvent
may be a gas such as carbon dioxide or nitrogen. However, the most common
approach is to inject natural gas produced from the reservoir when there is
no market that will accept the gas. Surfactants are similar to detergents used
for laundry. Alkaline or caustic solutions, for instance, can react with organic
acids occuring naturally in the reservoir to produce soap. The effect of all
these substances is that they reduce the interfacial tension between water and
oil, which enables small droplets of oil that were previously immobile to flow
(more) freely. This is the same type of process that takes place when you use
detergent to remove vaxy and greasy stains from textiles. A limiting factor
of these methods is that the chemicals are quickly adsorbed and lost into the
reservoir rock

Often, one will want to combine methods that improve the sweep efficiency
of mobile oil with methods the mobilize immobile oil. Miscible gas injection,
for instance, can be used after a waterflood to flush out residually trapped
oil and establish new pathways to the production wells. Water-alternating-
gas (WAG) is the most successful and widely used EOR method. Injecting
large volumes of gas is expensive, and by injecting alternating slugs of water,
one reduces the injected volume of gas required to maintain pressure. Sim-
ilarly, presence of mobile water reduces the tendency of the injected gas to
finger through the less mobile oil. In polymer flooding, it is common to add
surfactants to mobilize immobile oil by reducing or removing the interface
tension between oil and water, and likewise, add alkaline solutions to reduce
the adsorption of chemicals onto the rock faces.

While the mechanisms of all the above methods for enhanced oil recovery
are reasonably well studied and understood, there are other methods whose
mechanisms are much debated. This includes injection of low-salinity water,
which is not well understood even though it has proved to be highly effective in
certain cases. Another example is microbial enhanced oil recovery which relies
on microbes that digest long hydrocarbon molecules to form biosurfactants or
emit carbon dioxide that will reduce interfacial tension and mobilize immobile
oil. Microbial activity can either by achieved by injecting bacterial cultures
mixed with a food source, or by injecting nutrients that will activate microbes
that already reside in the reservoir.

Use of secondary recovery mechanisms has been highly successful. On the
Norwegian Continental Shelf, for instance, the average recovery factor is now
almost 50%, which can be attributed mainly to water flooding and miscible
gas injection. In other parts of the world, chemical methods have proved to be
very efficient for onshore reservoirs having relatively short distances between
wells. For offshore fields, however, the potential benefits of using chemical

Page: 8 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.2 Reservoir simulation 9

methods are much debated. First of all, it is not obvious that such methods
will be effective for reservoirs characterized by large inter-well distances as
rapid adsorption onto the pore walls generally makes it difficult to transport
the active ingredients long distances into a reservoir. Chemicals are also costly,
need to be transported in large quantities, and may consume space on the
platforms.

Even small improvements in recovery rates can lead to huge economic
benefits for the owners of a petroleum asset and for this reason much research
and engineering work is devoted to improve the understanding of mobilization
and displacement mechanisms and to design improved methods for primary
and enhanced oil recovery. Mathematical modeling and numerical reservoir
simulation play key roles in this endeavor.

1.2 Reservoir simulation

Reservoir simulation is the means by which we use a numerical model of the
petrophysical characteristics of a hydrocarbon reservoir to analyze and predict
fluid behavior in the reservoir over time. Simulation of petroleum reservoirs
started in the mid 1950’s and has become an important tool for qualitative
and quantitative prediction of the flow of fluid phases. Reservoir simulation is
a complement to field observations, pilot field and laboratory tests, well test-
ing and analytical models and is used to estimate production characteristics,
calibrate reservoir parameters, visualize reservoir flow patterns, etc. The main
purpose of simulation is to provide an information database that can help oil
companies position and manage wells and well trajectories to maximize recov-
ery of oil and gas. Generally, the value of simulation studies depends on what
kind of extra monetary or other profit they will lead to, e.g., by increasing the
recovery from a given reservoir. However, even though reservoir simulation
can be an invaluable tool to enhance oil-recovery, the demand for simulation
studies depends on many factors. For instance, petroleum discoveries vary in
size from small pockets of hydrocarbon that may be buried just a few meters
beneath the surface of the earth and can easily be produced, to huge reser-
voirs1 stretching out several square kilometers beneath remote and stormy
seas, for which extensive simulation studies are inevitable to avoid making
suboptimal and costly decisions.

To describe the subsurface flow processes mathematically, two types of
models are needed. First, one needs a mathematical model that describes how
fluids flow in a porous medium. These models are typically given as a set of
partial differential equations describing the mass-conservation of fluid phases,
accompanied by a suitable set of constitutive relations that describe the re-
lationship among different physical quantities. Second, one needs a geological

1 The largest reservoir in the world is found in Ghawar in the Saudi Arabian desert
and is approximately 230 km long, 30 km wide, and 90 m thick.

Page: 9 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10 1 Introduction

model that describes the given porous rock formation (the reservoir). The
geological model is realized as a grid populated with petrophysical properties
that are used as input to the flow model, and together they make up the
reservoir simulation model.

Unfortunately, obtaining an accurate prediction of reservoir flow scenarios
is a difficult task. One reason is that we can never get a complete and accurate
characterization of the rock parameters that influence the flow pattern. Even
if we did, we would not be able to run simulations that exploit all available
information, since this would require a tremendous amount of computer re-
sources that far exceed the capabilities of modern multi-processor computers.
On the other hand, we do not need, nor do we seek a simultaneous description
of the flow scenario on all scales down to the pore scale. For reservoir man-
agement it is usually sufficient to describe the general trends in the reservoir
flow pattern.

In the early days of the computer, reservoir simulation models were built
from two-dimensional slices with 102–103 Cartesian grid cells representing the
whole reservoir. In contrast, contemporary reservoir characterization methods
can model the porous rock formations by the means of grid-blocks down to
the meter scale. This gives three-dimensional models consisting of millions of
cells. Stratigraphic grid models, based on extrusion of 2D areal grids to form
volumetric descriptions, have been popular for many years and are the current
industry standard. However, more complex methods based on unstructured
grids are gaining in popularity.

Despite an astonishing increase in computer power, and intensive research
on computation techniques, commercial reservoir simulators can seldom run
simulations directly on geological grid models. Instead, coarse grid models
with grid-blocks that are typically ten to hundred times larger are built using
some kind of upscaling of the geophysical parameters. How one should perform
this upscaling is not trivial. In fact, upscaling has been, and probably still is,
one of the most active research areas in the oil industry. This effort reflects
the general opinion that with the ever increasing size and complexity of the
geological reservoir models one cannot generally expect to run simulations
directly on geological models in the foreseeable future.

Along with the development of better computers, new and more robust
upscaling techniques, and more detailed reservoir characterizations, there has
also been an equally significant development in the area of numerical methods.
State-of-the-art simulators employ numerical methods that can take advan-
tage of multiple processors, distributed memory workstations, adaptive grid
refinement strategies, and iterative techniques with linear complexity. For the
simulation, there exists a wide variety of different numerical schemes that all
have their pros and cons. With all these techniques available we see a trend
where methods are being tuned to a special set of applications and mathe-
matical models, as opposed to traditional methods that were developed for a
large class of differential equations.

Page: 10 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.3 Outline of the book 11

1.3 Outline of the book

The book is intended to serve several purposes. First of all, you can use the
book as a self-contained introduction to the basic theory of flow in porous
media and the numerical methods used to solve the underlying differential
equations. Hopefully, the book will also give you a hands-on introduction to
practical modeling of flow in porous media, focusing in particular on models
and problems that are relevant to the petroleum industry. The discussion
of mathematical models and numerical methods is accompanied by a large
number of illustrative examples, ranging from idealized and highly simplified
examples to cases involving models of real-life reservoirs.

The software aspect: user guide, examples, and exercises

All examples in the book have been created using the MATLAB Reservoir
Simulation Toolbox (MRST), which we will discuss in more detail in Chap-
ter A. MRST is an open-source software that can either be used as a set of
gray-box reservoir simulators and workflow tools you can modify to suit your
own purposes, or as a collection of flexible and efficient software libraries and
data structures you can use to design your own simulators or computational
workflows. The use of MRST permeates more traditional textbook material,
and the book can therefore be seen as a user guide to MRST. Alternatively,
the book can be viewed as a discussion by example of how a scripting language
like MATLAB can for be used for rapid prototyping, testing, and verification
on realistic problems with a high degree of complexity. Through the many
examples, we also try to gradually teach you some of the techniques and pro-
gramming concepts that have been used to create MRST, which you can use
to ensure flexibility and high efficiency in your own programs.

In the introductory part of the book that covers grids, petrophysical pa-
rameters and basic discretizations and solvers for single-phase flow, we have
tried to make all code examples as self-contained as possible. To this end, we
present and discuss in detail all code lines necessary to produce the numerical
results and figures presented. However, sometimes we omit minor details that
either have been discussed elsewhere or should be part of your basic MAT-
LAB repertoire. As we move to more complex examples, in particular for
multiphase flow and reservoir engineering workflows, it is no longer expedient
to discuss MATLAB scripts in full details. In most cases, however, complete
scripts that contain all code lines necessary to run the examples can be found
in a dedicated book module that is part MRST. We strongly encourage you to
use your own computer to run as many as possible of the examples in the book
as well as other examples and tutorials that are distributed with the software.
Your understanding will be further enhanced if you also modify the examples,
e.g., by changing the input parameters, or extend them to solve problems that
are related, but (slightly) different. To help you in this direction, we have in-
cluded a number of computer exercises that modify and extend some of the

Page: 11 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12 1 Introduction

examples, combine ideas from two or more examples, or investigate in more
detail aspects that are not covered by any of the worked examples. For some
of the exercises you can find solution proposals in the book module.

Finally, we point out that MRST is an open-source software, and if reading
this book gives you ideas about new functionality, or you discover things that
are not working as they should or could, you are welcome to contribute to
improve the toolbox and extend it in new directions.

Part I: geological models and grids

The first part of the book discusses how to represent a geological medium
as a discrete computer model that can be used to study the flow of one or
more fluid phases. Chapter 2 gives you a crash course in petroleum geology
and geological modeling, written by a non-geologist. In this chapter, I try
to explain the key geological processes that can lead to the formation of a
hydrocarbon reservoir, discuss modeling of permeable rocks across multiple
spatial scales, and introduce you to the basic physical properties that are used
to describe porous media in general. For many purposes, reservoir geology can
be represented as a collection of maps and surfaces. However, if the geological
model is to be used as input to a macroscale fluid simulation, we must assume
a continuum hypothesis and represent the reservoir in terms of a volumetric
grid, in which each cell is equipped with a set of petrophysical properties. On
top of this grid, one can then impose mathematical models that describe the
macroscopic continuum physics of one or more fluid phases flowing through
the microscopic network of pores and throats between mineral grains that are
present on the subscale inside the porous rock of each grid block.

In Chapter 3, we describe in more detail how to represent and generate
grids, with special emphasize on the types of grids that are commonly used
in reservoir simulation. The chapter presents a wide variety of examples to
illustrate and explain different grid formats, from simple structured grids, via
unstructured grids based on Delaunay tessellations and Voronoi diagrams, to
stratigraphic grids represented on the industry-standard corner-point format
or as 2.5D unstructured grids. The examples also demonstrate various meth-
ods for generating grids that represent plausible reservoir models and discuss
some of the realistic data sets that can be downloaded along with the MRST
software.

Through Chapters 2 and 3, you will be introduced to the data structures
MRST uses to represent grids and petrophysical data. Understanding these
basic data structures, and the various methods that can be used to create and
manipulate them, is fundamental if you want to understand the inner work-
ings of a majority of the routines implemented in MRST or use the software
as a platform to implement your own computational methods. Through the
many examples, you will also be introduced to various functionality in MRST
for plotting data associated with cells and faces (interface between two neigh-
boring cells) as well as various strategies for traversing the grid and picking
subsets of data that will prove very useful later in the book.

Page: 12 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.3 Outline of the book 13

Part II: single-phase flow

The second part of the book is devoted entirely to single-phase flow and will
introduce you to many of the key concepts for modeling flow in porous media,
including basic flow equations, closure relationships, auxiliary conditions and
models, spatial and temporal discretizations, and linear and nonlinear solvers.

Chapter 4 starts by introducing the two fundamental principles necessary
to describe flow in porous medium, conservation of mass and Darcy’s law,
and outline different forms that these two equations can take in various spe-
cial cases. Whereas mass conservation is a fundamental physical property,
Darcy’s law is phenomenological description of the conservation of momen-
tum that uses permeability, a rock property, to relate volumetric flow rate to
pressure differentials. To form a full model, the basic flow equations must be
extended with various constitutive laws and extra equations describing the
external forces that drive the fluid flow; these can either be boundary condi-
tions and/or wells that inject or produce fluids. The last section of Chapter 4
introduces the classical two-point finite-volume method, which is the current
industry-standard method used to discretize the mathematical flow equations.
In particular, we demonstrate how to write this discretization in a very com-
pact way by introducing discrete analogues of the divergence and gradient
operators. These operators will be used extensively later when developing
solvers for compressible single and multiphase flow.

Chapter 5 focuses on the special case of an incompressible fluid flowing in
a completely rigid medium, for which the flow model can written as a Poisson-
type partial differential equation (PDE) with a varying coefficient. We start
by introducing the various data structures that are necessary to make a full
simulator, including fluid properties, reservoir states describing the primary
unknowns, fluid sources, boundary conditions, and models of injection and
production models. We then discuss in detail the implementation of a two-
point pressure solver, as well as upwind solvers for time-of-flight and tracer.
We end the chapter by four simulation examples: the first introduces the
classical quarter five-spot pattern, which is a standard test case in reservoir
simulation, while the next three discuss how to incorporate boundary condi-
tions and Peaceman well models and the difference between using structured
and unstructured grids.

Grid used to describe real reservoirs typically have an unstructured topol-
ogy and grid cells with irregular geometry and high aspect ratios. The stan-
dard two-point discretization is unfortunately consistent on such grids in spe-
cial cases. To improve the spatial discretization, Chapter 6 introduces and
discusses a few recent methods for consistent discretization on general poly-
hedral grids that are still being researched by academia. This includes mixed
finite-element methods, multipoint flux approximation methods, and mimetic
finite-difference methods.

Chapter 7, the last in Part II, is devoted to compressible flow, which in the
general case is modelled by a nonlinear, time-dependent, parabolic PDE. Using

Page: 13 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



14 1 Introduction

this relatively simple model, we introduce many of the concepts that will later
be used to develop multiphase simulators of full industry-standard complexity.
To discretize the transient flow equation, we combine the two-point method
introduced for incompressible flow with an implicit temporal discretization.
The standard approach for solving the nonlinear system of discrete equa-
tions arising from complex multiphase models is to compute the Jacobian
matrix of first derivatives for the nonlinear system and use Newton’s method
to successively find a better approximations to the solution. Deriving and
implementing analytic expressions for Jacobian matrices is both error-prone
and time-consuming, in particular if the flow equations contain complex fluid
model, well descriptions, thermodynamical behavior, etc. In MRST, we have
therefore chosen to construct Jacobian matrices using automatic differentia-
tion, which is a technique to numerically evaluate the derivatives of functions
specified by a computer program to working precision accuracy. Combining
this technique with discrete averaging and differential operators enables you to
write very compact simulator codes in which the flow models are implemented
almost in the same form as they are written in the underlying mathematical
equations. This opens up for a simple way of writing new simulators: all you
have to do is to implement the new model equations in residual form and
specify which variables should be used in the linearization of the resulting
nonlinear system. Then the software computes the corresponding derivatives
and assembles them into a correct block matrix. To demonstrate the utility
and power of the resulting framework, we show how one can quickly change
functional dependencies in the single-phase pressure solver and extend it to
include new functional dependencies, thermal effect, and non-Newtonian fluid
rheology.

Part III: multiphase flow

The third part of the book outlines how to extend the ideas from Part II to
multiphase flow. Chapter 8 starts by introducing new physical phenomena and
properties that appear for multiphase flows, including fluid saturations, wetta-
bility and capillary pressure, relative permeability, etc. With this introduced,
we move on to outline the general flow equations for multiphase flow, before
we discuss various model reformulations and (semi-)analytical solutions for
the special case of immiscible, two-phase flow. The main difference between
single and multiphase flow is that we now, in addition to an equation for
fluid pressure (or fluid density), get additional equation for the transport of
fluid phases and/or chemical species. These equations are generally parabolic,
but will often behave like, or simplify to, hyperbolic equations. Chapter 9
therefore introduces basic concept from the theory of hyperbolic conserva-
tion laws and introduces various numerical schemes, from classical to modern
high-resolution schemes. We also introduce the basic discretization that will
be used for transport equations later in the book.

The next chapter follows along the same lines as Chapter 5 and explains
how the incompressible solvers developed for single-phase flow can be extended

Page: 14 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.3 Outline of the book 15

to account for multiphase flow effects using the so-called fractional-flow for-
mulation introduced in Chapter 8 and simulated using sequential methods in
which pressure effects and transport of fluid saturations and/or component
concentrations are computed in separate steps. The chapter includes a num-
ber of test cases that discuss various effect of mulitphase flow and illustrates
error mechanisms inherent in sequential simulation methods.

Once the basics of incompressible, mulitphase flow has been discussed, we
move on to discuss more advanced multiphase flow models, focusing primarily
on the black-oil formulation and extensions thereof for enhanced oil recov-
ery that can be found in contemporary commercial simulators. The resulting
simulators will be developed using variants of the automatic-differentiation
methods introduced in Chapter 7.

Part IV: reservoir engineering workflows

The fourth, and last part of the book, is devoted to discussing additional com-
putational methods and tools that are commonly used in reservoir engineering
workflows.

Chapter 12 is devoted to flow diagnostics, which are simple numerical
experiments that can be used to probe a reservoir to understand flow paths
and communication patterns. Herein, all types of flow diagnostics will be based
on the computation of time-of-flight, which defines natural time lines in the
porous medium, and steady state distribution of numerical tracers, which
delineate the reservoir into sub-regions that can be uniquely associated with
distinct parts of the inflow/outflow boundaries. Both these quantities will
be computed using finite-volume method introduced in Chapters 4 and 5.
The concept of flow diagnostics also includes several measures of dynamic
heterogeneity, which can be used as simple proxies for more comprehensive
multiphase simulations in various reservoir engineering workflows including
placement of wells, rate optimization, etc.

As you will see in Chapter 2, porous rocks are heterogeneous at a large
variety of length scales. There is therefore a general trend to build complex,
high-resolution models for geological characterization to represent small-scale
geological structures. Likewise, large ensembles of equiprobable models are
routinely generated to systematically quantify model uncertainty. In addition,
many companies develop hierarchies of models that cover a wide range of
physical scales to systematically propagate the effects of small-scale geological
variations up to the reservoir scale. In either case, one quickly ends up with
geological models that contain more details than what can be used, or should
be used, in subsequent flow simulation studies. Hence, there is a strong need for
mathematical and numerical techniques that can be used to develop reduced
models or to communicate effective parameters and properties between models
of different spatial resolution. Such methods are discussed in Chapters 13 and
14. In Chapter 13 we introduce data structures and various methods that
can be used to partition a fine-scale grid into a coarse-scale grid. Chapter 14

Page: 15 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



16 1 Introduction

then discusses upscaling, which refers to the process in which petrophysical
properties in the cells that make up a coarse block are averaged into a single
effective value for each coarse block.

Having been introduced to the key aspects of the book, you should be ready
to start digging into the material. Before continuing to the next chapter, we
present a simple example that will give you a first taste of simulating flow in
porous media.

1.4 The first encounter with MRST

The purpose of this first example is to show the basic steps for setting up, solv-
ing, and visualizing a simple flow problem using MRST. To this end, we will
compute a known analytical solution: the linear pressure solution describing
hydrostatic equilibrium for an incompressible, single-phase fluid. The basic
model in subsurface flow consists of an equation expressing conservation of
mass and a constitutive relation called Darcy’s law that relates the volumetric
flow rate to the gradient of flow potential

∇ · ~v = 0, ~v = −K
µ

[
∇p+ ρg∇z

]
, (1.1)

where the unknowns are the pressure p and the flow velocity ~v. By eliminating
~v, we can reduce (1.1) to the elliptic Poisson equation. In (1.1), the rock is
characterized by the permeability K that gives the rock’s ability to transmit
fluid. Here, K is set to 100 millidarcy (md or mD), whereas the porosity (i.e.,
the void fraction of the bulk volume) is set to 0.2. The fluid has a density ρ of
1000 kg/m3 and viscosity µ equal one centipoise (cP), g is the gravity constant,
and z is the depth. More details on these flow equations, the rock and fluid
parameters, the computational method, and its MATLAB implementation
will be given throughout the book.

The computational domain is a square column, [0, 1] × [0, 1] × [0, 30] m3,
which we discretize using a regular 1× 1× 30 Cartesian grid. The simulation
model is set up by constructing a grid and assigning the rock permeability,
and setting boundary conditions:

gravity reset on

G = cartGrid([1, 1, 30], [1, 1, 30]*meterˆ3);
G = computeGeometry(G);
rock = makeRock(G, 0.1*darcy(), 0.2);

MRST works in SI units and we must therefore be careful to specify the
correct units for all physical quantities. To solve (1.1), we will use a standard
two-point finite-volume scheme, that relates the flux between cells to their
pressure difference, vij = −Tij(pi − pj). For Cartesian grids, this scheme
coincides with the classical seven-point scheme for Poisson’s problem and is

Page: 16 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



1.4 The first encounter with MRST 17

the only discretization that is available in the basic parts of MRST. More
advanced discretizations can be found in the add-on modules. To define the
two-point discretization, we compute therefore compute the transmissibilities
Tij , which can be defined independent of the particular flow model once we
have defined the grid and petrophysical parameters:

T = computeTrans(G, rock);

Since we are solving (1.1) on a finite domain, we must also describe conditions
on all boundaries. To this end, we prescribe p = 100 bar at the top of the
column and no-flow conditions (~v · n = 0) elsewhere:

bc = pside([], G, 'TOP', 100.*barsa());

The next thing we need to define is the fluid properties. Unlike grids, petro-
physical data, and boundary conditions, data structures for representing fluid
properties are not part of the basic functionality of MRST. The reason is that
the way fluid properties are specified is tightly coupled with the mathematical
and numerical formulation of the flow equations, and may differ a lot between
different types of simulators. Here, we have assumed incompressible flow and
can therefore use fluid models from the incomp add-on module,

mrstModule add incomp;
fluid = initSingleFluid('mu' , 1*centi*poise, ...

'rho' , 1014*kilogram/meterˆ3);

As a final step, we use the transmissibilities, the fluid object, and the boundary
conditions to assemble and solve the discrete system:

sol = incompTPFA(initResSol(G, 0.0), G, T, fluid,'bc', bc);

Having computed the solution, we plot the pressure given in units ’bar’, which
equals 0.1 MPa and is referred to as ’barsa’ in MRST since ’bar’ is a built-in
command in MATLAB:

plotFaces(G, 1:G.faces.num, convertTo(sol.facePressure, barsa()));
set(gca, 'ZDir', ' reverse ' ), title('Pressure [bar] ' )
view(3), colorbar, set(gca,'DataAspect',[1 1 10])

From the plot shown in Figure 1.3, we see that our solution correctly repro-
duces the linear pressure increase with depth one would expect to find inside
a column consisting of a single fluid phase.

At this point, I encourage you to consult Chapter A which describes the
MATLAB Reservoir Simulation Toolbox in more detail. Knowing your way
around MRST is not a prerequisite for reading what follows, but will definitely
contribute significantly to increase your understanding. If you are already
familiar with the software, or want to postpone the introduction, you can
continue directly to Chapter 2.

Page: 17 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



18 1 Introduction

0

0.5

1

0

0.5

1

0

5

10

15

20

25

30

 
Pressure [bar]

 100

100.5

101

101.5

102

102.5

Fig. 1.3. Hydrostatic pressure distribution in a gravity column computed by
MRST. This is example is taken from the MRST tutorial flowSolverTutorial1.m
(gravityColumn.m in older versions of MRST).

Page: 18 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Part I

Geological Models and Grids

Page: 19 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 20 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2

Modelling Reservoir Rocks

Aquifers and natural petroleum reservoirs consist of a subsurface body of sedi-
mentary rock having sufficient porosity and permeability to store and transmit
fluids. In this chapter, we will given an overview of how such rocks are mod-
elled to become part of a simulation model. We start by describing briefly
how sedimentary rocks and hydrocarbons are formed. In doing so, we intro-
duce some geological concepts that you may encounter while working with
subsurface modelling. We then move on to describe how rocks that contain
hydrocarbons or aquifer systems are modelled. Finally, we discuss how rock
properties are represented in MRST and show several examples of rock mod-
els with varying complexity, ranging from an idealized shoe-box rock body
with homogeneous properties, via the widely used SPE 10 model, to two re-
alistic models, one synthetic and one representing a large-scale aquifer from
the North Sea.

2.1 Formation of sedimentary rocks

Sedimentary rocks are created by mineral or organic particles that are de-
posited and accumulated on the Earth’s surface or within bodies of water to
create layer upon layer of sediments. The sedimentary rocks that are found
in reservoirs come from sedimentary basins, inside which large-scale sedimen-
tation processes have taken place. Sedimentary basis are formed as the result
of stretching and breaking of the continental crust. As the crust is stretched,
hot rocks deeper in the earth come closer to the surface. When the stretching
stops, the hot rocks start to cool, which causes the crustal rock to gradually
subside and move downward to create a basin. Such processes are also taking
place today. The Great Rift Valley of Africa is a good example of a so-called
rift basin, where a rift splits the continental plate so that opposite sides of the
valley are moving a millimeter apart each year. This gradually creates a basin
inside which a new ocean may appear over the next hundred million years.

Page: 21 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



22 2 Modelling Reservoir Rocks

On the part of the Earth’s surface that lies above sea level, wind and flow-
ing water will remove soil and rock from the crust and transport it to another
place where it is deposited when the forces that transport the mineral par-
ticles can no longer overcome gravity and friction. Mineral particles can also
be transported and deposited by other geophysical processes like mass move-
ment and glaciers. Over millions of years, layers of sediments will build up in
deep waters, in shallow marine-waters along the coastline, or on land in lakes,
rivers, sand deltas, and lagoons, see Figure 2.1. The sediments accumulate
a few centimeters every hundred years to form sedimentary beds (or strata)
that may extend many kilometers in the lateral directions.

Over time, the weight of the upper layers of accumulating sediment will
push the lower layers downward. A combination of heat from the Earth’s cen-
ter and pressure from the overburden will cause the sediments to undergo
various chemical, physical, and biological processes (commonly referred to as
diagenesis). These processes cause the sediments to consolidate so that the
loose materials form a compact, solid substance that may come in varying
forms. This process is called lithification. Sedimentary rocks have a layered
structure with different mixtures of rock types with varying grain size, min-
eral types, and clay content. The composition of a rock depends strongly upon
a combination of geological processes, the type of sediments that are trans-
ported, and the environment it is deposited. Sandstone are formed by mineral
particles that are broken off from a solid material by weathering and erosion
in a source area and transported by water to a place where they settle and
accumulate. Limestone is formed by the skeletons of marine organisms like
corals that have a high calcium content. Sandstone and limestone will typ-
ically contain relative large void spaces between mineral particles in which
fluids can move easily. Mudrocks, on the other hand, are formed by compres-
sion of clay, mud, and silt and will consist of relatively fine-grained particles.
These rocks, which are sometimes also referred to as shale, will have small
pores and therefore have limited ability to transmit fluids. Chemical rocks are
formed by minerals that precipitate from a solution, e.g., salts that are left
behind when oceans evaporate. Like mudrocks, salts are impermeable to flu-
ids. Sediments will also generally contain organic particles that originate from
the remains of plants, living creatures, and small organisms living in water.

To understand a particular rock formation, one must understand the pre-
historic sedimentary environment from which it originates. It is common to
distinguish between continental and marine environments. The primary source
of sediments in a continental environment is rivers, inside which the moving
water has high energy so that sediments will mainly be composed of fragments
of preexisting minerals and rock, called clasts. Resulting rocks are therefore
often referred to as clastic rocks. A flood plain is the area of the land adjacent
to the river bank that will be covered by water when a river breaks its bank
and floods during periods of high water discharge. Flood plains are created
by bends in the river (meanders) that erode sideways, see Figure 2.2. A flood
plain is the natural place for a river to diminish its kinetic energy. As the

Page: 22 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.1 Formation of sedimentary rocks 23

Fig. 2.1. Illustration of various forms of depositional environments. Aeolian sedi-
ments are created by wind, evaporite minerals are left behind as water evaporates,
fluvial sediments are deposited by rivers, lacustrine sediments are deposited in lakes,
and alluvial refers to the case where the geological process is not well described.
The illustration is based on an image by PePeEfe on Wikimedia Commons:
http://commons.wikimedia.org/wiki/File:Principales medios sedimentarios.svg. The modified
image is published under the Creative Commons Attribution-Share Alike 3.0 Un-
ported license.

water moves, particles of rock are carried along by frictional drag of water on
the particle, and water must flow at a certain velocity to suspend and trans-
port a particle. Large particles are therefore deposited where the water flows
rapidly, whereas finer particles will settle where the current is weak. River sys-
tems also create alluvial fans, which are fan-shaped sediment deposits built
up by streams that carry debris from a single source. Other examples of conti-
nental environments are lagoons, lakes, and swamps that contain quite water
in which fine-grained sediments mingled with organic material are deposited.

For marine rocks formed in a sea or ocean, one usually makes the distinc-
tion between deep and shallow environments. In deep waters (200 meters or
more), the water moves relatively slowly over the bottom and deposits will
mainly consist of fine clay and skeletons of small microorganisms. However,
if the sea bottom is slightly inclined, the sediments can become unstable and
induce sudden currents of sediment-laden water to move rapidly down-slope.
These so-called turbidity currents are caused by density differences between
the suspended sediments and the surrounding water and will generally be
highly turbulent. Because of the high density, a turbidity current can trans-

Page: 23 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



24 2 Modelling Reservoir Rocks

Gravel

Sand
Mud

Flood plain

Deposition

Erosion

Fig. 2.2. Illustration of a meandering river. Because water flows faster on the outer
than on the inner curve of the bend, the river will erode along the outer bank
and deposit at the inner bank. This causes the river to move sideways over time.
Occasionally, the river will overflow its banks and cover the lower-lying flood plain
with water and mud deposits that makes the soil fertile. Flood plains are therefore
very important for agriculture.

port larger particles than what pure water would be able to at the same
velocity. These currents will therefore cause what can be considered as in-
stantaneous deposits of large amounts of clastic sediments into deep oceans.
The resulting rocks are called turbidite.

Shallow-marine environments are found near the coastline and contain
larger kinetic energy caused by wave activity. Clastic sediments will therefore
generally be coarser than in deep environments and will consists of small-
grained sand, clay, and silt that has been washed out and transported from
areas of higher water energy on the continent. Far from the continent, the
transport of clastic sediments is small and deposits are dominated by biological
activity. In warm waters, there are multitudes of small organisms that build
carbonate skeletons, and when deposited together with mud, these skeletons
will turn into limestone, which is an example of a carbonate rock. Carbonate
rocks can also be made from the skeletons of larger organisms living on coral
reefs. Carbonates are soluble in slightly acidic water, and this may create karst
rocks that contain large regions of void space (caves, caverns, etc).

To model sedimentary rocks in a simulation model, one must be able to
describe the geometry and the physical properties of different rock layers. A
bed denotes the smallest unit of rock that is distinguishable from an adjacent
rock layer unit above or below it, and can be seen as bands of different color
or texture in hillsides, cliffs, river banks, road cuts, etc. Each band represents
a specific sedimentary environment, or mode of deposition, and can be from a
few centimeters to several meters thick, often varying in the lateral direction.
A sedimentary rock is characterized by its bedding, i.e., sequence of beds and
lamina (less pronounced layers). The bedding process is typically horizontal,
but beds may also be deposited at a small angle, and parts of the beds may be
weathered down or completely eroded way during deposition, allowing newer
beds to form at an angle with older ones. Figure 2.3 shows two photos of

Page: 24 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.1 Formation of sedimentary rocks 25

Fig. 2.3. Outcrops of sedimentary rocks from Svalbard, Norway. The length scale
is a few hundred meters.

Fig. 2.4. Layered geological structures as seen in these pictures typically occur on
both large and small scales in petroleum reservoirs. The right picture is courtesy of
Silje Støren Berg, University of Bergen.

sedimentary rock outcrops from Svalbard, which is one of the few places in
Northern Europe where one can observe large-scale outcrops of sedimentary
rocks. Figure 2.4 shows two more pictures of layered structures on meter and
centimeter scales, respectively.

Each sedimentary environment has its own characteristic deposits and
forms what is called a depositional facies, i.e., a body of rock with distinct
characteristics. Different sedimentary environments usually exist alongside
each other in a natural succession. Small stones, gravel and large sand particles
are heavy and are deposited at the river bottom, whereas small sand particles
are easily transported and are found at river banks and on the surrounding
plains along with mud and clay. Following a rock layer of a given age, one will
therefore see changes in the facies (rock type). Similarly, depositional envi-
ronments change with time: shorelines move with changes in the sea level and
land level or because of formation of river deltas, rivers change their course
because of erosion or flooding, etc. Likewise, dramatic events like floods may
create abrupt changes. At a given position, the accumulated sequence of beds
will therefore contain different facies.

As time passes by, more and more sediments accumulate and the stack of
beds piles up. Simultaneously, severe geological activity takes place: Crack-
ing of continental plates and volcanic activity will change what is to become

Page: 25 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



26 2 Modelling Reservoir Rocks

Normal dip-slip fault Reverse dip-slip fault Strike-slip fault

Fig. 2.5. Different types of faults: In strike-slip faults, the rock volumes slide past
each other to the left and right in the lateral direction with very little vertical motion.
In dip-slip faults, the rock volumes move predominantly in the vertical direction. A
normal dip-slip fault occurs when the crust is extended and is sometimes called a
divergent fault. Reverse dip-slip faults occur as a result of compressive shortening
of the crust and is sometimes called convergent faults since rock volumes opposite
sides of the fault plane move horizontally towards one another.

our reservoir from being a relatively smooth, layered sedimentary basin into a
complex structure. Previously continuous layers of sediments are compressed
and pushed against each other to form arches, which are referred to as an-
ticlines, and depressions, which are referred to as synclines. If the deposits
contain large accumulations of salts, these will tend to flow upward through
the surrounding layers to form large domes since salts are lighter than other
mineral particles. Likewise, as the sediments may be stretched, cut, shifted,
or twisted in various directions, their movement may introduce fractures and
faults. Fractures are cracks or breakage in the rock, across which there has
been no movement. Faults are fractures or discontinuities in a volume of rock,
across which movement in the crust has caused rock volumes on opposite
sides to be displaced relative to each other. Some faults are small and local-
ized, whereas others are part of the vast system of boundaries between tectonic
plates that crisscrosses the crust of the Earth. Faults are described in terms
of their strike, which is the compass direction in which the fault intersects
the horizontal plane, and by their dip, which is the angle of the fault plane
makes with the horizontal, measured perpendicular to the strike. Faults are
further classified by their slip, which is the displacement vector that describes
the relative movement of rock volumes on opposite sides of the fault plane.
The dip is usually separated into its vertical component, called throw, and
its horizontal component, called heave. Figure 2.5 illustrates different types
of faults.

2.2 Creation of crude oil and natural gas

Deposits not only consist of sand grains, mud, and small rock particles but
will also contain remains of plankton, algae, and other organisms living in

Page: 26 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.2 Creation of crude oil and natural gas 27

water that die and fall down to the bottom where they are covered in mud.
During their life, these organisms have absorbed heat from the sunlight and
when they die and mix with the sediments, they take energy with them. As the
sediments get buried deeper and deeper, the increasing heat from the Earth’s
core and pressure from the overburden will compress and ’cook’ the organic
material that consists of cellulose, fatty oils, proteins, starches, sugar, waxes,
and so on into an intermediate waxy product called kerogen. Whereas organic
material contains carbon, hydrogen, and oxygen, the kerogen contains less
oxygen and has a higher ratio of hydrogen to carbon. The maturation process
that eventually turns kerogen into crude oil and natural gas depends highly
upon temperature, and may take from a million years at 170◦ C to a hundred
million of years at 100◦ C. Whereas most of the oil and natural gas we extract
today has been formed from the remains of prehistoric algae and zooplankton
living in the ocean, coal is formed from the remains of dead plants. The rock in
which this ’cooking’ process takes place is commonly referred to as the source
rock. The chances of forming a source rock containing a significant amount
of oil and gas increases if there has been an event that caused mass-death of
microorganisms in an ocean basin.

Pressure from sediments lying above the source rock will force the hydro-
carbons to migrate upward through the void space in these newer sediments.
The lightest hydrocarbons (methane and ethane) that form natural gas usually
escape quickly, whilst the liquid oils move more slowly towards the surface.
In this process, the natural gas will separate from the oil, and the oil will
separate from the resident brine (salty water). At certain sites, the migrat-
ing hydrocarbons will be collected and trapped in structural or stratigraphic
traps. Structural traps are created by tectonic activity that forms layers of
sediments into anticlines, domes, and folds. Stratigraphic traps form because
of changes in facies (e.g., in clay content) within the bed itself or when the
bed is sealed by an impermeable layer such as mudstone, which consists of
small and densely packed particles and thus has strong capillary forces that
cannot easily be overcome by the buoyancy forces that drive migrating hy-
drocarbons upward. If a layer of mudstone is folded into an anticline above
a more permeable sandstone or lime stone, it will therefore act as a caprock
that prevents the upward migration of hydrocarbons. Stratigraphic traps are
especially important in the search for hydrocarbons; approximately 4/5 of the
world’s oil and gas reserves are found in anticlinal traps. Figure 2.6 illustrates
the various forms in which migrating oil and natural gas can be trapped and
accumulate to form petroleum reservoirs.

The first evidence of hydrocarbons beneath the earth’s surface were found
in so-called seeps, which are found in many areas throughout the world. Seeps
are formed when the seal above a trap is breached so that oil and gas can
migrate all the way through the geological layers and escape to the surface.
As the hydrocarbons break through the surface, the lighter components will
continue to escape to the atmosphere and leave behind heavier products like
bitumen, pitch, asphalt and tar have been exploited by mankind since pale-

Page: 27 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



28 2 Modelling Reservoir Rocks

Structural trap: anticline Stratigraphic traps

Gas

Oil

Per
meab

le rock
wit

h brin
eImper

meab
le rock

Unconformity

Pinch out

Sandstone encased
in mudstone

Fault trap Salt dome

Fault

Impermeable
salt

Fig. 2.6. Various forms of traps in which migrating hydrocarbons can accumulate.
Anticlines are typically produced when lateral pressure causes strata to fold, but
can also result from draping and subsequent compaction of sediments accumulating
over local elevations in the topography. Stratigraphic traps accumulate hydro-
carbons because of changes in the rock type. One example is sand banks deposited
by meandering river that at later times is covered by mud from the flood plain.
Similarly, stratigraphic traps can form when rock layers are tilted and eroded away
and subsequently covered by other low-permeable strata. Fault traps are formed
when strata are moved in opposite directions along a fault line so that permeable
rocks come in contact with impermeable rocks. The fault itself can also be an effec-
tive trap if it contains clays that are smeared as the layers of rock move past each
other. Salt domes are created by buried salt deposits that rise unevenly through
the surrounding strata. Oil can either rest against the salt itself, or the salt induces
chemical reactions in the surrounding rock that makes it impermeable.

olithic times. In 1859, Edwin L. Drake, also known as Colonel Drake, drilled
the world’s first exploration well into an anticline in Titusville, Pennsylvania
to find oil 69.5 ft below the surface. Since then, an enormous amount of wells
have been drilled to extract oil from onshore reservoirs in the Middle-East,
North America, etc. Drilling of submerged oil wells started just before the
turn of the 19th century: from platforms built on piles in the fresh waters of
the Grand Lake St. Mary (Ohio) in 1891, and from piers extending into the
salt water of the Santa Barbara Channel (California) in 1896. Today, hydro-
carbons are recovered from offshore reservoirs that are located thousands of
meters below the sea bed and in waters with a depth up to 2600 meters in
the Gulf of Mexico, the North Sea, and offshore of Brazil.

Page: 28 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.3 Multiscale modelling of permeable rocks 29

2.3 Multiscale modelling of permeable rocks

All sedimentary rocks consist of a solid matrix with an interconnected void.
The void pore space allows the rocks to store and transmit fluids. The ability to
store fluids is determined by the volume fraction of pores (the rock porosity),
and the ability to transmit fluids (the rock permeability) is given by the
interconnection of the pores.

Rock formations found in natural petroleum reservoirs are typically het-
erogeneous at all length scales, from the micrometer scale of pore channels
between the solid particles making up the rock to the kilometer scale of a
full reservoir formation. On the scale of individual grains, there can be large
variation in grain sizes, giving a broad distribution of void volumes and inter-
connections. Moving up a scale, laminae may exhibit large contrasts on the
mm-cm scale in the ability to store and transmit fluids because of alternating
layers of coarse and fine-grained material. Laminae are stacked to form beds,
which are the smallest stratigraphic units. The thickness of beds varies from
millimeters to tens of meters, and different beds are separated by thin layers
with significantly lower permeability. Beds are, in turn, grouped and stacked
into parasequences or sequences (parallel layers that have undergone similar
geologic history). Parasequences represent the deposition of marine sediments,
during periods of high sea level, and tend to be somewhere in the range from
1–100 meters thick and have a horizontal extent of several kilometers.

The trends and heterogeneity of parasequences depend on the deposi-
tional environment. For instance, whereas shallow-marine deposits may lead
to rather smoothly varying permeability distributions with correlation lengths
in the order 10–100 meters, fluvial reservoirs may contain intertwined patterns
of sand bodies on a background with high clay content, see Figure 2.12. The
reservoir geology can also consist of other structures like for instance shale
layers (impermeable clays), which are the most abundant sedimentary rocks.
Fractures and faults, on the other hand, are created by stresses in the rock
and may extend from a few centimeters to tens or hundreds of meters. Faults
may have a significantly higher or lower ability to transmit fluids than the
surrounding rocks, depending upon whether the void space has been filled
with clay material.

All these different length scales can have a profound impact on fluid flow.
However, it is generally not possible to account for all pertinent scales that
impact the flow in a single model. Instead, one has to create a hierarchy of
models for studying phenomena occurring at reduced spans of scales. This is il-
lustrated in Figure 2.7. Microscopic models represent the void spaces between
individual grains and are used to provide porosity, permeability, electrical and
elastic properties of rocks from core samples and drill cuttings. Mesoscopic
models are used to upscale these basic rock properties from the mm/cm-scale
of internal laminations, through the lithofacies scale (∼ 50 cm), to the macro-
scopic facies association scale (∼ 100 m) of geological models. In this book,
we will primarily focus on another scale, simulation models, which represent

Page: 29 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



30 2 Modelling Reservoir Rocks

Fig. 2.7. Illustration of the hierarchy of flow models used in subsurface modeling.
The length scales are the vertical sizes of typical elements in the models.

the last scale in the model hierarchy. Simulation models are obtained by up-
scaling geological models and are either introduced out of necessity because
geological models contain more details than a flow simulator can cope with,
or out of convenience to provide faster calculation of flow responses.

2.3.1 Macroscopic models

To model a reservoir on a macroscopic scale, we basically need to represent its
geology at a level of detail that is sufficient for the purpose the model is built
to serve: to visualize how different experts perceive the reservoir, to provide
estimates of hydrocarbon volumes, to assist well planning and geosteering, or
as input to geophysical analysis (seismic modeling, rock mechanics) or flow
simulations. For flow simulation, which is our primary concern in this book,
we need a volumetric description that decomposes the reservoir into a set
of grid cells (small 3D polygonal volumes) that are petrophysically and/or
geometrically distinct from each other. With a slight abuse of terminology,
we will in the following refer to this as the geological model, which we will
distinguish from the models that describe the reservoir fluids and the forces
that cause their movement.

Geological models are generally built in a sequence of steps, using a com-
bination of stratigraphy (the study of rock layers and layering), sedimentol-
ogy (study of sedimentary rocks), structural geology (the study of how rock
layers are deformed over time by geological activity), diagenesis (the study
of chemical, physical, and biological processes that transform sediments to
rock), and interpretation of measured data. The starting point is usually a
seismic interpretation, from which one obtains a representation of faults and
geological horizons that bound different geological units. The seismic inter-
pretation is used alongside a conceptual model in which geologists express
how they believe the reservoir looks like based on studies of geological history

Page: 30 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.3 Multiscale modelling of permeable rocks 31

and geological outcrops. The result can be expressed as a geometric model
that consists of vertical or inclined surfaces representing faults and horizontal
or slightly sloping surfaces representing horizons that subdivide the reser-
voir volume into different geological units (zones). This zonation is obtained
by combining seismic interpretation that describes the gross geometry of the
reservoir with stratigraphic modelling and thickness information (isochores)
obtain from well logs that defines the internal layering. Once a model of the
structural and stratigraphic architecture of the reservoir is established, the
surface description can be turned into a 3D grid that is populated with cell
and face properties that reflect the geological framework.

Unfortunately, building a geological model for a reservoir is like finishing
a puzzle where most of the pieces are missing. The amount of data available
is limited due to the costs of acquiring them, and the data that is obtained is
measured on scales that may be quite disparate from the geological features
one needs to model. Seismic surveys give a sort of X–ray image of the reser-
voir, but are both expensive and time consuming and can only give limited
resolution; you cannot expect to see structures thinner than ten meters from
seismic data. Information on finer scales is available from various measuring
tools lowered into the wells to gather information of the rock in near-well
region, e.g., by radiating the reservoir and measuring the response. Well-logs
have quite limited resolution, rarely down to centimeter scale. The most de-
tailed information is available from rock samples (cores) extracted from the
well. The industry uses X-ray, CT-scan, as well as electron microscopes to
gather high resolution information from the cores, and the data resolution
is only limited by the apparatus at hand. However, information from cores
and well-logs can only tell you how the rock looks like near the well, and
extrapolating this information to the rest of the reservoir is subject to great
uncertainty. Moreover, due to high costs, one cannot expect well-logs and
cores to be taken from every well. All these techniques give separately small
contributions that can help build a geological model. However, in the end
we still have very limited information available considering that a petroleum
reservoir can have complex geological features that span across all types of
length scales from a few millimeters to several kilometers.

In summary, the process of making a geological model is generally strongly
under-determined. It is therefore customary to use a combination of deter-
ministic and probabilistic modeling to estimate the subsurface characteristics
between the wells. Deterministic modeling is used to specify large-scale struc-
tures such as faults, correlation, trends, and layering, which are used as input
and controls to geostatistical techniques that build detailed grid models satis-
fying statistical properties assumed for the petrophysical heterogeneity. Since
trends and heterogeneity in petrophysical properties depend strongly on the
structure of sedimentary deposits, high-resolution petrophysical realizations
are in many cases not built directly. Instead, one starts by building a rock
model that is based on the structural model and consists of a set of discrete
rock bodies (facies) that are specified to improve petrophysical classification

Page: 31 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



32 2 Modelling Reservoir Rocks

and spatial shape. For carbonates, the modelled facies are highly related to
diagenesis, while the facies modelled for sandstone reservoirs are typically de-
rived from the depositional facies. By supplying knowledge of the depositional
environment (fluvial, shallow marine, deep marine, etc.) and conditioning to
observed data, one can determine the geometry of the facies and how they are
mixed.

To populate the modelled facies with properties it is common to use
stochastic simulation techniques are that simulate multiple realizations of
the petrophysical properties represented as cell and face properties in high-
resolution grid models. Each grid model has a plausible heterogeneity and
can contain from a hundred thousand to a hundred million cells. The col-
lection of all realizations gives a measure of the uncertainty involved in the
modelling. Hence, if the sample of realizations (and the upscaling procedure
that converts the geological models into simulation models) is unbiased, then
it is possible to supply predicted production characteristics, such as the cu-
mulative oil production, obtained from simulation studies with a measure of
uncertainty.

This cursory overview of different models is all that is needed for what fol-
lows in the next few chapters, and the reader can therefore skip to Section 2.4
which discusses macroscopic modelling of reservoir rocks. The remains of this
section will discuss microscopic and mesoscopic modelling in some more detail.
First, however, we will briefly discuss the concept of representative elementary
volumes, which underlies the continuum models used to describe subsurface
flow and transport.

2.3.2 Representative elementary volumes

Choosing appropriate modelling scales is often done by intuition and expe-
rience, and it is hard to give very general guidelines. An important concept
in choosing model scales is the notion of representative elementary volumes
(REVs), which is the smallest volume over which a measurement can be made
and be representative of the whole. This concept is based on the idea that
petrophysical flow properties are constant on some intervals of scale, see Fig-
ure 2.8. Representative elementary volumes, if they exist, mark transitions
between scales of heterogeneity, and present natural length scales for mod-
elling.

To identify a range of length scales where REVs exist, e.g., for porosity,
we move along the length-scale axis from the micrometer-scale of pores to-
ward the kilometer-scale of the reservoir. At the pore scale, the porosity is a
rapidly oscillating function equal to zero (in solid rock) or one (in the pores).
Hence, obviously no REVs can exist at this scale. At the next characteristic
length scale, the core scale level, we find laminae deposits. Because the lami-
nae consist of alternating layers of coarse and fine grained material, we cannot
expect to find a common porosity value for the different rock structures. Mov-
ing further along the length-scale axis, we may find long thin layers, perhaps

Page: 32 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.3 Multiscale modelling of permeable rocks 33

Porosity: φ =
Vv

Vv + Vr

Fig. 2.8. The concept of a representative elementary volume (REV), here illustrated
for porosity which measures the fraction of void space to bulk volume.

extending throughout the entire horizontal length of the reservoirs. Each of
these individual layers may be nearly homogeneous because they are created
by the same geological process, and probably contain approximately the same
rock types. Hence, at this scale it sounds reasonable to speak of an REV. If
we move to the high end of the length-scale axis, we start to group more and
more layers into families with different sedimentary structures, and REVs for
porosity will probably not exist.

The previous discussion gives some grounds to claim that reservoir rock
structures contain scales where REVs may exist. From a general point of
view, however, the existence of REVs in porous media is highly disputable. A
faulted reservoir, for instance, can have faults distributed continuously both
in length and aperture throughout the reservoir, and will typically have no
REVs. Moreover, no two reservoirs are identical, so it is difficult to capitalize
from previous experience. Indeed, porous formations in reservoirs may vary
greatly, also in terms of scales. Nevertheless, the concept of REVs can serve
as a guideline when deciding what scales to model.

2.3.3 Microscopic models: The pore scale

Pore-scale model, as illustrated to the left in Figure 2.7, may be about the size
of a sugar cube and are based on measurements from core plugs obtained from
well trajectories during drilling. These rock samples are necessarily confined
(in dimension) by the radius of the well, although they lengthwise are only
confined by the length of the well. Three such rock samples are shown in
Figure 2.9. The main methods for obtaining pore-scale models from a rock
sample is by studying thin slices using an electron microscope with micrometer

Page: 33 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



34 2 Modelling Reservoir Rocks

Fig. 2.9. Three core plugs with diameter of one and a half inches, and a height of
five centimeters.

resolution or by CT-scans. In the following, we will give a simplified overview
of flow modelling on this scale.

At the pore scale, the porous medium is either represented by a volumetric
grid or by a graph (see e.g., [186]). A graph is a pair (V,E), where V is a set
whose elements are called vertices (or nodes), and E is a subset of V × V
whose elements are called edges. The vertices are taken to represent pores,
and the edges represent pore-throats (i.e., connections between pores).

The flow process, in which one fluid invades the void space filled by another
fluid, is generally described as an invasion–percolation process. This process
is mainly dominated by capillary forces, although gravitational forces can
still be important. In the invasion, a fluid phase can invade a pore only if a
neighboring pore is already invaded. For each pore, there is an entry pressure,
i.e., the threshold pressure needed for the invading phase to enter the pore,
that depends on the size and shape of pores, the size of pore throats, as well
as other rock properties. The invading phase will first invade the neighboring
pore that has the lowest threshold pressure. This gives a way of updating
the set of pores that are neighbors to invaded ones. Repeating the process
establishes a recursive algorithm to determine the flow pattern of the invading
phase. In the invasion process, we are interested in whether a phase has a path
through the model, i.e., percolates, or not, and the time variable is often not
modelled at all. For pore networks, this is misleading because we are also
interested in modelling the flow after the first path through the model has
been established. After a pore has been invaded, the saturations in the pore
will vary with pressures and saturations in the neighboring pores (as well
as in the pore itself). New pores may also be invaded after the first path is
formed, so that we may get several paths through the model through which
the invading phase can flow. Once the invading phase percolates (i.e., has
a path through the model), one can start estimating flow properties. As the

Page: 34 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.3 Multiscale modelling of permeable rocks 35

simulation progresses, the saturation of the invading phase will increase, which
can be used to estimate flow properties at different saturation compositions
in the model.

In reality, the process is more complicated that explained above because of
wettability. When two immiscible fluids (such as oil and water) contact a solid
surface (such as the rock), one of them tends to spread on the surface more
than the other. The fluid in a porous medium that preferentially contacts the
rock is called the wetting fluid. Note that wettability conditions are usually
changing throughout a reservoir. The flow process where the invading fluid
is non-wetting is called drainage and is typically modelled with invasion–
percolation. The flow process where the wetting fluid displaces the non-wetting
fluid is called imbibition, and is more complex, involving effects termed film
flow and snap-off.

Another approach to multiphase modelling is through the use of the lattice
Boltzmann method that represents the fluids as a set of particles that prop-
agate and collide according to a set of rules defined for interactions between
particles of the same fluid phase, between particles of different fluid phases,
and between the fluids and the walls of the void space. A further presentation
of pore-scale modelling is beyond the scope here, but the interested reader is
encouraged to consult, e.g., [186] and references therein.

From an analytical point of view, pore-scale modelling is very important
as it represents flow at the fundamental scale (or more loosely, where the flow
really takes place), and hence provides the proper framework for understand-
ing the fundamentals of porous media flow. From a practical point of view,
pore-scale modelling has a huge potential. Modelling flow at all other scales
can be seen as averaging of flow at the pore scale, and properties describing
the flow at larger scales are usually a mixture of pore-scale properties. At
larger scales, the complexity of flow modelling is often overwhelming, with
large uncertainties in determining flow parameters. Hence being able to single
out and estimate the various factors determining flow parameters is invalu-
able, and pore-scale models can be instrumental in this respect. However, to
extrapolate properties from the pore scale to an entire reservoir is very chal-
lenging, even if the entire pore space of the reservoir was known (of course, in
real life you will not be anywhere close to knowing the entire pore space of a
reservoir).

2.3.4 Mesoscopic models

Models based on flow experiments on core plugs are by far the most common
mesoscopic models. The main equations describing flow are continuity of fluid
phases and Darcy’s law, which basically states that flow rate is proportional to
pressure drop. The purpose of core-plug experiments is to determine capillary
pressure curves and the proportionality constant in Darcy’s law that measures
the ability to transmit fluids, see (1.1) in Section 1.4. To this end, the sides of
the core are insulated and flow is driven through the core. By measuring the

Page: 35 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



36 2 Modelling Reservoir Rocks

flow rate versus pressure drop, one can estimate the proportionality constant
for both single-phase or multi-phase flows.

In conventional reservoir modelling, the effective properties from core-scale
flow experiments are extrapolated to the macroscopic geological model, or di-
rectly to the simulation model. Cores should therefore ideally be representative
for the heterogeneous structures that one may find in a typical grid block in
the geological model. However, flow experiments are usually performed on rel-
atively homogeneous cores that rarely exceed one meter in length. Cores can
therefore seldom be classified as representative elementary volumes. For in-
stance, cores may contain a shale barrier that blocks flow inside the core, but
does not extend much outside the well-bore region, and the core was slightly
wider, there would be a passage past the shale barrier. Flow at the core scale
is also more influenced by capillary forces than flow on a reservoir scale.

As a supplement to core-flooding experiments, it has in recent years be-
come popular to build 3D grid models to represent small-scale geological de-
tails like the bedding structure and lithology (composition and texture). One
example of such a model is shown in Figure 2.7. Effective flow properties for
the 3D model can now be estimated in the same way as for core plugs by
replacing the flow experiment by flow simulations using rock properties that
are e.g., based on the input from microscopic models. This way, one can incor-
porate fine-scale geological details from lamina into the macroscopic reservoir
models.

This discussion shows that the problem of extrapolating information from
cores to build a geological model is largely under-determined. Supplementary
pieces of information are also needed, and the process of gathering geological
data from other sources is described next.

2.4 Modelling rock properties

Describing the flow through a porous rock structure is largely a question of the
scale of interest, as we saw in the previous section. The size of the rock bodies
forming a typical petroleum reservoir will be from ten to hundred meters in
the vertical direction and several hundred meters or a few kilometers in the
lateral direction. On this modelling scale, it is clearly impossible to describe
the storage and transport in individual pores and pore channels as discussed
in Section 2.3.3 or the through individual lamina as in Section 2.3.4. To ob-
tain a description of the reservoir geology, one builds models that attempt
to reproduce the true geological heterogeneity in the reservoir rock at the
macroscopic scale by introducing macroscopic petrophysical properties that
are based on a continuum hypothesis and volume averaging over a sufficiently
large representative elementary volume (REV), as discussed in Section 2.3.2.
These petrophysical properties are engineering quantities that are used as in-
put to flow simulators and are not geological or geophysical properties of the
underlying media.

Page: 36 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.4 Modelling rock properties 37

A geological model is a conceptual, three-dimensional representation of
a reservoir, whose main purpose is therefore to provide the distribution of
petrophysical parameters, besides giving location and geometry of the reser-
voir. The rock body itself is modelled in terms of a volumetric grid, in which
the layered structure of sedimentary beds and the geometry of faults and large-
scale fractures in the reservoir are represented by the geometry and topology
of the grid cells. The size of a cell in a typical geological grid-model is in the
range of 0.1–1 meters in the vertical direction and 10–50 meters in the hori-
zontal direction. The petrophysical properties of the rock are represented as
constant values inside each grid cell (porosity and permeability) or as values
attached to cell faces (fault multipliers, fracture apertures, etc). In the fol-
lowing, we will describe the main rock properties in more detail. More details
about the grid modelling will follow in Chapter 3.

2.4.1 Porosity

The porosity φ of a porous medium is defined as the fraction of the bulk
volume that is occupied by void space, which means that 0 ≤ φ < 1. Likewise,
1−φ is the fraction occupied by solid material (rock matrix). The void space
generally consists of two parts, the interconnected pore space that is available
to fluid flow, and disconnected pores (dead-ends) that is unavailable to flow.
Only the first part is interesting for flow simulation, and it is therefore common
to introduce the so-called “effective porosity” that measures the fraction of
connected void space to bulk volume.

For a completely rigid medium, porosity is a static, dimensionless quantity
that can be measured in the absence of flow. Porosity is mainly determined
by the pore and grain-size distribution. Rocks with nonuniform grain size
typically have smaller porosity than rocks with a uniform grain size, because
smaller grains tend to fill pores formed by larger grains. Similarly, for a bed
of solid spheres of uniform diameter, the porosity depends on the packing,
varying between 0.2595 for a rhomboidal packing to 0.4764 for cubic packing.
When sediments are first deposited in water, they usually have a porosity of
approximately 0.5, but as they are buried, the water is gradually squeezed out
and the void space between the mineral particles decreases as the sediments
are consolidated into rocks. For sandstone and limestone, φ is in the range
0.05–0.5, although values outside this range may be observed on occasion.
Sandstone porosity is usually determined by the sedimentological process by
which the rock was deposited, whereas for carbonate porosity is mainly a
result of changes taking place after deposition. Increase compaction (and ce-
mentation) causes porosity to decrease with depth in sedimentary rocks. The
porosity can also be reduced by minerals that are deposited as water moves
through the pore spaces. For sandstone, the loss in porosity is small, whereas
shales loose their porosity very quickly. Shales are therefore unlikely to be
good reservoir rocks, and will instead act like caprocks having porosities that

Page: 37 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



38 2 Modelling Reservoir Rocks

are orders of magnitude lower than those found in good sandstone and car-
bonates.

For non-rigid rocks, the porosity is usually modelled as a pressure-dependent
parameter. That is, one says that the rock is compressible, having a rock com-
pressibility defined by

cr =
1

φ

dφ

dp
=
d ln(φ)

dp
, (2.1)

where p is the overall reservoir pressure. Compressibility can be significant
in some cases, e.g., as evidenced by the subsidence observed in the Ekofisk
area in the North Sea. For a rock with constant compressibility, (2.1) can be
integrated to give

φ(p) = φ0e
cr(p−p0), (2.2)

and for simplified models, it is common to use a linearization so that:

φ = φ0

[
1 + cr(p− p0)

]
. (2.3)

Because the dimension of the pores is very small compared to any interesting
scale for reservoir simulation, one normally assumes that porosity is a piece-
wise continuous spatial function. However, ongoing research aims to under-
stand better the relation between flow models on pore scale and on reservoir
scale.

2.4.2 Permeability

The permeability is the basic flow property of a porous medium and measures
its ability to transmit a single fluid when the void space is completely filled
with this fluid. This means that permeability, unlike porosity, is a parameter
that cannot be defined apart from fluid flow. The precise definition of the
(absolute, specific, or intrinsic) permeability K is as the proportionality factor
between the flow rate and an applied pressure or potential gradient ∇Φ,

~u = −K
µ
∇Φ. (2.4)

This relationship is called Darcy’s law after the french hydrologist Henry
Darcy, who first observed it in 1856 while studying flow of water through beds
of sand [59]. In (2.4), µ is the fluid viscosity and ~u is the superficial velocity,
i.e., the flow rate divided by the cross-sectional area perpendicular to the flow.
This should not be confused with the interstitial velocity ~v = φ−1~u, i.e., the
rate at which an actual fluid particle moves through the medium. We will
come back to a more detailed discussion of Darcy’s law in Section 4.1.

The SI-unit for permeability is m2, which reflects the fact that perme-
ability is determined entirely by the geometric characteristics of the pores.
However, it is more common to use the unit ’darcy’ (D). The precise defini-
tion of 1D ≈ 0.987 · 10−12 m2 involves transmission of a 1 cP fluid through

Page: 38 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.4 Modelling rock properties 39

a homogeneous rock at a speed of 1 cm/s due to a pressure gradient of 1 at-
m/cm. Translated to reservoir conditions, 1 D is a relatively high permeability
and it is therefore customary to specify permeabilities in millidarcys (mD).
Rock formations like sandstones tend to have many large or well-connected
pores and therefore transmit fluids readily. They are therefore described as
permeable. Other formations, like shales, may have smaller, fewer or less in-
terconnected pores and are hence described as impermeable. Conventional
reservoirs typically have permeabilities ranging from 0.1 mD to 20 D for liq-
uid flow and down to 10 mD for gases. In recent years, however, there has
been an increasing interest in unconventional resources, that is, gas and oil
locked in extraordinarily impermeable and hard rocks, with permeability val-
ues ranging from 0.1 mD and down to 1 µD or lower. ’Tight’ reservoirs are
defined as those having permeability less than 0.1 mD. Compared with con-
ventional resources, the potential volumes of tight gas, shale gas, shale oil are
enormous, but cannot be easily produced at economic rates unless stimulated,
e.g., using a pressurized fluid to fracture the rock (hydraulic fracturing). In
this book, our main focus will be on simulation of conventional resources.

In (2.4), we tacitly assumed that the permeability K is a scalar quantity.
However, the permeability will generally be a full tensor,

K =

Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 . (2.5)

Here, the diagonal terms {Kxx,Kyy,Kzz} represent how the flow rate in one
axial direction depends on the pressure drop in the same direction. The off-
diagonal terms {Kxy,Kxz,Kyx,Kyz,Kzx,Kzy} account for dependence be-
tween flow rate in one axial direction and the pressure drop in perpendicular
directions. A full tensor is needed to model local flow in directions at an
angle to the coordinate axes. Let us for instance consider a layered system,
for which the dominant direction of flow will generally be along the layers.
However, if the layers form an angle to the coordinate axes, a pressure drop
in one coordinate direction will produce flow at an angle to this direction.
This type of flow can only be modelled correctly with a permeability tensor
with nonzero off-diagonal terms. If the permeability can be represented by a
scalar function K(~x), we say that the permeability is isotropic as opposed to
the anisotropic case where we need a full tensor K(~x). To model a physical
system, the anisotropic permeability tensor must be symmetric because of the
Onsager principle of reciprocal relations and positive definite because the flow
component parallel to the pressure drop should be in the same direction as the
pressure drop. As a result, a full-tensor permeability K may be diagonalized
by a change of basis.

Since the porous medium is formed by deposition of sediments over thou-
sands of years, there is often a significant different between permeability in
the vertical and lateral directions, but no difference between the permeabilities
in the two lateral directions. The permeability is obviously also a function of

Page: 39 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



40 2 Modelling Reservoir Rocks

porosity. Assuming a laminar flow (low Reynolds numbers) in a set of capillary
tubes, one can derive the Carman–Kozeny relation,

K =
1

8τA2
v

φ3

(1− φ)2
, (2.6)

which relates permeability to porosity φ, but also shows that the permeability
depends on local rock texture described by tortuosity τ and specific surface
area Av. The tortuosity is defined as the squared ratio of the mean arc-chord
length of flow paths, i.e., the ratio between the length of a flow path and the
distance between its ends. The specific surface area is an intrinsic and char-
acteristic property of any porous medium that measures the internal surface
of the medium per unit volume. Clay minerals, for instance, have large spe-
cific surface areas and hence low permeability. The quantities τ and Av can
be calculated for simple geometries, e.g., for engineered beds of particles and
fibers, but are seldom measured for reservoir rocks. Moreover, the relation-
ship in (2.6) is highly idealized and only gives satisfactory results for media
that consist of grains that are approximately spherical and have a narrow
size distribution. For consolidated media and cases where rock particles are
far from spherical and have a broad size-distribution, the simple Carman–
Kozeny equation does not apply. Instead, permeability is typically obtained
through macroscopic flow measurements.

Permeability is generally heterogeneous in space because of different sort-
ing of particles, degree of cementation (filling of clay), and transitions between
different rock formations. Indeed, the permeability may vary rapidly over sev-
eral orders of magnitude, local variations in the range 1 mD to 10 D are not
unusual in a typical field. The heterogeneous structure of a porous rock for-
mation is a result of the deposition and geological history and will therefore
vary strongly from one formation to another, as we will see in a few of the
examples in Section 2.5.

Production of fluids may also change the permeability. When temperature
and pressure is changed, microfractures may open and significantly change
the permeability. Furthermore, since the definition of permeability involves a
certain fluid, different fluids will experience different permeability in the same
rock sample. Such rock-fluid interactions are discussed in Chapter 8.

2.4.3 Other parameters

Not all rocks in a reservoir zone are reservoir rocks. To account for the fact
that some portion of a cell may consist of impermeable shale, it is common
to introduce the so-called “net-to-gross” (N/G) property, which is a number
in the range 0 to 1 that represents the fraction of reservoir rock in the cell.
To get the effective porosity of a given cell, one must multiply the porosity
and N/G value of the cell. (The N/G values also act as multipliers for lateral
transmissibilities, which we will come back to later in the book). A zero value

Page: 40 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 41

means that the corresponding cell only contains shale (either because the
porosity, the N/G value, or both are zero), and such cells are by convention
typically not included in the active model. Inactive cells can alternatively be
specified using a dedicated field (called ’actnum’ in industry-standard input
formats).

Faults can either act as conduits for fluid flow in subsurface reservoirs or
create flow barriers and introduce compartmentalization that severely affects
fluid distribution and/or reduces recovery. On a reservoir scale, faults are gen-
erally volumetric objects that can be described in terms of displacement and
petrophysical alteration of the surrounding host rock. However, lack of geo-
logical resolution in simulation models means that fault zones are commonly
modelled as surfaces that explicitly approximate the faults’ geometrical prop-
erties. To model the hydraulic properties of faults, it is common to introduce
so-called multipliers that alter the ability to transmit fluid between two neigh-
boring cells. Multipliers are also used to model other types of subscale features
that affect communication between grid blocks, e.g., thin mud layers result-
ing from flooding even which may partially cover the sand bodies and reduce
vertical communication. It is also common to (ab)use multipliers to increase
or decrease the flow in certain parts of the model to calibrate the simulated
reservoir responses to historic data (production curves from wells, etc). More
details about multipliers will be given later in the book.

2.5 Property modelling in MRST

All flow and transport solvers in MRST assume that the rock parameters
are represented as fields in a structure. Our naming convention is that this
structure is called rock, but this is not a requirement. The fields for porosity
and permeability, however, must be called poro and perm, respectively. The
porosity field rock.poro is a vector with one value for each active cell in
the corresponding grid model. The permeability field rock.perm can either
contain a single column for an isotropic permeability, two or three columns
for a diagonal permeability (in two and three spatial dimensions, respectively,
or six columns for a symmetric, full-tensor permeability. In the latter case,
cell number i has the permeability tensor

Ki =

[
K1(i) K2(i)
K2(i) K3(i)

]
, Ki =

K1(i) K2(i) K3(i)
K2(i) K4(i) K5(i)
K3(i) K5(i) K6(i)

 ,
where Kj(i) is the entry in column j and row i of rock.perm. Full-tensor, non-
symmetric permeabilities are currently not supported in MRST. In addition
to porosity and permeability, MRST supports a field called ntg that represents
the net-to-gross ratio and consists of either a scalar or a single column with
one value per active cell.

Page: 41 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



42 2 Modelling Reservoir Rocks

In the rest of the section, we present a few examples that demonstrate how
to generate and specify permeability and porosity values. In addition, we will
briefly discuss a few models with industry-standard complexity. Through the
discussion, you will also be exposed to a lot of the visualization capabilities
of MRST. Complete scripts necessary to reproduce the results and the figures
presented can be found in various scripts in the rock subdirectory of the
software module that accompanies the book.

2.5.1 Homogeneous models

Homogeneous models are very simple to specify, as is illustrated by a simple
example. We consider a square 10× 10 grid model with a uniform porosity of
0.2 and isotropic permeability equal 200 mD:

G = cartGrid([10 10]);
rock = makeRock(G, 200*milli*darcy, 0.2);

Because MRST works in SI units, it is important to convert from the field
units ’darcy’ to the SI unit ’meters2’. Here, we did this by multiplying with
milli and darcy, which are two functions that return the corresponding con-
version factors. Alternatively, we could have used the conversion function
convertFrom(200, milli*darcy). Homogeneous, anisotropic permeability can be
specified in the same way:

rock = makeRock(G, [100 100 10].*milli*darcy, 0.2);

2.5.2 Random and lognormal models

Given the difficulty of measuring rock properties, it is common to use geo-
statistical methods to make realizations of porosity and permeability. MRST
contains two very simplified methods for generating geostatistical realizations.
For more realistic geostatistics, the reader should use GSLIB [63] or a com-
mercial geomodelling software.

In our first example, we will generate the porosity φ as a Gaussian field.
To get a crude approximation to the permeability-porosity relationship, we
assume that our medium is made up of uniform spherical grains of diame-
ter dp = 10µm, for which the specific surface area is Av = 6/dp. Using the
Carman–Kozeny relation (2.6), we can then calculate the isotropic permeabil-
ity K from

K =
1

72τ

φ3d2
p

(1− φ)2
,

where we further assume that τ = 0.81. As a simple approximation to a Gaus-
sian field, we generate a field of independent normally distributed variables
and convolve it with a Gaussian kernel.

Page: 42 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 43

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

 

 

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

plotCellData (G , rock.poro , 'EdgeColor','none');
colorbar ( 'horiz ' ); axis equal tight ;

0
5

10
15

20
25

30
35

40
45

50

0

5

10

15

20

0

5

10

 

 

50 100 150 200 250 300

plotCellData (G , convertTo ( rock.perm , milli* darcy ));
colorbar ( 'horiz ' ); axis equal tight ; view (3);

Fig. 2.10. The left plot shows a 50× 20 porosity field generated as a Gaussian field
with a larger filter size in x-direction than in the y-direction. The right plot shows
the permeability field computed from the Carman–Kozeny relation for a similar
50× 20× 10 porosity realization computed with filter size [3, 3, 3].

G = cartGrid([50 20]);
p = gaussianField(G.cartDims, [0.2 0.4], [11 3], 2.5);
K = p.ˆ3.*(1e−5)ˆ2./(0.81*72*(1−p).ˆ2);
rock = makeRock(G, K(:), p (:));

The resulting porosity field is shown in the left plot of Figure 2.10. The right
plot shows the permeability obtained for a 3D realization generated in the
same way.

In the second example, we use the same methodology as above to generate
layered realizations, for which the permeability in each geological layer is
independent of the other layers and lognormally distributed. Each layer can
be represented by several grid cells in the vertical direction. Rather than
using a simple Cartesian grid, we will generate a stratigraphic grid with wavy
geological faces and a single fault. Such grids will be described in more detail
in Chapter 3.

G = processGRDECL(simpleGrdecl([50 30 10], 0.12));
K = logNormLayers(G.cartDims, [100 400 50 350], 'indices', [1 2 5 7 11]);

Here, we have specified four geological layers of different thickness. From top to
bottom (stratigraphic grids are often numbered from the top and downward),
the first layer is one cell thick and has a mean permeability value of 100 mD,
the second layer is three cells thick and has mean permeability of 400 mD, the
third layer is two cells thick and has mean value 50 mD, and the fourth layer
is four cells thick and has mean value 350 mD . To specify this, we have used
an indirection map. That is, if Km is the n-vector of mean permeabilities and
L is the (n+ 1)-vector of indices, the value Km(i) is assigned to vertical layers
number L(i) to L(i+1)−1. The resulting permeability is shown in Figure 2.11.

Page: 43 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



44 2 Modelling Reservoir Rocks

 

 

25 50 100 200 400 800

plotCellData (G , log10 (K ), 'EdgeColor','k'); view (45,30);
axis tight off , set(gca , 'DataAspect',[0.5 1 1])
h=colorbar( 'horiz ' ); ticks=25*2.ˆ[0:5];
set(h , 'XTick',log10 ( ticks ), 'XTickLabel',ticks);

Fig. 2.11. A stratigraphic grid with a single fault and four geological layers, each
with a lognormal permeability distribution.

2.5.3 10th SPE Comparative Solution Project: Model 2

Society of Petroleum Engineers (SPE) has developed a series of benchmarks
that can be used to independently compare computational methods and sim-
ulators. The first nine benchmarks focus on black-oil, compositional, dual-
porosity, thermal, and miscible simulations, as well as horizontal wells and
gridding techniques. The 10th SPE Comparative Solution Project [55] was
posed as a benchmark for upscaling methods, but the second data set of this
benchmark has later become very popular within the academic community as
a benchmark for comparing different computational methods. The data set is
a 3-D geostatistical realization from the Jurassic Upper Brent formations, in
which one can find the giant North Sea fields of Statfjord, Gullfaks, Oseberg,
and Snorre. The main feature of the model is a permeability and porosity
fields given on a 60 × 220 × 85 Cartesian grid, in which each cells is of size
20ft × 10ft × 2ft. In this specific model, the top 35 cell layers having a total
height of 70 ft represent the shallow-marine Tarbert formation and the lower
50 layers having a height of 100 ft represent the fluvial Ness formation. The
original geostatistical model was developed in the PUNQ project [79], and
later the horzontal dimensions were scaled by a factor 1/3 to make it more
heterogeneous. The model is structurally simple but is highly heterogeneous,
and, for this reason, some describe it as a ’simulator-killer’. On the other
hand, the fact that the flow is dictated by the strong heterogeneity means
that streamline methods will be particularly efficient for this model [2].

The SPE 10 data set is used in a large number of publications and is
publicly available from the SPE website (http://www.spe.org/web/csp/).

Page: 44 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.spe.org/web/csp/


2.5 Property modelling in MRST 45

MRST supplies a module called spe10 that downloads, reorganizes, and stores
the data set in a file for later use. The module also contains routines that
extract (subsets of) the petrophysical data and set up simulation models and
appropriate data structures representing grids and wells. Alternatively, the
data set can be downloaded using mrstDatasetGUI.

Because the geometry is a simple Cartesian grid, we can use standard
MATLAB functionality to visualize the heterogeneity in the permeability and
porosity (full details can be found in the script rocks/showSPE10.m)

% load SPE 10 data set
mrstModule add spe10;
rock = getSPE10rock(); p=rock.poro; K=rock.perm;

% show p
slice( reshape(p,60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse ' ), box on;
colorbar('horiz' );

% show Kx
slice( reshape(log10(K(:,1)),60,220,85), [1 220], 60, [1 85]);
shading flat, axis equal off, set(gca,'zdir', ' reverse ' ), box on;
h=colorbar('horiz');
set(h,'XTickLabel',10.ˆ[get(h,'XTick')]);
set(h,'YTick',mean(get(h,'YLim')),'YTickLabel','mD');

Figure 2.12 shows porosity and permeability; the permeability tensor is
diagonal with equal permeability in the two horizontal coordinate directions.
Both formations are characterized by large permeability variations, 8–12 or-
ders of magnitude, but are qualitatively different. The Tarbert consists of
sandstone, siltstone, and shales and comes from a tidally influenced, trans-
gressive, shallow-marine deposit; in other words, a deposit that has taken place
close to the coastline, see Figure 2.1. The formation has good communication
in the vertical and horizontal directions. The fluvial Ness formation has been
deposited by rivers or running water in a delta-plain continental environment
(see Figures 2.1 and 2.2), leading to a spaghetti of well-sorted high-permeable
sandstone channels with good communication (long correlation lengths) im-
posed on a low-permeable background of shales and coal, which gives low
communication between different sand bodies. The porosity field has a large
span of values and approximately 2.5% of the cells have zero porosity and
should be considered as being inactive.

Figure 2.13 shows histograms of the porosity and the logarithm of the
horizontal and vertical permeabilities. The nonzero porosity values and the
horizontal permeability of the Tarbert formation appear to follow a normal
and lognormal distribution, respectively. The vertical permeability follows a
bi-modal distribution. For the Ness formation, the nonzero porosities and the
horizontal permeability follow bi-modal normal and lognormal distributions,
respectively, as is to be expected for a fluvial formation. The vertical perme-
ability is trimodal.

Page: 45 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



46 2 Modelling Reservoir Rocks

Fig. 2.12. Rock properties for the SPE 10 model. The upper plot shows the porosity,
the lower left the horizontal permeability, and the lower right the vertical perme-
ability. (The permeabilities are shown using a logarithmic color scale).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3
x 10

4

 

 

Ness
Tarbert

−4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
x 10

4

 

 

Ness
Tarbert

−8 −6 −4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3
x 10

4

 

 

Tarbert
Ness

Fig. 2.13. Histogram of rock properties for the SPE 10 model: φ (upper plot),
logKx (lower left), and logKz (lower right) The Tarbert formation is shown in blue
and the Ness formation in red.

Page: 46 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 47

2.5.4 The Johansen Formation

The Johansen formation is located in the deeper part of the Sognefjord delta,
40–90 km offshore Mongstad on the west coast of Norway. A few years ago,
a gas-power plant with carbon capture and storage was planned at Mongstad
and the water-bearing Johansen formation was a possible candidate for storing
the captured CO2. The Johansen formation is part of the Dunlin group, and
is interpreted as a large sandstone delta 2200–3100 meters below sea level that
is limited above by the Dunlin shale and below by the Amundsen shale. The
average thickness of the formation is roughly 100 m and the lateral extensions
are up to 100 km in the north-south direction and 60 km in the east-west
direction. The aquifer has good sand quality and lies at a depth where CO2

would undoubtedly be in supercritical phase, and would thus be ideal for
carbon storage. With average porosities of approximately 25 percent, this
implies that the theoretical storage capacity of the Johansen formation is
more than one gigatonne of CO2 [73]. The Troll field, one of the largest gas
field in the North Sea, is located some 500 meters above the north-western
parts of the Johansen formation. A set of geological models of Johansen is
publicly available from the url:

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen/

and can be downloaded using the mrstDatasetGUI function. Altogether, there
are five models: one full-field model (149× 189× 16 grid), three homogeneous
sector models (100×100×n for n = 11, 16, 21), and one heterogeneous sector
model (100× 100× 11). Herein, we consider the latter. All statements used to
analyze the model are found in the script rocks/showJohansenNPD5.m.

The grid consists of hexahedral cells and is given on the industry-standard
corner-point format, which will be discussed in details in Section 3.3.1. A
more detailed discussion of how to input the grid will be given in the next
section. The rock properties are given as plain ASCII files, with one entry per
cell. In the model, the Johansen formation is represented by five grid layers,
the low-permeable Dunlin shale above is represented by five layers, and the
Amundsen shale below is represented as one layer. The Johansen formation
consists of approximately 80% sandstone and 20% claystone, whereas the
Amundsen formation consists of siltstones and shales, see [73, 72, 11] for more
details.

We start by loading the data and visualizing the porosity, which is straight-
forward once we remember to use G.cells.indexMap to extract rock properties
only for active cells in the model.

G = processGRDECL(readGRDECL('NPD5.grdecl'));
p = load('NPD5 Porosity.txt')'; p = p(G.cells.indexMap);

Figure 2.14 shows the porosity field of the model. The left plot shows the Dun-
lin shale, the Johansen sand, and the Amundsen shale, where the Johansen
sand is clearly distinguished as a wedge shape that is pinched out in the front
part of the model and splits the shales laterally in two at the back. In the

Page: 47 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen/


48 2 Modelling Reservoir Rocks

right plot, we only plot the good reservoir rocks distinguished as the part of
the porosity field that has values larger than 0.1.

The permeability tensor is assumed to be diagonal with the vertical per-
meability equal one-tenth of the horizontal permeability. Hence, only the x-
component Kx is given in the data file

K = load('NPD5 Permeability.txt')'; K=K(G.cells.indexMap);

Figure 2.15 shows three different plots of the permeability. The first plot shows
the logarithm of whole permeability field. In the second plot, we have filtered
out the Dunlin shale above Johansen but not the Amundsen shale below. The
third plot shows the permeability in the Johansen formation using a linear
color scale, which clearly shows the depth trend that was used to model the
heterogeneity.

2.5.5 SAIGUP: shallow-marine reservoirs

Most commercial simulators use a combination of an ’input language’ and a
set of data files to describe and set up a simulation model of a reservoir. How-
ever, although the principles for the input description has much in common,
the detail syntax is obviously unique to each simulator. Herein, we will mainly
focus on the ECLIPSE input format, which has emerged as an industry stan-
dard for describing static and dynamic properties of a reservoir system, from
the reservoir rock, via production and injection wells and up to connected
top-side facilities. ECLIPSE input decks use keywords to signify and separate
the different data elements that comprise a full model. These keywords de-
fine a detailed language that can be used to specify how the data elements

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , p , args {:}); view(−45,15),
axis tight off , zoom (1.15 ),
caxis ([0 .1 0.3 ]), colorbar ;

plotGrid (G , 'FaceColor','none', args {:});
plotCellData (G , p , find (p>0.1), args{:})
view(−15,40); axis tight off , zoom (1.15 ),
caxis ([0 .1 0.3 ]), colorbar ;

Fig. 2.14. Porosity for the Johansen data set ’NPD5’. The left plot shows porosity
for the whole model, whereas in the right plot we have masked the low-porosity cells
in the Amundsen and Dunlin formations.

Page: 48 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 49

Fig. 2.15. Permeability for the Johansen data set ’NPD5’. The upper-left plot shows
the permeability for the whole model, the upper-right plot shows the Johansen sand
and the Amundsen shale, whereas the lower plot only shows the permeability of the
Johansen sand.

should be put together, and modify each other, to form a full spatio-temporal
model of a reservoir. In the most general form, an ECLIPSE input file consists
of eight sets of keywords, which are organized into eight sections that must
come in a prescribed order. However, some of the sections are optional and
may not always be present. The order of the keywords within each section is
arbitrary, except in the section that defines wells and gives operating schedule,
etc. Altogether, the ECLIPSE format consists of thousands of keywords, and
describing them all is far beyond the scope of this book.

In the following, we will instead briefly outline some of the most common
keywords used in the GRID section that describes the reservoir geometry and
petrophysical properties. The purpose is to provide you with a basic under-
standing of the required input for simulations of real-life reservoir models. Our
focus is mainly on the ingredients of a model and not on the specific syntax.
For brevity, we will therefore not go through all MATLAB and MRST state-
ments used to visualize the different data elements. All details necessary to
reproduce the results can be found in the script rocks/showSAIGUP.m.

As our primary example of a realistic petroleum reservoir, we will use a
model from the SAIGUP study [152], whose purpose was to conduct a sensitiv-

Page: 49 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



50 2 Modelling Reservoir Rocks

ity analysis of the impact of geological uncertainties on production forecasting
in clastic hydrocarbon reservoirs. As part of this study, a broad suite of geo-
statistical realizations and structural models were generated to represent a
wide span of shallow-marine sedimentological reservoirs. The SAIGUP mod-
els mainly focus on shoreface reservoirs in which the deposition of sediments
is caused by variation in sea level, so that facies are forming belts in a sys-
tematic pattern (river deposits create curved facies belts, wave deposits create
parallel belts, etc). Sediments are in general deposited when the sea level is
increasing. No sediments are deposited during decreasing sea levels; instead,
the receding sea may affect the appearing shoreline and cause the creation of
a barrier. All models are synthetic, but contain representative examples of the
complexities seen in real-life reservoirs.

One of the many SAIGUP realizations is publicly available from the MRST
website. The specific realization comes in the form of a GZip-compressed TAR
file (SAIGUP.tar.gz) that contains the structural model as well as petrophys-
ical parameters, represented in the ECLIPSE format. The data set can be
downloaded using the mrstDatasetGUI function. Here, however, we unpack the
data set manually for completeness of presentation. Assuming that the archive
file SAIGUP.tar.gz that contains the model realization has been downloaded
as described on the webpage, we extract the data set and place it in a stan-
dardized path relative to the root directory of MRST:

untar('SAIGUP.tar.gz', fullfile(ROOTDIR, 'examples', 'data', 'SAIGUP'))

This will create a new directory containing seventeen data files that comprise
the structural model, various petrophysical parameters, etc:

028_A11.EDITNNC 028.MULTX 028.PERMX 028.SATNUM SAIGUP.GRDECL
028_A11.EDITNNC.001 028.MULTY 028.PERMY SAIGUP_A1.ZCORN
028_A11.TRANX 028.MULTZ 028.PERMZ SAIGUP.ACTNUM
028_A11.TRANY 028.NTG 028.PORO SAIGUP.COORD

The main file is SAIGUP.GRDECL, which lists the sequence of keywords that
specifies how the data elements found in the other files should be put together
to make a complete model of the reservoir rock. The remaining files repre-
sent different keywords: the grid geometry is given in files SAIGUP_A1.ZCORN

and SAIGUP.COORD, the porosity in 028.PORO, the permeability tensor in the
three 028.PERM* files, net-to-gross properties in 028.NTG, the active cells in
SAIGUP.ACTNUM, transmissibility multipliers that modify the flow connections
between different cells in the model are given in 028.MULT*, etc. For now, we
will rely entirely on MRST’s routines for reading ECLIPSE input files; more
details about corner-point grids and the ECLIPSE input format will follow
later in the book, starting in Chapter 3.

The SAIGUP.GRDECL file contains seven of the eight possible sections that
may comprise a full input deck. The deckformat module in MRST contains
a comprehensive set of input routines that enable the user to read the most
important keywords and options supported in these sections. Here, however,
it is mainly the sections describing static reservoir properties that contain

Page: 50 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 51

complete and useful information, and we will therefore use the much simpler
function readGRDECL from MRST core to read and interprets the GRID section
of the input deck:

grdecl = readGRDECL(fullfile(ROOTDIR, 'examples', ...
'data' , 'SAIGUP','SAIGUP.GRDECL'));

This statement parses the input file and stores the content of all keywords it
recognizes in the structure grdecl:

grdecl =
cartDims: [40 120 20]

COORD: [29766x1 double]
ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]
PERMX: [96000x1 double]
PERMY: [96000x1 double]
PERMZ: [96000x1 double]
MULTX: [96000x1 double]
MULTY: [96000x1 double]
MULTZ: [96000x1 double]
PORO: [96000x1 double]
NTG: [96000x1 double]

SATNUM: [96000x1 double]

The first four data fields describe the grid, and we will come back to these
in Chapter 3.3.1. In the following, we will focus on the next eight data fields,
which contain the petrophysical parameters. We will also briefly look at the
last data field, which delineates the reservoir into different (user-defined) rock
types that can used to associated different rock-fluid properties.

Recall that MRST uses the strict SI conventions in all of its internal calcu-
lations. The SAIGUP model, however, is provided using the ECLIPSE ’MET-
RIC’ conventions (permeabilities in mD and so on). We use the functions
getUnitSystem and convertInputUnits to assist in converting the input data
to MRST’s internal unit conventions.

usys = getUnitSystem('METRIC');
grdecl = convertInputUnits(grdecl, usys);

Having converted the units properly, we generate a space-filling grid and ex-
tract petrophysical properties

G = processGRDECL(grdecl);
G = computeGeometry(G);
rock = grdecl2Rock(grdecl, G.cells.indexMap);

The first statement takes the description of the grid geometry and constructs
an unstructured MRST grid represented with the data structure outlined in
Section 3.4. The second statement computes a few geometric primitives like
cell volumes, centroids, etc., as discussed on page 98. The third statement
constructs a rock object containing porosity, permeability, and net-to-gross.

Page: 51 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



52 2 Modelling Reservoir Rocks

Fig. 2.16. The structural SAIGUP model. The left plot shows the full model with
faults marked in red and inactive cells marked in yellow, whereas the right plot
shows only the active parts of the model seen from the opposite direction.

For completeness, we first show a bit more details of the structural model
in Figure 2.16. The left plot shows the whole 40 × 120 × 20 grid model1,
where we in particular should note the disconnected cells marked in yellow
that are not part of the active model. The relatively large fault throw that
disconnects the two parts is most likely a modelling artifact introduced to
clearly distinguish the active and inactive parts of the model. A shoreface
reservoir is bounded by faults and geological horizons, but faults also appear
inside the reservoir as the right plot in Figure 2.16 shows. Faults and barriers
will typically have a pronounced effect on the flow pattern, and having an
accurate representation is important to produce reliable flow predictions.

The petrophysical parameters for the model were generated on a regular
40× 120× 20 Cartesian grid, as illustrated in the left plot of Figure 2.17, and
then mapped onto the structural model, as shown in the plot to the right. A
bit simplified, one can view the Cartesian grid model as representing the rock
body at geological ’time zero’ when the sediments have been deposited and
have formed a stack of horizontal grid layers. From geological time zero and
up to now, geological activity has introduced faults and deformed the layers,
resulting in the structural model seen in the left plot of Figure 2.17.

Having seen the structural model, we continue to study the petrophysical
parameters. The grid cells in our model are thought to be larger than the
laminae of our imaginary reservoir and hence each grid block will generally
contain both reservoir rock (with sufficient permeability) and impermeable
shale. This is modelled using the net-to-gross ratio, rock.ntg, which is shown
in Figure 2.18 along with the horizontal and vertical permeability. The plotting
routines are exactly the same as for the porosity in Figure 2.17, but with
different data and slightly different specification of the colorbar. From the
figure, we clearly see that the model has a large content of shale and thus low

1 To not confuse the reader, we emphasize that only the active part of the model
is read with the MRST statements given above. How to also include the inactive
part, will be explained in more details in Chapter 3.

Page: 52 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 53

p = reshape ( grdecl.PORO , G.cartDims );
slice (p , 1, 1, 1); view(−135,30), shading flat ,
axis equal off ,
set(gca , 'ydir ' , ' reverse ' , 'zdir ' , ' reverse ')
colorbar ( 'horiz ' ); caxis ([0 .01 0.3 ]);

args = {'EdgeAlpha'; 0.1; 'EdgeColor'; 'k'};
plotCellData (G , rock.poro , args {:});
axis tight off ; set(gca , 'DataAspect',[1 1 0.1 ]);
view(−65,55); zoom(1.4 ); camdolly (0,−0.2,0)
colorbar ( 'horiz ' ); caxis ([0 .1 0.3 ])

Fig. 2.17. Porosity for the SAIGUP model. The left plot shows porosity as generated
by geostatistics in logical ijk space. The right plot shows the porosity mapped to
the structural model shown in Figure 2.16.

permeability along the top. However, we also see high-permeable sand bodies
that cut through the low-permeable top. In general, the permeabilities seem
to correlate well with the sand content given by the net-to-gross parameter.

Some parts of the sand bodies are partially covered by mud that strongly
reduces the vertical communication, most likely because of flooding events.
These mud-draped surfaces occur on a sub-grid scale and are modelled through
a multiplier value (MULTZ) associated with each cell, which takes values be-
tween zero and one and can be used to manipulate the effective communication
(the transmissibility) between a given cell (i, j, k) and the cell immediately
above (i, j, k+ 1). For completeness, we remark that the horizontal multiplier
values (MULTX and MULTY) play a similar role for vertical faces, but are equal
one in (almost) all cells for this particular realization.

To further investigate the heterogeneity of the model, we next look at
histograms of the porosity and the permeabilities, as we did for the SPE 10
example (the MATLAB statements are omitted since they are almost iden-
tical). In Figure 2.19, we clearly see that the distributions of porosity and
horizontal permeability are multi-modal in the sense that five different modes
can be distinguished, corresponding to the five different facies used in the
petrophysical modelling.

It is common modelling practice that different rock types are assigned
different rock-fluid properties (relative permeability and capillary functions),
more details about such properties will be given later in the book. In the
ECLIPSE input format, these different rock types are represented using the
SATNUM keyword. By inspection of the SATNUM field in the input data, we
see that the model contains six different rock types as depicted in Figure 2.20.
For completeness, the figure also shows the permeability distribution inside

Page: 53 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



54 2 Modelling Reservoir Rocks

Fig. 2.18. The upper plots show the permeability for the SAIGUP model, using
a logarithmic color scale, with horizontal permeability to the left and vertical per-
meability to the right. The lower-left plot shows net-to-gross, i.e., the fraction of
reservoir rock per bulk volume. The lower-right plot shows regions of the reservoir
where reduced vertical communication is modelled by vertical multiplier values less
than unity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 

 

Porosity

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

 

 

Horizontal
Vertical

Fig. 2.19. Histogram of the porosity (left) and the logarithm of the horizontal
and vertical permeability (right) for the shallow-marine SAIGUP model. Since the
reservoir contains five different facies, the histograms are multi-modal. See also Fig-
ure 2.20.

Page: 54 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 55

% Key statements
SN = grdecl.SATNUM ( G.cells.indexMap );
plotCellData (G , SN , args {:});
colorbar ( 'horiz ' ); caxis ([0 .5 6.5 ])
j = jet(60); colormap (j (1:10:end,:))
plotCellData (G , SN , find (SN==1), args{:});
plotCellData (G , SN , find (SN==5), args{:});

 0.01     1   100 10000
0

100

200

300

400

 0.01     1   100 10000
0

100

200

300

400

 0.01     1   100 10000
0

200

400

600

 0.01     1   100 10000
0

500

1000

1500

 0.01     1   100 10000
0

500

1000

1500

 0.01     1   100 10000
0

20

40

60

80

Fig. 2.20. The upper-left plot shows the rock type distribution for the SAIGUP
model. The right column shows the six rock types grouped in pairs; from top to
bottom, rock types number 1 and 5, 2 and 4, and 3 and 6. The bottom part of the
figure shows histograms of the lateral permeability in units [mD] for each of the six
rock types found in the SAIGUP model.

each rock type. Interestingly, the permeability distribution is multi-modal for
at least two of the rock types.

Finally, to demonstrate the large difference in heterogeneity resulting from
different depositional environment, we compare the realization we have stud-
ied above with another realization. In Figure 2.21 we show porosities and
rock-type distributions. Whereas our original realization seems to correspond
to a depositional environment with a flat shoreline, the other realization cor-
responds to a two-lobed shoreline, giving distinctively different facies belts.
The figure also clearly demonstrates how the porosity (which depends on the

Page: 55 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



56 2 Modelling Reservoir Rocks

Fig. 2.21. Comparison of porosity (left) and the distribution of rock types (right)
for two different SAIGUP realizations.

grain-size distribution and packing) varies with the rock types. This can be
confirmed by a quick analysis:

for i=1:6, pavg(i) = mean(rock.poro(SN==i));
navg(i) = mean(rock.ntg(SN==i)); end

pavg = 0.0615 0.1883 0.1462 0.1145 0.0237 0.1924

navg = 0.5555 0.8421 0.7554 0.6179 0.3888 0.7793

In other words, rock types two and six are good sands with high porosity,
three and four have intermediate porosity, whereas one and five correspond
to less quality sand with a high clay content and hence low porosity.

Computer exercises:

1. Look at the correlation between the porosity and the permeability for the
SPE 10 data set. Do you see any artifacts, and if so, how would you explain
them? (Hint: plot φ versus logK)

2. Download the CaseB4 models that represent a simple box geometry with
intersecting faults. Pick at least one of the model realizations and try to set
homogeneous and random petrophysical data as discussed in Sections 2.5.1
and 2.5.2.

Page: 56 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



2.5 Property modelling in MRST 57

3. The permeability field given in rock1.mat in the book module contains an
unusual geological structure. Can you find what it is?

4. Download the BedModels1 and BedModel2 data sets that represent sedi-
mentary beds similar to the facies model shown in Figure 2.7. Use the
techniques introduced in Sections 2.5.3 to 2.5.5 to familiarize yourself with
these models:
� look at porosities and permeabilities in physical space
� compare with the same quantities in ijk space
� find models that have facies information and look at the distribution of

petrophysical properties inside each facies
5. Modify the simpleGravityColumn example from Section 1.4 so that it

uses the geometry and petrophysical data in the mortarTestModel or
periodicTilted models from the BedModels1 data set instead. Can you
explain what you observe?

Page: 57 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 58 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3

Grids in Subsurface Modeling

The basic geological description of a petroleum reservoir or an aquifer system
will typically consist of two sets of surfaces. Geological horizons are lateral
surfaces that describe the bedding planes that delimit the rock strata, whereas
faults are vertical or inclined surfaces along which the strata may have been
displaced by geological processes. In this chapter, we will discuss how to turn
the basic geological description into a discrete model that can be used to
formulate various computational methods, e.g., for solving the equations that
describe fluid flow.

A grid is a tessellation of a planar or volumetric object by a set of contigu-
ous simple shapes referred to as cells. Grids can be described and distinguished
by their geometry, reflected by the shape of the cells that form the grid, and
their topology that tells how the individual cells are connected. In 2D, a cell is
in general a closed polygon for which the geometry is defined by a set of ver-
tices and a set of edges that connect pairs of vertices and define the interface
between two neighboring cells. In 3D, a cell is a closed polyhedron for which
the geometry is defined by a set of vertices, a set of edges that connect pairs of
vertices, and a set of faces (surfaces delimited by a subset of the edges) that
define the interface between two different cells, see Figure 3.1. Herein, we will
assume that all cells in a grid are non-overlapping, so that each point in the
planar/volumetric object represented by the grid is either inside a single cell,
lies on an interface or edge, or is a vertex. Two cells that share a common
face are said to be connected. Likewise, one can also define connections based
on edges and vertices. The topology of a grid is defined by the total set of
connections, which is sometimes also called the connectivity of the grid.

When implementing grids in modeling software, one always has the choice
between generality and efficiency. To represent an arbitrary grid, it is necessary
to explicitly store the geometry of each cell in terms of vertices, edges, and
faces, as well as storing the connectivity among cells, faces, edges, and vertices.
However, as we will see later, huge simplifications can be made for particular
classes of grids by exploiting regularity in the geometry and structures in
the topology. Consider, for instance, a planar grid consisting of rectangular

Page: 59 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



60 3 Grids in Subsurface Modeling

Fig. 3.1. Illustration of a single cell (left), vertices and edges (middle), and cell
faces (right).

cells of equal size. Here, the topology can be represented by two indices and
one only needs to specify a reference point and the two side lengths of the
rectangle to describe the geometry. This way, one ensures minimal memory
usage and optimal efficiency when accessing the grid. On the other hand,
exploiting the simplified description explicitly in your flow or transport solver
inevitably means that the solver must be reimplemented if you later decide
to use another grid format.

The most important goal for our development of MRST is to provide a
toolbox that both allows and enables the use of various grid types. To avoid
having a large number of different, and potentially incompatible, grid repre-
sentations, we have therefore chosen to store all grid types using a general
unstructured format in which cells, faces, vertices, and connections between
cells and faces are explicitly represented. This means that we, for the sake of
generality, have sacrificed some of the efficiency one can obtain by exploiting
special structures in a particular grid type and instead have focused on ob-
taining a flexible grid description that is not overly inefficient. Moreover, our
grid structure can be extended by other properties that are required by var-
ious discretization schemes for flow and transport simulations. A particular
discretization may need the volume or the centroid (grid-point, midpoint, or
generating point) of each cell. Likewise, for cell faces one may need to know the
face areas, the face normals, and the face centroids. Although these proper-
ties can be computed from the geometry (and topology) of the grid, it is often
useful to precompute and include them explicitly in the grid representation.

The first third of this chapter is devoted to standard grid formats that
are available in MRST. We introduce examples of structured grids, including
regular Cartesian, rectilinear, and curvilinear grids, and briefly discuss un-
structured grids, including Delaunay triangulations and Voronoi grids. The
purpose of our discussion is to demonstrate the basic grid functionality in
MRST and show some key principles that can be used to implement new
structured and unstructured grid formats. In the second part of the chap-
ter, we discuss industry-standard grid formats for stratigraphic grids that are
based on extrusion of 2D shapes (corner-point, prismatic, and 2.5D PEBI
grids). Although these grids have an inherent logical structure, representation
of faults, erosion, pinch-outs, and so on lead to cells that can have quite ir-

Page: 60 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.1 Structured grids 61

regular shapes and an (almost) arbitrary number of faces. In the last part of
the chapter, we discuss how the grids introduced in the first two parts of the
chapter can be partitioned to form flexible coarse descriptions that preserve
the geometry of the underlying fine grids. The ability to represent a wide
range of grids, structured or unstructured on the fine and/or coarse scale, is
a strength of MRST compared to the majority of research codes arising from
academic institutions.

A number of videos that complement the material presented in this chap-
ter can be found in the second MRST Jolt [139]. This Jolt introduces different
types of grids, discusses how such grids can be represented, and outlines func-
tionality in MRST you can use to generate your own grids.

3.1 Structured grids

As we saw above, a grid is a tessellation of a planar or volumetric object by
a set of simple shapes. In a structured grid, only one basic shape is allowed
and this basic shape is laid out in a regular repeating pattern so that the
topology of the grid is constant in space. The most typical structured grids
are based on quadrilaterals in 2D and hexahedrons in 3D, but in principle it
is also possible to construct grids with a fixed topology using certain other
shapes. Structured grids can be generalized to so-called multiblock grids (or
hybrid grids), in which each block consists of basic shapes that are laid out
in a regular repeating pattern.

Regular Cartesian grids

The simplest form of a structured grid consists of unit squares in 2D and
unit cubes in 3D, so that all vertices in the grid are integer points. More
generally, a regular Cartesian grid can be defined as consisting of congruent
rectangles in 2D and rectilinear parallelepipeds in 3D, etc. Hence, the vertices
have coordinates (i1∆x1, i2∆x2, . . . ) and the cells can be referenced using the
multi-index (i1, i2, . . . ). Herein, we will only consider finite Cartesian grids
that consist of a finite number n2×n2×· · ·×nk of cells that cover a bounded
domain [0, L1]× [0, L2]× · · · × [0, Lk].

Regular Cartesian grids can be represented very compactly by storing ni
and Li for each dimension. In MRST, however, Cartesian grids are represented
as if they were fully unstructured using a general grid structure that will be
described in more detail in Section 3.4. Cartesian grids therefore have special
constructors,

G = cartGrid([nx, ny], [Lx Ly ]);
G = cartGrid([nx, ny, nz], [Lx Ly Lz ]);

that set up the data structures representing the basic geometry and topology
of the grid. The second argument is optional.

Page: 61 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



62 3 Grids in Subsurface Modeling

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3.2. Example of a rectilinear grid.

Rectilinear grids

A rectilinear grid (also called a tensor grid) consists of rectilinear shapes (rect-
angles or parallelepipeds) that are not necessarily congruent to each other. In
other words, whereas a regular Cartesian grid has a uniform spacing between
its vertices, the grid spacing can vary along the coordinate directions in a rec-
tilinear grid. The cells can still be referenced using a multi-index (i1, i2, . . . )
but the mapping from indices to vertex coordinates is nonuniform.

In MRST, one can construct a rectilinear grid by specifying the vectors
with the grid vertices along the coordinate directions:

G = tensorGrid(x, y);
G = tensorGrid(x, y, z);

This syntax is the same as for the MATLAB functions meshgrid and ndgrid.
As an example of a rectilinear grid, we construct a 2D grid that covers

the domain [−1, 1]× [0, 1] and is graded toward x = 0 and y = 1 as shown in
Figure 3.2.

dx = 1−0.5*cos((−1:0.1:1)*pi);
x = −1.15+0.1*cumsum(dx);
y = 0:0.05:1;
G = tensorGrid(x, sqrt(y));
plotGrid(G); axis([−1.05 1.05 −0.05 1.05]);

Curvilinear grids

A curvilinear grid is a grid with the same topological structure as a regular
Cartesian grid, but in which the cells are quadrilaterals rather than rectangles

Page: 62 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.1 Structured grids 63

in 2D and cuboids rather than parallelepipeds in 3D. The grid is given by the
coordinates of the vertices but there exists a mapping that will transform
the curvilinear grid to a uniform Cartesian grid so that each cell can still be
referenced using a multi-index (i1, i2, . . . ).

For the time being, MRST has no constructor for curvilinear grids. Instead,
the user can create curvilinear grids by first instantiating a regular Cartesian
or a rectilinear grid and then manipulating the vertices, as we will demonstrate
next. This method is quite simple as long as there is a one-to-one mapping
between the curvilinear grid in physical space and the logically Cartesian grid
in reference space. The method will not work if the mapping is not one-to-one
so that vertices with different indices coincide in physical space. In this case,
the user should create an Eclipse input file with keywords COORD[XYZ], see
Section 3.3.1, and use the function buildCoordGrid to create the grid.

To illustrate the discussion, we show two examples of how to create curvi-
linear grids. In the first example, we create a rough grid by perturbing all
internal nodes of a regular Cartesian grid (see Figure 3.3):

nx = 6; ny=12;
G = cartGrid([nx, ny]);
subplot(1,2,1); plotGrid(G);
c = G.nodes.coords;
I = any(c==0,2) | any(c(:,1)==nx,2) | any(c(:,2)==ny,2);
G.nodes.coords(~I,:) = c(~I,:) + 0.6*rand(sum(~I),2)−0.3;
subplot(1,2,2); plotGrid(G);

0 2 4 6
0

2

4

6

8

10

12

0 2 4 6
0

2

4

6

8

10

12

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

 

 

0.9

0.95

1

1.05

1.1

Fig. 3.3. The middle plot shows a rough grid created by perturbing all internal
nodes of the regular 6 × 12 Cartesian grid in the left plot. The right plot shows a
curvilinear grid created using the function twister that uses a combination of sin
functions to perturb a rectilinear grid. The color is determined by the cell volumes.

In the second example, we use the MRST example routine twister to perturb
the internal vertices. The function maps the grid back to the unit square,
perturbs the vertices according to the mapping

(xi, yi) 7→
(
xi+f(xi, yi), yi−f(xi, yi)

)
, f(x, y) = 0.03 sin(πx) sin

(
3π(y− 1

2 )
)
,

Page: 63 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



64 3 Grids in Subsurface Modeling

and then maps the grid back to its original domain. The resulting grid is
shown in the right plot of Figure 3.3. To illuminate the effect of the mapping,
we have colored the cells according to their volume, which has been computed
using the function computeGeometry, which we will come back to below.

G = cartGrid([30, 20]);
G.nodes.coords = twister(G.nodes.coords);
G = computeGeometry(G);
plotCellData(G, G.cells.volumes, 'EdgeColor', 'k'), colorbar

Fictitious domains

One obvious drawback with Cartesian and rectilinear grids, as defined above,
is that they can only represent rectangular domains in 2D and cubic domains
in 3D. Curvilinear grids, on the other hand, can represent more general shapes
by introducing an appropriate mapping, and can be used in combination with
rectangular/cubic grids in multiblock grids for efficient representation of re-
alistic reservoir geometries. However, finding a mapping that conforms to a
given boundary is often difficult, in particular for complex geologies, and us-
ing a mapping in the interior of the domain will inadvertently lead to cells
with rough geometries that deviate far from being rectilinear. Such cells may
in turn introduce problems if the grid is to be used in a subsequent numerical
discretization, as we will see later.

As an alternative, complex geometries can be easily modelled using struc-
tured grids by a so-called fictitious domain method. In this method, the com-
plex domain is embedded into a larger ”fictitious” domain of simple shape (a
rectangle or cube) using, e.g., a boolean indicator value in each cell to tell
whether the cell is part of the domain or not. The observant reader will notice
that we already have encountered the use of this technique for the SAIGUP
dataset (Figure 2.16) and the Johansen dataset in Chapter 2. In some cases,
one can also adapt the structured grid by moving the nearest vertices to the
domain boundary.

MRST has support for fictitious domain methods through the function
removeCells, which we will demonstrate in the next example, where we create
a regular Cartesian grid that fills the volume of an ellipsoid:

x = linspace(−2,2,21);
G = tensorGrid(x,x,x);
subplot(1,2,1); plotGrid(G);view(3); axis equal

subplot(1,2,2); plotGrid(G,'FaceColor','none');
G = computeGeometry(G);
c = G.cells.centroids;
r = c(:,1).ˆ2 + 0.25*c(:,2).ˆ2+0.25*c(:,3).ˆ2;
G = removeCells(G, r>1);
plotGrid(G); view(−70,70); axis equal;

Page: 64 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.1 Structured grids 65

−2

0

2

−2

0

2

−2

−1

0

1

2

−2

−1

0

1

2

−2
−1

0
1

2

−2

0

2

Fig. 3.4. Example of a regular Cartesian grid representing a domain in the form of
an ellipsoid. The underlying logical Cartesian grid is shown in the left plot and as
a wireframe in the right plot. The active part of the model is shown in yellow color
in the right plot.

Worth observing here is the use of computeGeometry to compute cell cen-
troids which are not part of the basic geometry representation in MRST.
Plots of the grid before and after removing the inactive parts are shown in
Figure 3.4. Because of the fully unstructured representation used in MRST,
calling computeGeometry actually removes the inactive cells from the grid struc-
ture, but from the outside, the structure behaves as if we had used a fictitious
domain method.

You can find more examples of how you can make structured grids and
populate them with petrophysical properties in the fourth video of the second
MRST Jolt [139].

Computer exercises:

6. Make the grid shown below:

Hint: the grid spacing in the x-direction is given by ∆x(1− 1
2

cos(πx)) and
the colors signify cell volumes.

Page: 65 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



66 3 Grids in Subsurface Modeling

7. Metaballs are commonly used in computer graphics to generate organic-
looking objects. Each metaball is defined as a smooth function that has
finite support. One example is

m(~x, r) =
[
1−min

( |~x|2
r2

, 1
)]4

.

Metaballs can be used to define objects implicitly, e.g., as all the points ~x
that satisfy ∑

i

m(~x− ~xi, ri) ≤ C, C ∈ IR+

Use this approach and try to make grids similar to the ones shown below:

8. A simple way to make test models with funny geometries is to use the
method of fictitious and let an image define the domain of interest. In
the example below, the image was taken from penny, which is one of the
standard data sets that are distributed with MATLAB, and then used to
define the geometry of the grid and assign permeability values

Pick your own favorite image or make one in a drawing program and use
imread to load the image into MATLAB as a 3D array, which you can
use to define your geometry and petrophysical values. If you do not have
an image at hand, you can use penny or spine. For penny, in particular,
you may have to experiment a bit with the threshold used to define your
domain to ensure that all cells are connected, i.e., that the grid you obtain
consists of only one piece.

Page: 66 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 67

3.2 Unstructured grids

An unstructured grid consists of a set of simple shapes that are laid out in an
irregular pattern so that any number of cells can meet at a single vertex. The
topology of the grid will therefore change throughout space. An unstructured
grid can generally consist of a combination of polyhedral cells with varying
number of faces, as we will see below. However, the most common forms of
unstructured grids are based on triangles in 2D and tetrahedrons in 3D. These
grids are very flexible and are relatively easy to adapt to complex domains
and structures or refine to provide increased local resolution.

Unlike structured grids, unstructured grids cannot generally be efficiently
referenced using a structured multi-index. Instead, one must describe a list of
connectivities that specifies the way a given set of vertices make up individual
element and element faces, and how these elements are connected to each
other via faces, edges, and vertices.

To understand the properties and construction of unstructured grids, we
start by a brief discussion of two concepts from computational geometry: De-
launay tessellation and Voronoi diagrams. Both these concepts are supported
by standard functionality in MATLAB.

3.2.1 Delaunay tessellation

A tessellation of a set of generating points P = {xi}ni=1 is defined as a set of
simplices that completely fills the convex hull of P. The convex hull H of P is
the convex minimal set that contains P and can be described constructively
as the set of convex combinations of a finite subset of points from P,

H(P) =
{∑̀
i=1

λixi
∣∣ xi ∈ P, λi ∈ R, λi ≥ 0,

∑̀
i=1

λi = 1, 1 ≤ ` ≤ n
}
.

Delaunay tessellation is by far the most common method of generating a tes-
sellation based on a set of generating points. In 2D, the Delaunay tessellation
consists of a set of triangles defined so that three points form the corners of a
Delaunay triangle only when the circumcircle that passes through them con-
tains no other points, see Figure 3.5. The definition using circumcircles can
readily be generalized to higher dimensions using simplices and hyperspheres.

The center of the circumcircle is called the circumcenter of the triangle. We
will come back to this quantity when discussing Voronoi diagrams in the next
subsection. When four (or more) points lie on the same circle, the Delaunay
triangulation is not unique. As an example, consider four points defining a
rectangle. Using either of the two diagonals will give two triangles satisfying
the Delaunay condition.

The Delaunay triangulation can alternatively be defined using the so-called
max-min angle criterion, which states that the Delaunay triangulation is the
one that maximizes the minimum angle of all angles in a triangulation, see

Page: 67 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



68 3 Grids in Subsurface Modeling

Fig. 3.5. Two triangles and their circumcircles.

Fig. 3.6. Example of two triangulations of the same five points; the triangulation
to the right satisfies the min-max criterion.

Figure 3.6. Likewise, the Delaunay triangulation minimizes the largest circum-
circle and minimizes the largest min-containment circle, which is the smallest
circle that contains a given triangle. Additionally, the closest two generating
points are connected by an edge of a Delaunay triangulation. This is called
the closest-pair property, and such two neighboring points are often referred
to as natural neighbors. This way, the Delaunay triangulation can be seen as
the natural tessellation of a set of generating points.

Delaunay tessellation is a popular research topic and there exists a large
body of literature on theoretical aspects and computer algorithms. Likewise,
there are a large number of software implementations available on the net.
For this reason, MRST does not have any routines for generating tessellations
based on simplexes. Instead, we have provided simple routines for mapping a
set of points and edges, as generated by MATLAB’s Delaunay triangulation
routines, to the internal data structure used to represent grids in MRST. How
they work, will be illustrated in terms of a few simple examples.

In the first example, we use routines from MATLAB’s polyfun toolbox to
triangulate a rectangular mesh and convert the result using the MRST routine
triangleGrid:

[x,y] = meshgrid(1:10,1:8);
t = delaunay(x(:),y (:));
G = triangleGrid([x(:) y(:)],t);
plot(x(:),y (:), 'o' , 'MarkerSize',8);
plotGrid(G,'FaceColor','none');

Page: 68 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 69

Depending on what version you have of MATLAB, the 2D Delaunay routine
delaunay will produce one of the triangulations shown in Figure 3.7. In older
versions of MATLAB, the implementation of delaunay was based on ’QHULL’
(see http://www.qhull.org), which produces the unstructured triangulation
shown in the right plot. MATLAB 7.9 and newer has improved routines for
2-D and 3-D computational geometry, and here delaunay will produce the
structured triangulation shown in the left plot. However, the n-D tessellation
routine delaunayn([x(:) y (:)]) is still based on ’QHULL’ and will generally
produce an unstructured tessellation, as shown in the right plot.

If the set of generating points is structured, e.g., as one would obtain by
calling either meshgrid or ndgrid, it is straightforward to make a structured
triangulation. The following skeleton of a function makes a 2D triangulation
and can easily be extended by the interested reader to 3D:

function t = mesh2tri(n,m)
[I,J]=ndgrid(1:n−1, 1:m−1); p1=sub2ind([n,m],I(:),J(:));
[I,J]=ndgrid(2:n , 1:m−1); p2=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m ); p3=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 1:m−1); p4=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(2:n , 2:m ); p5=sub2ind([n,m],I(:),J (:));
[I,J]=ndgrid(1:n−1, 2:m ); p6=sub2ind([n,m],I(:),J (:));
t = [p1 p2 p3; p4 p5 p6 ];

In Figure 3.8, we have used the demo case seamount that is supplied with
MATLAB as an example of a more complex unstructured grid

load seamount;
plot(x(:),y (:), 'o' );
G = triangleGrid([x(:) y (:)]);
plotGrid(G,'FaceColor',[.8 .8 .8 ]); axis off;

The observant reader will notice that here we do not explicitly generate a
triangulation before calling triangleGrid; if the second argument is omitted,
the routine uses MATLAB’s built-in delaunay triangulation as default.

For 3D grids, MRST supplies a conversion routine tetrahedralGrid(P, T)

that constructs a valid grid definition from a set of points P (m × 3 array

Fig. 3.7. Two different Delaunay tessellations of a rectangular point mesh.

Page: 69 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.qhull.org


70 3 Grids in Subsurface Modeling

Fig. 3.8. The left plot shows the triangular grid from the seamount demo case. The
right plot shows a tetrahedral tessellation of a 3D point mesh.

of node coordinates) and a tetrahedron list T (n array of node indices). The
tetrahedral tessellation shown to the right in Figure 3.8 was constructed from
a set of generating points defined by perturbing a regular hexahedral point
mesh:

N=7; M=5; K=3;
[x,y,z] = ndgrid(0:N,0:M,0:K);
x(2:N ,2:M ,:) = x(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
y(2:N ,2:M ,:) = y(2:N,2:M ,:) + 0.3*randn(N−1,M−1,K+1);
G = tetrahedralGrid([x(:) y(:) z (:)]);
plotGrid(G, 'FaceColor' ,[.8 .8 .8 ]); view(−40,60); axis tight off

3.2.2 Voronoi diagrams

The Voronoi diagram of a set of points P = {xi}ni=1 is the partitioning of Eu-
clidean space into n (possibly unbounded) convex polytopes1 such that each
polytope contains exactly one generating point xi and every point inside the
given polytope is closer to its generating point than any other point in P.
The convex polytopes are called Voronoi cells (or Voronoi regions). Mathe-
matically, the Voronoi cell V (xi) of generating point xi in P can be defined
as

V (xi) =
{
x
∣∣ ‖x− xi‖ < ‖x− xj‖ ∀j 6= i

}
. (3.1)

A Voronoi region is not closed in the sense that a point that is equally close
to two or more generating points does not belong to the region defined by
(3.1). Instead, these points are said to lie on the Voronoi segments and can
be included in the Voronoi cells by defining the closure of V (xi), using “≤”
rather than “<” in (3.1).

1 A polytope is a generic term that refers to a polygon in 2D, a polyhedron in 3D,
and so on.

Page: 70 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 71

Fig. 3.9. Duality between Voronoi diagrams and Delaunay triangulation. From top
left to bottom right: generating points, Delaunay triangulation, Voronoi diagram,
and Voronoi diagram (thick lines) and Delaunay triangulation (thin lines).

The Voronoi cells for all generating points lying at the convex hull of P are
unbounded, all other Voronoi cells are bounded. For each pair of two points
xi and xj , one can define a hyperplane with co-dimension one consisting of
all points that lie equally close to xi and xj . This hyperplane is the perpen-
dicular bisector to the line segment between xi and xj and passes through
the midpoint of the line segment. The Voronoi diagram of a set of points
can be derived directly as the dual of the Delaunay triangulation of the same
points. To understand this, we consider the planar case, see Figure 3.9. For
every triangle, there is a polyhedron in which vertices occupy complementary
locations:

� The circumcenter of a Delaunay triangle corresponds to a vertex of a
Voronoi cell.

� Each vertex in the Delaunay triangulation corresponds to, and is the center
of, a Voronoi cell.

Moreover, for locally orthogonal Voronoi diagrams, an edge in the Delaunay
triangulation corresponds to a segment in the Voronoi diagram and the two
intersect each other orthogonally. However, as we can see in Figure 3.9, this
is not always the case. If the circumcenter of a triangle lies outside the trian-
gle itself, the Voronoi segment does not intersect the corresponding Delaunay
edge. To avoid this situation, one can perform a constrained Delaunay trian-
gulation and insert additional points where the constraint is not met (i.e., the
circumcenter is outside its triangle).

Figure 3.10 shows three examples of planar Voronoi diagrams generated
from 2D point lattices using the MATLAB-function voronoi. MRST does not

Page: 71 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



72 3 Grids in Subsurface Modeling

Fig. 3.10. Three examples of Voronoi diagrams generated from 2D point lattices.
From left to right: square lattice, square lattice rotated 45 degrees, lattice forming
equilateral triangles.

Fig. 3.11. Two examples of Voronoi grids. The left plot shows a honeycombed PEBI
grid and the right plot shows the PEBI grid derived from the seamount demo case.

yet have a similar function that generates a Voronoi grid from a point set,
but offers V=pebi(T) that generates a locally orthogonal, 2D Voronoi grid V

as a dual to a triangular grid T. The grids are constructed by connecting the
perpendicular bisectors of the edges of the Delaunay triangulation, hence the
name perpendicular bisector (PEBI) grids. To demonstrate the functionality,
we first generate a honeycombed grid similar to the one shown in the right
plot in Figure 3.10

[x,y] = meshgrid([0:4]*2*cos(pi/6),0:3);
x = [x (:); x(:)+cos(pi/6)];
y = [y (:); y(:)+sin(pi/6)];
G = triangleGrid([x,y]);
plotGrid(pebi(G), 'FaceColor','none'); axis equal off

The result is shown in Figure 3.11. As a second example, we reiterate the
seamount examples shown in Figure 3.8

load seamount

V = pebi(triangleGrid([x y]));
plotGrid(V,'FaceColor',[.8 .8 .8 ]); axis off;

Several of the examples discussed above can also be found in the fifth video
of the second MRST Jolt [139]. Since pebi is a 2D code, we cannot apply it
directly to the 3D tetrahedral grid shown in Figure 3.8 to generate a dual 3D
Voronoi grid. In the next section, we discuss a simple approach in geological
modeling in which we extrude 2D Voronoi grid to 3D to preserve geological
layering. The interested reader should consult [157] and references therein for
more discussion of general 3D Voroni grids.

Page: 72 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 73

3.2.3 Other types of tessellations

Tessellations come in many other forms than the Delaunay and Voronoi types
discussed in the two previous sections. Tessellations are more commonly re-
ferred to as tilings and are patterns made up of geometric forms (tiles) that
are repeated over and over without overlapping or leaving any gaps. Such
tilings can be found in many patterns of nature, like in honeycombs, gi-
raffe skin, pineapples, snake skin, tortoise shells, to name a few. Tessella-
tions have also been extensively used for artistic purposes since ancient times,
from the decorative tiles of Ancient Rome and Islamic art to the amazing
artwork of M. C. Esher. For completeness (and fun), MRST offers the func-
tion tessellationGrid that can take a tessellation consisting of symmetric
n-polygonals and turn it into a correct grid structure. While this may not be
very useful in modeling petroleum reservoirs, it can easily be used to generate
irregular grids that can be used to stress-test various discretization methods.
Let us first use it to make a standard n×m Cartesian mesh:

[x,y] = meshgrid(linspace(0,1,n+1),linspace(0,1,m+1));
I = reshape(1:(n+1)*(m+1),m+1,n+1);
T = [reshape(I(1:end−1,1:end−1),[],1)'; reshape(I(1:end−1,2:end ),[],1)';

reshape(I(2:end, 2:end ),[],1)'; reshape(I(2:end, 1:end −1),[],1)']';
G = tessellationGrid([x(:) y(:)], T);

Here, the vertices and cells are numbered first in the y direction and then in the
x-direction, so that the first two lines in T read [1 m+2 m+3 2; 2 m+3 m+4 3],
and so on.

There are obviously many ways to make more general tilings. The script
showTessellation in the book module shows two slightly different ap-
proaches. To generate the alternating convex/concave hexagonal tiling illus-
trated in Figure 3.12 we first generate the convex and the concave tiles. These
will have symmetry lines that together form a triangle for each tile, which
we can use to glue the tiles together. If we glue a convex (blue) to the right
edge of the concave (yellow) tile and likewise glue a concave (yellow) tile to
the right of the upper convex (blue) tile, we get a dodecagon consisting of
two convex and two concave tiles. This composite tile can now be placed on
a regular mesh; in Figure 3.12 we have used a 4× 2 regular mesh.

To generate the tiling shown in Figure 3.13 we start from an equilateral
triangulation (p,t) covering a certain part of space. We then extract the end-
points p1 and p2 on each edge and compute the angle φ the line between them
makes with the x-axis. We will use this information to perturb the points. By
using this orientation of the lines, we can easily make sure that the original
triangles can be turned into matching 3n-polygons for n = 2, 3, . . . , if we for
each triple of new points we add, describe the point added to the original p1p2

line on the form (with α and β constants for each triplet):

x = p1 + α|p2 − p1|[cos(φ+ β), sin(φ+ β)].

Figure 3.13 shows that consecutive addition of four points on each original line
segment, thereby turning a triangulation into a pentadecagonal tessellation.

Page: 73 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



74 3 Grids in Subsurface Modeling

Convex/concave tiles Tiling of space

Fig. 3.12. Tiling consisting of alternating convex and concave hexahedrons.

Triangles Hexagons Nonagons Dodecagons

Pentadecagons Tiling of space

Fig. 3.13. Gradual creation of a tiling consisting of irregular pentadecagons. (Can
you see the hen facing left and the man running towards the right?).

Page: 74 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 75

3.2.4 Using an external mesh generator

Using a Delaunay triangulation as discussed above, we can generate grids that
fit a given set of vertices. However, in most applications, the vertex points are
not give a priori and all one wants is a reasonable grid that fits an exterior
boundary describing the perimeter of the domain and possibly also a set of in-
terior boundaries and/or features, which in the case of subsurface media could
be faults or major fractures. To this end, one typically will have to use a mesh
generator. There are a large number of mesh generators available online, and
in principle any of these can be used in combination with MRST’s grid factory
routines as long as they produce triangulations on the form outlined above.
My personal favorite is DistMesh by Persson and Strang [193]. While most
mesh generators tend to be complex and quite inaccessible codes, DistMesh
is a relatively short and simple MATLAB code written in the same spirit as
MRST. The performance of the code may not be optimal, but the user can go
in and inspect all algorithms and modify them to his or her purpose. In the
following, we will use DistMesh to generate a few examples of more complex
triangular and Voronoi grids in 2D.

DistMesh is distributed under the GNU GPL license (which is the same
license that MRST uses) and can be downloaded from the software’s webpage.
The simplest way to integrate DistMesh with MRST is to install it as a 3rd-
party module. Assuming that you are connected to internet, this is done as
follows:

path = fullfile(ROOTDIR,'utils','3rdparty', 'distmesh');
mkdir(path)
unzip('http://persson.berkeley.edu/distmesh/distmesh.zip', path);
mrstPath('reregister ' , 'distmesh', path);

You are now ready to start using the software. If you intend to use DistMesh

many times, you should copy the last line to the startup_user.m file in the
MRST root directory.

In DistMesh, the perimeter of the domain is represented using a signed
distance function d(x, y), which is by definition set to be negative inside the
region. The software offers a number of utility functions that makes it simple
to describe relatively complex geometries, as we shall see in the following. Let
us start with a simple example, which is taken from the DistMesh webpage:
Consider a square domain [−1, 1]× [−1, 1] with a circular cutout of radius 0.5
centered at the origin. We start by making a grid that has a uniform target
size h = 0.2

mrstModule add distmesh;
fd=@(p) ddiff(drectangle(p,−1,1,−1,1), dcircle(p,0,0,0.5));
[p,t]=distmesh2d(fd, @huniform, 0.2, [−1,−1;1,1], [−1,−1;−1,1;1,−1;1,1]);
G = triangleGrid(p, t);

Page: 75 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



76 3 Grids in Subsurface Modeling

Fig. 3.14. Grids generated by the DistMesh grid generator.

Here, we have used utility functions ddif, drectangle and dcircle to com-
pute the signed distance from the outer and the inner perimeter. Likewise, the
huniform to set enforce uniform cell size equal distance between the points
in the initial, which here is 0.2. The fourth argument is the bounding box
of our domain, and the fifth argument consist of fixed points that the algo-
rithm is not allowed to move. After the triangulation has been computed by
distmesh2d we pass it to triangleGrid to make a MRST grid structure. The
resulting grid is shown to the left in Figure 3.14.

As a second test, let us make a graded grid that has a mesh size of ap-
proximately 0.05 at the inner circle and 0.2–0.35 at the outer perimeter. To
enforce this, we replace the huniform function by another function that gives
the correct mesh size distribution

fh=@(p) 0.05+0.3*dcircle(p,0,0,0.5);
[p,t]=distmesh2d(fd, fh, 0.05,[−1,−1;1,1], [−1,−1;−1,1;1,−1;1,1]);

The resulting grid is shown in the middle plot in Figure 3.14 and has the
expected grading from the inner boundary and outwards to the perimeter.

In our last example, we will create a graded triangulation of a polygonal
domain and then use pebi to compute its Voronoi diagram

pv = [−1 −1; 0 −.5; 1 −1; 1 1; 0 .5; −1 1; −1 −1];
fh = @(p,x) 0.025 + 0.375*sum(p.ˆ2,2);
[p,t] = distmesh2d(@dpoly, fh, 0.025, [−1 −1; 1 1], pv, pv);
G = pebi(triangleGrid(p, t));

Here, we use the utility function dpoly(p,pv) to compute the signed distance
of any point set p to the polygon with vertices in pv. Notice that pv must
form a closed path. Likewise, since the signed distance function and the grid
density function are assumed to take the same number of arguments, fh is
created with a dummy argument x. The argument sent to these functions are
passed as the sixth argument to distmesh2d. The resulting grid is shown to
the right in Figure 3.14.

DistMesh also has routines for creating nD triangulations and triangula-
tions of surfaces, but these are beyond the scope of the current presentation.

Page: 76 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.2 Unstructured grids 77

Computer exercises:

9. Create MRST grids from the standard data sets trimesh2d and tetmesh.
How would you assign lognormal petrophysical parameters to these grids
so that the spatial correlation is preserved?

10. In MRST all triangular grids are assumed to be planar so that each vertex
can be given by a 2D coordinate. However, triangular grids are commonly
used to represent non-planar surfaces in 3D. Can you extend the function
triangleGrid so that it can construct both 2D and 3D grids? You can use
the data set trimesh3d as an example of a triangulated 3D surface.

11. MRST does not yet have a grid factory routine to generate structured grids
with local, nested refinement as shown in the figure to the left below.

Try to use a combination of triangleGrid and pebi to make a good approx-
imation to such a grid as shown to the right in the figure above. (Hint: to get
rid of artifacts, one layer of cells were removed along the outer boundary.)

12. The figure below shows an unstructured hexagonal grid that has been
adapted to two faults in the interior of the domain and padded with rect-
angular cells near the boundary. Try to implement a routine that generates
a similar grid.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Hint: in this case, the strike direction of the faults are ±30◦ and the start
and endpoints of the faults have been adjusted so that they coincide with
the generating points of hexagonal cells.

13. What would you do to fit the tessellations in Figures 3.12 and 3.13 so that
they fill a rectangular box without leaving any gaps along the border?

14. Download and install distmesh and try to make MRST grids from all the
triangulations shown in [193, Fig. 5.1].

Page: 77 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



78 3 Grids in Subsurface Modeling

3.3 Stratigraphic grids

In the previous chapter, we saw that grid models are used as an important
ingredient in describing the geometrical and petrophysical properties of a sub-
surface reservoir. This means that the grid is closely attached to the parameter
description of the flow model and, unlike in many other disciplines, cannot be
chosen arbitrarily to provide a certain numerical accuracy. Indeed, the grid
is typically chosen by a geologist who tries to describe the rock body by as
few volumetric cells as possible and who basically does not care too much
about potential numerical difficulties his or her choice of grid may cause in
subsequent flow simulations. This statement is, of course, grossly simplified
but is important to bear in mind throughout the rest of this chapter.

The industry standard for representing the reservoir geology in a flow simu-
lator is through the use of a stratigraphic grid that is built based on geological
horizons and fault surfaces. The volumetric grid is typically built by extrud-
ing 2D tessellations of the geological horizons in the vertical direction or in
a direction following major fault surfaces. For this reason, some stratigraphic
grids, like the PEBI grids that we will meet in Section 3.3.2, are often called
2.5D rather than 3D grids. These grids may be unstructured in the lateral
direction, but have a clear structure in the vertical direction to reflect the
layering of the reservoir.

Because of the role grid models play in representing geological formations,
real-life stratigraphic grids tend to be highly complex and have unstructured
connections induced by the displacements that have occured over faults. An-
other characteristic feature is high aspect ratios. Typical reservoirs extend
several hundred or thousand meters in the lateral direction, but the zones car-
rying hydrocarbon may be just a few tens of meters in the vertical direction
and consist of several layers with (largely) different rock properties. Getting
the stratigraphy correct is crucial, and high-resolution geological modeling
will typically result in a high number of (very) thin grid layers in the vertical
direction, resulting in two or three orders of magnitude aspect ratios.

A full exposition of stratigraphic grids is way beyond the scope of this
book. In next two subsections, we will discuss the basics of the two most
commonly used forms of stratigraphic grids. A complementary discussion is
given in videos 2, 6, and 7 of the second MRST Jolt [139].

3.3.1 Corner-point grids

To model the geological structures of petroleum reservoirs, the industry-
standard approach is to introduce what is called a corner-point grid [196],
which we already encountered in Chapter 2.5. A corner-point grid consists of
a set of hexahedral cells that are topologically aligned in a Cartesian fashion
so that the cells can be numbered using a logical ijk index. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each

Page: 78 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.3 Stratigraphic grids 79

Fig. 3.15. Each cell in the corner-point grid is restricted by four pillars and two
points on each pillar.

cell in the volumetric grid has eight logical corner points that are restricted
by four pillars and specified as two depth-coordinates on each pillar, see Fig-
ure 3.15. Each grid consists of nx×ny×nz grid cells and the cells are ordered
with the i-index (x-axis) cycling fastest, then the j-index (y-axis), and finally
the k-index (negative z-direction). All cellwise property data are assumed to
follow the same numbering scheme.

As discussed previously, a fictitious domain approach is used to embed the
reservoir in a logically Cartesian shoe-box. This means that inactive cells that
are not part of the physical model, e.g., as shown in Figure 2.16, are present
in the topological ijk-numbering but are indicated by a zero porosity or net-
to-gross value, as discussed in Chapter 2.4 or marked by a special boolean
indicator (called ACTNUM in the input files).

So far, the topology and geometry of a corner-point grid have not devi-
ated from that of the mapped Cartesian grids studied in the previous section.
Somewhat simplified, one may view the logical ijk numbering as a reflection
of the sedimentary rock bodies as they may have appeared at geological ’time
zero’ when all rock facies have been deposited as part of horizontal layers in the
grid (i.e., cells with varying i and j but constant k). To model geological fea-
tures like erosion and pinch-outs of geological layers, the corner-point format
allows point-pairs to collapse along pillars. This creates degenerate hexahe-
dral cells that may have less than six faces, as illustrated in Figure 3.16. The
corner points can even collapse along all four pillars, so that a cell completely
disappears. This will implicitly introduce a new topology, which is sometimes
referred to as ’non-neighboring connections’, in which cells that are not logi-
cal k neighbors can be neighbors and share a common face in physical space.
An example of a model that contains both eroded geological layers and fully
collapsed cells is shown in Figure 3.17. In a similar manner, (simple) vertical
and inclined faults can be easily modelled by aligning the pillars with fault
surfaces and displacing the corner points defining the neighboring cells on one
or both sides of the fault. This way, one creates non-matching geometries and
non-neighboring connections in the underlying ijk topology.

Page: 79 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



80 3 Grids in Subsurface Modeling

Fig. 3.16. Examples of deformed and degenerate hexahedral cells arising in corner-
point grid models.

Fig. 3.17. Side view in the xz-plane of corner-point grid with vertical pillars mod-
eling a stack of sedimentary beds (each layer indicated by a different color).

To illustrate the concepts introduced so far, we consider a low-resolution
version of the model from Figure 2.11 on page 44 created by the simpleGrdecl

grid-factory routine, which generates an input stream containing the basic
keywords that describe a corner-point grid in the Eclipse input deck

grdecl = simpleGrdecl([4, 2, 3], .12, ' flat ' , true);

grdecl =
cartDims: [4 2 3]

COORD: [90x1 double]
ZCORN: [192x1 double]

ACTNUM: [24x1 int32]

The 5 × 3 mesh of pillars are given in terms of a pair of 3D coordinates for
each pillar in the COORD field, whereas the z-values that determine vertical
positions uniquely along each pillar for the eight corner-points of the 24 cells
are given in the ZCORN field. To extract these data, we use two MRST routines

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
[x,y,z] = buildCornerPtNodes(grdecl);

Having obtained the necessary data, we plot the pillars and the corner-points
and mark pillars on which the corner-points of logical ij neighbors do not
coincide,

Page: 80 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.3 Stratigraphic grids 81

x

y

z
x

y

z

Fig. 3.18. Specification of a corner-point grid. Starting from the pillars (upper left),
we add corner-points and identify pillars containing non-matching corner marked in
red (upper right). A stack of cells is created for each set of four pillars (lower left),
and then the full grid is obtained (lower right). In the last plot, the fault faces have
been marked in blue.

% Plot pillars
plot3(X',Y ',Z ', 'k' );
set(gca,'zdir ' , ' reverse ' ), view(35,35), axis off, zoom(1.2);

% Plot points on pillars , mark pillars with faults red
hold on; I=[3 8 13];
hpr = plot3(X(I ,:)',Y(I ,:)', Z(I ,:)', 'r ' , 'LineWidth',2);
hpt = plot3(x(:),y (:),z (:), 'o' ); hold off;

The resulting plots are shown in the upper row of Figure 3.18, in which we
clearly see how the pillars change slope from the east and west side toward the
fault in the middle, and how the grid points sit like beads-on-a-string along
each pillar.

Cells are now defined by connecting pairs of points from four neighboring
pillars that make up a rectangle in the lateral direction. To see this, we plot
two vertical stacks of cells and finally the whole grid with the fault surface
marked in blue:

Page: 81 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



82 3 Grids in Subsurface Modeling

Fig. 3.19. Subdivision of fault face in two three-dimensional models. In the left
column, the subfaces are all rectangular. In the right columns they are not. In both
the upper plots, the faces marked in red belong only to the cells behind the fault
surface, the blue faces belong only to the cells in front of the fault surface, and the
magenta ones belong to cells on both sides. The lower plot shows the cells behind
the surface, where each cell has been given its own color.

% Create grid and plot two stacks of cells
G = processGRDECL(grdecl);
args = {'FaceColor'; 'r ' ; 'EdgeColor'; 'k'};
hcst = plotGrid(G,[1:8:24 7:8:24], 'FaceAlpha', .1, args{:});

% Plot cells and fault surface
delete([hpt; hpr; hcst]);
plotGrid(G,'FaceAlpha', .15, args{:});
plotFaces(G, G.faces.tag>0,'FaceColor','b','FaceAlpha',.4);

The upper-left plot in Figure 3.19 shows the same model sampled with even
fewer cells. To highlight the non-matching cell faces along the fault plane we
have used different coloring of the cell faces on each side of the fault. In MRST,
we have chosen to represent corner-point grids as matching unstructured grids
obtained by subdividing all non-matching cell faces, instead of using the more
compact non-matching hexahedral form. For the model in Figure 3.19, this
means that the four cells that have non-neighboring connections across the
fault plane will have seven and not six faces. For each such cell, two of the
seven faces lie along the fault plane. For the regular model studied here, the

Page: 82 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.3 Stratigraphic grids 83

subdivision results in new faces that all have four corners (and are rectangu-
lar). However, this is not generally the case, as is shown in the right column
of Figure 3.19, where we can see cells with six, seven, eight faces, and faces
with three, four, and five corners. Indeed, for real-life models, subdivision of
non-matching fault faces can lead to cells that have much more than six faces.

Using the inherent flexibility of the corner-point format it is possible to
construct very complex geological models that come a long way in matching
the geologist’s perception of the underlying rock formations. Because of their
many appealing features, corner-point grids have been an industry standard
for years and the format is supported in most commercial software for reservoir
modeling and simulation.

A synthetic faulted reservoir

In our first example, we consider a synthetic model of two intersecting faults
that make up the letter Y in the lateral direction. The two fault surfaces
are highly deviated, making an angle far from 90 degrees with the horizontal
direction. To model this scenario using corner-point grids, we basically have
two different choices. The first choice, which is quite common, is to let the
pillars (and hence the extrusion direction) follow the main fault surfaces. For
highly deviated faults, like in the current case, this will lead to extruded cells
that are far fromK-orthogonal and hence susceptible to grid-orientation errors
in a subsequent simulation, as will be discussed in more detail in Chapter 6.
Alternatively, we can choose a vertical extrusion direction and replace deviated
fault surfaces by stair-stepped approximations so that the faults zigzag in
direction not aligned with the grid. This will create cells that are mostly
K-orthogonal and less prone to grid-orientation errors.

Figure 3.20 shows two different grid models, taken from the CaseB4 data
set. In the stair-stepped model, the use of cells with orthogonal faces causes
the faults to be represented as zigzag patterns. The pillar grid correctly rep-
resents the faults as inclined planes, but has cells with degenerate geometries
and cells that deviate strongly from being orthogonal in the lateral direction.
Likewise, some pillars have close to 45 degrees inclination, which will likely
give significant grid-orientation effects in a standard two-point scheme.

A simulation model of the Norne Field

Norne is an oil and gas field lies located in the Norwegian Sea. The reservoir is
found in Jurassic sandstone at a depth of 2500 meter below sea level, and was
originally estimated to contain 90.8 million m3 oil, mainly in the Ile and Tofte
formations, and 12.0 billion m3 in the Garn formation. The field is operated by
Statoil and production started in November 1997, using a floating production,
storage and offloading (FPSO) ship connected to seven subsea templates at
a water depth of 380 meters. The oil is produced with water injection as

Page: 83 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



84 3 Grids in Subsurface Modeling

deviated pillars zoom of fault intersection

stair-stepped zoom of fault intersection

Fig. 3.20. Modeling the intersection of two deviated faults using deviated pillars
(top) and stair-stepped approximation (bottom). CaseB4 grids courtesy of Statoil.

the main drive mechanisms and the expected ultimate oil recovery is more
than 60%, which is very high for a subsea oil reservoir. During thirteen years
of production, five 4D seismic surveys of high quality have been recorded.
Operator Statoil and partners (ENI and Petoro) have agreed with NTNU to
release large amounts of subsurface data from the Norne field for research and
education purposes2. More recently, the Open Porous Media (OPM) initiative
(opm-project.org) released the full simulation model as an open data set on
Github (github.com/OPM/opm-data). The data set can either be downloaded
and installed using mrstDatasetGUI or directly from the command line

makeNorneSubsetAvailable() && makeNorneGRDECL()

Once in place, the data set can then be loaded as follows:

grdecl = readGRDECL(fullfile(getDatasetPath('norne'), 'NORNE.GRDECL'));
grdecl = convertInputUnits(grdecl, getUnitSystem('METRIC'));

The views expressed in the following are those of the author and do not
necessarily reflect the views of Statoil and the Norne license partners.

2 The Norne Benchmark data sets are hosted and supported by the Center for
Integrated Operations in the Petroleum Industry (IO Center) at NTNU (http:
//www.ipt.ntnu.no/~norne/). The data set used herein was first released as part
of “Package 2: Full field model” (2013)

Page: 84 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

opm-project.org
github.com/OPM/opm-data
http://www.ipt.ntnu.no/~norne/
http://www.ipt.ntnu.no/~norne/


3.3 Stratigraphic grids 85

plotGrid (G , 'FaceColor','none', 'EdgeAlpha',.1);
plotFaces (G , G.faces.tag >0, ...

'FaceColor','red' , 'FaceAlpha',.2, ...
'EdgeColor','r' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7 );

plotGrid (G , ~actnum ( G.cells.indexMap ), ...
'FaceColor','none', 'EdgeAlpha',.1);

plotGrid (G , actnum ( G.cells.indexMap ), ...
'FaceColor','y' , 'EdgeAlpha',.1);

axis off ; view(−155,80); zoom(1.7 );

Fig. 3.21. The Norne field from the Norwegian Sea. The plots show the whole grid
with fault faces marked in red (left) and active cells marked in yellow (right).

The model consists of 46×112×22 corner-point cells. We start by plotting
the whole model, including inactive cells. To this end, we need to override3

the ACTNUM field before we start processing the input, because if the ACTNUM

flag is set, all inactive cells will be ignored when the unstructured grid is built

actnum = grdecl.ACTNUM;
grdecl.ACTNUM = ones(prod(grdecl.cartDims),1);
G = processGRDECL(grdecl, 'checkgrid', false);

Having obtained the grid in the correct unstructured format, we first plot the
outline of the whole model and highlight all faults and the active part of the
model, see Figure 3.21. During the processing, all fault faces are tagged with
a positive number. This can be utilized to highlight the faults: we simply find
all faces with a positive tag, and color them with a specific color as shown
in the left box in the figure. We now continue with the active model only.
Hence, we reset the ACTNUM field to its original values so that inactive cells
are ignored when we process the Eclipse input stream. In particular, we will
examine some parts of the model in more detail. To this end, we will use the
function cutGrdecl that extracts a rectangular box in index space from the
Eclipse input stream, e.g., as follows

cut_grdecl = cutGrdecl(grdecl, [6 15; 80 100; 1 22]);
g = processGRDECL(cut_grdecl);

3 At this point we hasten to warn the reader that inactive cells often contain garbage
data and may generally not be inspected in this manner. Here, however, most in-
active cells are defined in a reasonable way. By not performing basic sanity checks
on the resulting grid (option 'checkgrid'=false), we manage to process the grid
and produce reasonable graphical output. In general, however, we strongly advice
that 'checkgrid' remains set in its default state of true.

Page: 85 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



86 3 Grids in Subsurface Modeling

In Figure 3.22, we have zoomed in on four different regions. The first region
(red color), is sampled near a laterally stair-stepped fault, which is a curved
fault surface that has been approximated by a surface that zigzags in the
lateral direction. We also notice how the fault displacement leads to cells
that are non-matching across the fault surface and the presence of some very
thin layers (the thinnest layers may actually appear to be thick lines in the
plot). The thin layers are also clearly seen in the second region (magenta
color), which represents a somewhat larger sample from an area near the tip
of one of the ’fingers’ in the model. Here, we clearly see how similar layers
have been strongly displaced across the fault zone. In the third (blue) region,
we have colored the fault faces to clearly show the displacement and the hole
through the model in the vertical direction, which likely corresponds to a shale
layer that has been eliminated from the active model. Gaps and holes, and
displacement along fault faces, are even more evident for the vertical cross-
section (green region) for which the layers have been given different colors as
in Figure 3.17. Altogether, the four views of the model demonstrate typical
patterns that can be seen in realistic models.

Extensions, difficulties, and challenges

The original corner-point format has been extended in several directions, for
instance to enable vertical intersection of two straight pillars in the shape of
the letter Y. The pillars may also be piecewise polynomial curves, resulting
in what is sometimes called S-faulted grids. Likewise, two neighboring pillars
can collapse so that the basic grid shape becomes a prism rather than a hex-
ahedron. However, there are several features that cannot easily be modelled,
including multiple fault intersections (e.g., as in the letter ’F’) and for this
reason, the industry is constantly in search for improved gridding methods.
One example will be discussed in the next subsection. First, however, we will
discuss some difficulties and challenges, seen from the side of a computational
scientist seeking to use corner-point grids for computations.

The flexible cell geometry of the corner-point format poses several chal-
lenges for numerical implementations. Indeed, a geocellular grid is typically
chosen by a geologist who tries to describe the rock body by as few volumetric
cells as possible and who basically does not care too much about potential
numerical difficulties his or her choice of geometries and topologies may cause
in subsequent flow simulations.

Writing a robust grid-processing algorithm to compute geometry and
topology or determine an equivalent matching, polyhedral grid can be quite
a challenge. Displacements across faults will lead to geometrically complex,
non-conforming grids, e.g., as illustrated in Figure 3.22. Since each face of a
grid cell is specified by four (arbitrary) points, the cell interfaces in the grid
will generally be bilinear, possibly strongly curved surfaces. Geometrically,
this can lead to several complications. Cell faces on different sides of a fault
may intersect each other so that cells overlap volumetrically. Cell faces need

Page: 86 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.3 Stratigraphic grids 87

a) The whole model with active and inactive
cells and four regions of interest marked in dif-
ferent colors

b) Zoom of the red region with
pillars and corner-points shown
as red circles

c) The magenta region with col-
oring according to cell volumes,
which vary by a factor 700.

d) The blue region in which fault faces
have been colored gray and the corre-
sponding grid lines have been colored blue.

e) The green cross-section with coloring according to layer number from top to
bottom of the model.

Fig. 3.22. Detailed view of subsets from the Norne simulation model.

Page: 87 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



88 3 Grids in Subsurface Modeling

a) Many faces resulting from subdivi-
sion to give matching grid at faults

b) A curved 800 × 800 × 0.25 m cell,
whose centroid lies outside the cell

c) Difficult geometries d) Small interface between two cells

Fig. 3.23. Illustration of difficulties and challenges associated with real-life corner-
point geometries.

not be matching, which may leave void spaces. There may be tiny overlap
areas between cell faces on different sides a fault, and so on. All these factors
contribute to make fault geometries hard to interpret in a consistent way: a
subdivision into triangles is, for instance, not unique. Likewise, top and bot-
tom surfaces may intersect for highly curved cells with high aspect ratios, cell
centroids may be outside the cell volume, etc.

The presence of degenerate cells, in which the corner-points collapse in
pairs, implies that the cells will generally be polyhedral and possibly con-
tain both triangular and bilinear faces (see Figure 3.16). Corner-point cells
will typically be non-matching across faults or may have zero volume, which
both introduces coupling between non-neighboring cells and gives rise to dis-
cretization matrices with complex sparsity patterns. All these facts call for
flexible discretizations that are not sensitive to the geometry of each cell or
the number of faces and corner points. Although not a problem for industry-
standard two-point discretizations, it will pose implementational challenges
for more advanced discretization methods that rely on the use of dual grids or
reference elements. Figure 3.23 illustrates some geometrical and topological
challenges seen in standard grid models.

To adapt to sloping faults, curved horizons and layers, lateral features, and
so on, cell geometries may often deviate significantly from being orthogonal,
which may generally introduce significant grid-orientation effects, in particular
for the industry-standard two-point scheme (as we will see later).

Stratigraphic grids will often have aspect ratios that are two or three
orders of magnitude. Such high aspect ratios can introduce severe numerical
difficulties because the majority of the flow in and out of a cell occurs across
the faces with the smallest area. Similarly, the possible presence of strong

Page: 88 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.3 Stratigraphic grids 89

a) Triangulated point set b) Perpendicular bisector grid

c) Pillars aligned with faults d) Volumetric extrusion

Fig. 3.24. Illustration of a typical process for generating 2.5D PEBI grids.

heterogeneities and anisotropies in the permeability fields, e.g., as seen in the
SPE 10 example in Chapter 2, typically introduces large condition numbers
in the discretized flow equations.

Corner-point grids generated by geological modeling typically contain too
many cells. Once created by the geologist, the grid is handed to a reservoir
engineer, whose first job is to reduce the number of cells if he or she is to
have any hope of getting the model through a simulator. The generation of
good coarse grids for use in upscaling, and the upscaling procedure itself, is
generally work-intensive, error prone, and not always sufficiently robust, as
we will come back to later in the book.

3.3.2 2.5D unstructured grids

Corner-point grids are well suited to represent stratigraphic layers and faults
which laterally coincide with one of the coordinate directions. Although the
great flexibility inherent in the corner-point scheme can be used to adapt to
areally skewed or curved faults, or other areal features, the resulting cell ge-
ometries will typically deviate far from being orthogonal, and hence introduce
numerical problems in a subsequent flow simulation, as discussed above.

So-called 2.5D grids are often used to overcome the problem of areal adap-
tion. These grids have been designed to combine the advantages of two dif-
ferent gridding methods: the (areal) flexibility of unstructured grids and the
simple topology of Cartesian grids in the vertical direction. The 2.5D grids
are constructed in much the same way as corner-point grids, but instead of
defining pillars using a structured areal mesh, the pillars are defined based on

Page: 89 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



90 3 Grids in Subsurface Modeling

Fig. 3.25. The left plot shows a 2.5D Voronoi grid derived from a perturbed 2D
point mesh extruded in the z-direction, whereas the right plot shows a radial grid.

an unstructured lateral grid. To generate such a grid, one starts by defining
an areal tessellation on a surface that either aligns with the lateral direction
or one of the major geological horizons. Then a pillar is introduced through
each vertex in the areal grid. The pillars can either be vertical, inclined to
gradually align with major fault planes as shown for the corner-point grid in
Figure 3.20, or be defined so that they connect pairs of vertices in two areal
tessellations placed above each other, e.g., so that these are aligned with two
different geological horizons. Figure 3.24 shows the key steps in the construc-
tion of a simple 2.5D PEBI grid. Starting from a set of generating points,
an areal tessellation is formed by first computing the Delaunay triangulation
and then constructing a perpendicular bisector grid. Through each vertex in
the areal tessellation, we define a pillar, whose angle of inclination will change
from 90 degrees for vertices on the far left to 45 degrees for vertices on the far
right. The pillars are then used to extrude the areal tessellation to a volumet-
ric grid. The resulting volumetric grid is unstructured in the lateral direction,
but has a layered structure in the vertical direction (and can thus be indexed
using a [I,K] index pair). Because the grid is unstructured in the lateral di-
rection, there is a quite large freedom in choosing the size and shape of the
grid cells to adapt to complex features such as curved faults or to improve the
areal resolution in near-well zones.

As a first example of a 2.5D grid, we first construct a lateral 2D Voronoi
grid from a set of generating points obtained by perturbing the vertices of a
regular Cartesian grid, then use the function makeLayeredGrid to extrude this
Voronoi grid to 3D along vertical pillars in the z-direction.

N=7; M=5; [x,y] = ndgrid(0:N,0:M);
x(2:N ,2:M) = x(2:N,2:M) + 0.3*randn(N−1,M−1);
y(2:N ,2:M) = y(2:N,2:M) + 0.3*randn(N−1,M−1);
aG = pebi(triangleGrid([x(:) y(:)]));
G = makeLayeredGrid(aG, 3);
plotGrid(G, 'FaceColor' ,[.8 .8 .8 ]); view(−40,60); axis tight off

The resulting grid is shown in the left plot of Figure 3.25 and should be
contrasted to the 3D tetrahedral tessellation shown to the right in Figure 3.8

Page: 90 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.4 Grid structure in MRST 91

As a second example, we will generate a PEBI grid with radial symmetry,
which is graded towards the origin

P = [];
for r = exp(−3.5:.25:0),

[x,y,z] = cylinder(r,16); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');
G = makeLayeredGrid(pebi(triangleGrid(P)), 5);
plotGrid(G,'FaceColor',[.8 .8 .8 ]); view(30,50), axis tight off

Figure 3.25 shows the resulting grid. Typically, the main difficulty lies in
generating a good point set (and a set of pillars). Once this is done, the rest
of the process is almost straightforward.

Our third example is a simulation model of a real reservoir. The model
shown in Figure 3.26 consists of an unstructured areal grid that has been
extruded vertically to model different geological layers. Some of the layers
are very thin, which can be seen in particular in Figure 3.26a in which these
thin layers appear as if they were thick lines. Figure 3.26b shows part of the
perimeter of the model; we notice that the lower layers (yellow to red colors)
have been eroded away in most of the grid columns, and although the vertical
dimension is strongly exaggerated, we see that the layers contain steep slopes.
To a non-geologist looking at the plot in Figure 3.26e, it may appear as if the
reservoir was formed by sediments being deposited along a sloping valley that
ends in a flat plain. Figures 3.26c and d show more details of the permeability
field inside the model. The layering is particularly distinct in plot d, which is
sampled from the flatter part of the model. The cells in plot c, on the other
hand, show examples of pinch-outs. The layering provides a certain structure
in the model, and it is therefore common to add a logical ik index, similar
to the logical ijk index for corner-point grids, where i refers to the areal
numbering and k to the different layers. Moreover, it is common practice to
associate a virtual logically Cartesian grid as an ’overlay’ to the 2.5D grid that
can be used e.g., to simplify lookup of cells in visualization. In this setup, more
than one grid cell may be associated with a cell in the virtual grid.

3.4 Grid structure in MRST

In the two previous sections we have given an introduction to structured and
unstructured grid types that can be created using MRST. In this section, we
will go into more detail about the internal data structure used to represent
various grid types. This data structure is in many ways the most fundamental
part of MRST since almost all solvers and visualization routines require an
instance of a grid as input argument. By convention, instances of the grid
structure are denoted G. Readers who are mainly interested in using solvers
and visualization routines already available in MRST, need no further knowl-
edge of the grid structure beyond what has been encountered in the examples

Page: 91 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



92 3 Grids in Subsurface Modeling

a) The whole model with three areas of interested marked in different colors.

b) Layers 41 to 99 of the red region
with colors representing the k-index.

c) Horizontal permeability in the
green region of plot a).

d) Horizontal permeability in the ma-
genta region of plot a).

e) Horizontal permeability along the
perimeter and bottom of the model.

Fig. 3.26. A real petroleum reservoir modelled by a 2.5D PEBI grid having 1174
cells in the lateral direction and 150 cells along each pillar. Only 90644 out of the
176100 cells are active. The plots show the whole model as well as selected details.

presented so far and can safely skip the remains of this section. For readers
who wish to use MRST to prototype new computational methods, however,
knowledge of the inner workings of the grid structure is essential. To read the
MRST documentation, type

help grid_structure

This will bring you an overview of all the grid structure and all its members.

Page: 92 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.4 Grid structure in MRST 93

Fig. 3.27. Example of a virtual grid used for fast lookup in a 2.5D PEBI grid. The
virtual grid has dimensions 37 × 20 × 150 while the PEBI grid has ik dimensions
1174× 150.

As was stated in the introduction to the chapter, we have chosen to store
all grid types using a general unstructured grid format that represents cells,
faces, vertices, and connections between cells and faces. To this end, the main
grid structure G contains three fields—cells, faces, and nodes—that specify
individual properties for each individual cell/face/vertex in the grid. Grids in
MRST can either be volumetric or lie on a 2D or 3D surface. The field griddim

is used to distinguish volumetric and surface grids; all cells in a grid are polygo-
nal surface patches if griddim=2 and polyhedral volumetric entities otherwise.
In addition, the grid contains a field type consisting of a cell array of strings de-
scribing the history of grid-constructor and modifier functions through which
a particular grid structure has been defined, e.g., ’tensorGrid’. For grids
that have an underlying logical Cartesian structure, we also include the field
cartDims.

The cell structure, G.cells, consists of the following mandatory fields:

– num: the number nc of cells in the global grid.
– facePos: an indirection map of size [num+1,1] into the faces array. Specifi-

cally, the face information of cell i is found in the submatrix
faces(facePos(i) : facePos(i+1)−1, :)

The number of faces of each cell may be computed using the state-
ment diff(facePos) and the total number of faces is given as nf =
facePos(end)−1.

– faces: an nf ×3 array that gives the global faces connected to a given cell.
Specifically, if faces(i,1)==j, the face with global number faces(i,2) is
connected to cell number j. The last component, faces(i,3), is optional
and can for certain types of grids contain a tag used to distinguish face
directions: West, East, South, North, Bottom, Top.
The first column of faces is redundant: it consists of each cell index j re-
peated facePos(j+1)−facePos(j) times and can therefore be reconstructed
by decompressing a run-length encoding with the cell indices 1:num as en-
coded vector and the number of faces per cell as repetition vector. Hence,

Page: 93 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



94 3 Grids in Subsurface Modeling

to conserve memory, only the last two columns of faces are stored, while
the first column can be reconstructed using the statement:

rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .'

This construction is used a lot throughout MRST and has therefore been
implemented as a utility function inside mrst−core/utils/gridtools

f2cn = gridCellNo(G);

– indexMap: an optional nc×1 array that maps internal cell indices to external
cell indices. For models with no inactive cells, indexMap equals 1 : nc. For
cases with inactive cells, indexMap contains the indices of the active cells
sorted in ascending order. An example of such a grid is the ellipsoid in
Figure 3.4 that was created using a fictitious domain method. For logically
Cartesian grids, a map of cell numbers to logical indices can be constructed
using the following statements in 2D:

[ij{1:2}] = ind2sub(dims, G.cells.indexMap(:));
ij = [ij{:}];

and likewise in 3D:

[ijk{1:3}] = ind2sub(dims, G.cells.indexMap(:));
ijk = [ijk{:}];

In the latter case, ijk(i:) is the global (I, J,K) index of cell i.

In addition, the cell structure can contain the following optional fields that
typically will be added by a call to computeGeometry:

– volumes: an nc × 1 array of cell volumes
– centroids: an nc × d array of cell centroids in IRd

The face structure, G.faces, consists of the following mandatory fields:

– num: the number nf of global faces in the grid.
– nodePos: an indirection map of size [num+1,1] into the nodes array. Specifi-

cally, the node information of face i is found in the submatrix
nodes(nodePos(i) : nodePos(i+1)−1, :)

The number of nodes of each face may be computed using the state-
ment diff(nodePos). Likewise, the total number of nodes is given as nn =
nodePos(end)−1.

– nodes: an Nn × 2 array of vertices in the grid. If nodes(i,1)==j, the local
vertex i is part of global face number j and corresponds to global ver-
tex nodes(i,2). For each face the nodes are assumed to be oriented such
that a right-hand rule determines the direction of the face normal. As
for cells.faces, the first column of nodes is redundant and can be easily
reconstructed. Hence, to conserve memory, only the last column is stored,
while the first column can be constructed using the statement:

Page: 94 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.4 Grid structure in MRST 95

rldecode(1:G.faces.num, diff(G.faces.nodePos), 2) .'

– neighbors: an nf × 2 array of neighboring information. Global face i is
shared by global cells neighbors(i,1) and neighbors(i,2). One of the entries
in neighbors(i,:), but not both, can be zero, to indicate that face i is an
external face that belongs to only one cell (the nonzero entry).

In addition to the mandatory fields, G.faces has optional fields that are typ-
ically added by a call to computeGeometry and contain geometry information:

– areas: an nf × 1 array of face areas.

– normals: an nf × d array of area weighted, directed face normals in IRd.
The normal on face i points from cell neighbors(i,1) to cell neighbors(i,2).

– centroids: an nf × d array of face centroids in IRd.

Moreover, G.faces can sometimes contain an nf ×1 (int8) array, G.faces.tag,
that can contain user-defined face indicators, e.g., to specify that the face is
part of a fault.

The vertex structure, G.nodes, consists of two fields:

– num: number Nn of global nodes (vertices) in the grid,
– coords: an Nn × d array of physical nodal coordinates in IRd. Global node

i is at physical coordinate coords(i,:).

To illustrate how the grid structure works, we consider two examples. We
start by considering a regular 3× 2 grid, where we take away the second cell
in the logical numbering,

G = removeCells( cartGrid([3,2]), 2)

This produces the output

G =

cells: [1x1 struct]

faces: [1x1 struct]

nodes: [1x1 struct]

cartDims: [3 2]

type: {’tensorGrid’ ’cartGrid’ ’removeCells’}

griddim: 2

Examining the output from the call, we notice that the field G.type con-
tains three values, ’cartGrid’ indicates the creator of the grid, which again
relies on ’tensorGrid’, whereas the field ’removeCells’ indicates that cells have
been removed from the Cartesian topology. The resulting 2D geometry con-
sists of five cells, twelve nodes, and sixteen faces. All cells have four faces
and hence G.cells.facePos = [1 5 9 13 17 21]. Figure 3.28 shows4 the geome-
try and topology of the grid, including the content of the fields cells.faces,

4 To create the plot in Figure 3.28, we first called plotGrid to plot the grid, then
called computeGeometry to compute cell and face centroids, which were used to
place a marker and a text label with the cell/face number in the correct position.

Page: 95 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



96 3 Grids in Subsurface Modeling

1 2

3 4 5

 1  2  3  4

 5  6  7  8

 9 10

11 12 13

14 15 16

 1  2  3  4

 5  6  7  8

 9 10 11 12 cells.faces = faces.nodes = faces.neighbors =

1 1 1 (West) 1 1 0 1

1 9 3 (South) 1 5 1 0

1 2 2 (East) 2 2 0 2

1 11 4 (North) 2 6 2 0

2 3 1 (West) 3 3 0 3

2 10 3 (South) 3 7 3 4

2 4 2 (East) 4 4 4 5

2 13 4 (North) 4 8 5 0

3 5 1 (West) 5 5 0 1

3 11 3 (South) 5 9 0 2

3 6 2 (East) 6 6 1 3

3 14 4 (North) 6 10 0 4

4 6 1 (West) 7 7 2 5

4 12 3 (South) 7 11 3 0

4 7 2 (East) 8 8 4 0

4 15 4 (North) 8 12 5 0

5 7 1 (West) 9 2

5 13 3 (South) 9 1

5 8 2 (East) : :

5 16 4 (North) : :

Fig. 3.28. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.

faces.nodes, and faces.neighbors. We notice, in particular, that all interior
faces (6, 7, 11, and 13) are represented twice in cells.faces as they belong
to two different cells. Likewise, for all exterior faces, the corresponding row
in faces.neighbors has one zero entry. Finally, being logically Cartesian, the
grid structure contains a few optional fields:

� G.cartDims equals [3 2],
� G.cells.indexMap equals [1 3 4 5 6] since the second cell in the logical

numbering has been removed from the model, and
� G.cells.faces contains a third column with tags that distinguish global

directions for the individual faces.

As a second example, we consider an unstructured triangular grid given
by seven points in 2D:

p = [ 0.0, 1.0, 0.9, 0.1, 0.6, 0.3, 0.75; ...
0.0, 0.0, 0.8, 0.9, 0.2, 0.6, 0.45 ]'; p = sortrows(p);

G = triangleGrid(p)

which produces the output

G =

faces: [1x1 struct]

cells: [1x1 struct]

nodes: [1x1 struct]

type: {’triangleGrid’}

griddim: 2

Because the grid contains no structured parts, G only consists of the three
mandatory fields cells, faces, and nodes that are sufficient to determine
the geometry and topology of the grid, the type tag naming its creator, and
griddim giving that it is a surface grid. Altogether, the grid consists of eight
cells, fourteen faces, and seven nodes, which are shown in Figure 3.29 along
with the contents of the fields cells.faces, faces.nodes, and faces.neighbors.

Page: 96 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.4 Grid structure in MRST 97

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Fig. 3.29. Illustration of the cell and faces fields of the grid structure: cell numbers
are marked by circles, node numbers by squares, and face numbers have no marker.
squares.

Fig. 3.30. Example of a surface grid: 2D PEBI grid draped over the peaks surface.

Notice, in particular, the absence of the third column in cells.faces, which
generally does not make sense for a (fully) unstructured grid. Likewise, the
cells structure does not contain any indexMap as all cells in the model are
active.

Surface grids do not necessary have to follow a planar surface in 2D, but
can generally be draped over a (continuous) surface in 3D. In MRST, such
grids are used in the co2lab module for simulating CO2 storage in deep saline
aquifers using vertically-integrated models that describe the thickness of a
supercritical CO2 plume under a sealing caprock. To demonstrate the basic
feature of a surface grid, we generate a 2D PEBI grid and drape it over
MATLAB’s peaks surface.

[x,y] = meshgrid([0:6]*2*cos(pi/6),0:7);
x = [x (:); x(:)+cos(pi/6)]; x=(x − mean(x(:)))/2;
y = [y (:); y(:)+sin(pi/6)]; y=(y − mean(y(:)))/2;
G = pebi(triangleGrid([x(:),y(:)]));
G.nodes.coords(:,3) = −peaks(G.nodes.coords(:,1),G.nodes.coords(:,2));

Page: 97 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



98 3 Grids in Subsurface Modeling

The resulting grid is shown in Figure 3.30. Using computeGeometry, we can also
compute cell and face centroids, cell areas, and face lengths. Face normals,
however, are generally not uniquely defined and are therefore only computed
as projections onto the horizontal plane. Likewise, it does not make sense to
use this grid together with any of the standard flow and transport solvers in
MRST, since neither of these contain discretizations that properly account for
processes taking place on non-planar surfaces.

Computing geometry information

All grid factory routines in MRST generate the basic geometry and topol-
ogy of a grid, that is, how nodes are connected to make up faces, how faces
are connected to form cells, and how cells are connected over common faces.
Whereas this information is sufficient for many purposes, more geometrical
information may be required in many cases. As explained above, such informa-
tion is provided by the routine computeGeometry, which computes cell centroids
and volumes and face areas, centroids, and normals. Whereas computing this
information is straightforward for simplexes and Cartesian grids, it is not so
for general polyhedral grids that may contain curved polygonal faces. In the
following we will therefore go through how it is done in MRST.

For each cell, the basic grid structure provides us with a list of vertices,
a list of cell faces, etc, as shown in the upper-left plots of Figures 3.31 and
3.32. The routine starts by computing face quantities (areas, centroids, and
normals). To utilize MATLAB efficiently, the computations are programmed
using vectorization so that each derived quantity is computed for all points,
all faces, and all cells in one go. To keep the current presentation as simple
as possible, we will herein only give formulas for a single face and a single
cell. Let us consider a single face given by the points ~p(i1), . . . , ~p(im) and let
α = (α1, . . . , αm) denote a multi-index that describes how these points are
connected to form the perimeter of the faces. For the face with global number
j, the multi-index is given by the vector

G.faces.nodes(G.faces.nodePos(j):G.faces.nodePos(j+1)−1)

Let us consider two faces. Global face number two in Figure 3.31 is planar
and consists of points ~p(2), ~p(4), ~p(6), ~p(8) with the ordering α = (2, 4, 8, 6).
Likewise, we consider global face number one in Figure 3.32, which is curved
and consists of points ~p(1), . . . , ~p(5) with the ordering α = (4, 3, 2, 1, 5). For
curved faces, we need to make a choice of how to interpret the surface spanned
by the node points. In MRST (and some commercial simulators) this is done
as follows: We start by defining a so-called hinge point ~ph, which is often
given as part of the input specification of the grid. If not, we use the m points
that make up the face and compute the hinge point as the center point of
the face, ~ph =

∑m
k=1 ~p(αk)/m. The hinge point can now be used to tessellate

the face into m triangles, as shown to the upper right in Figures 3.31 and
3.32. The triangles are defined by the points ~p(αk), ~p(αmod(k,m)+1), and ~ph

Page: 98 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.4 Grid structure in MRST 99

a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 3.31. Steps in the computation of geometry information for a single corner-
point cell using computeGeometry.

for k = 1, . . . ,m. Each triangle has a center point ~pkc defined in the usual way
as the average of its three vertexes and a normal vector and area given by

~nk =
(
~p(αmod(k,m)+1)− ~p(αk)

)
×
(
~ph − ~p(αk)

)
= ~vk1 × ~vk2

Ak =
√
~nk · ~nk.

The face area, centroid, and normal are now computed as follows

Af =

m∑
k=1

Ak, ~cf = (Af )−1
m∑
k=1

~pkcA
k, ~nf =

m∑
k=1

~nk. (3.2)

The result is shown to the lower left in Figures 3.31, where the observant
reader will see that the centroid ~cf does not coincide with the hinge point
~ph unless the planar face is a square. This effect is more pronounced for the
curved faces of the PEBI cell in Figure 3.32.

Page: 99 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



100 3 Grids in Subsurface Modeling

a) A single cell with face numbers
(squares) and node numbers (circles)

b) Tessellation of faces with vectors
~vk1 (blue), ~vk2 (green), and ~nk (red)

c) Face centroids and normal vectors
computed from tessellation

d) Triangulation of cell volume with
vectors ~nk (blue) and ~ckr (green)

Fig. 3.32. Steps in the computation of geometry information for a single PEBI cell
using computeGeometry.

The computation of centroids in (3.2) requires that the grid does not have
faces with zero area, because otherwise the second formula would involve
a division by zero and hence incur centroids with NaN values. The reader
interested in creating his/her own grid-factory routines for grids that may
contain degenerate (pinched) cells should be aware of this and make sure that
all faces with zero area are removed in a preprocessing step.

To compute the cell centroid and volume, we start by computing the centre
point ~cc of the cell, which we define as the average of the face centroids,
~cc =

∑mf

k=1 ~cf/mf , where mf is the number of faces of the cell. By connecting
this centre point to the mt face triangles, we define a unique triangulation
of the cell volume, as shown to the lower right in Figures 3.31 and 3.32. For
each tetrahedron, we define the vector ~ckr = ~pkc − ~cc and compute the volume
(which may be negative if the centre point ~cc lies outside the cell)

V k = 1
3~c
k
r · ~nk.

Page: 100 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 101

The triangle normals ~nk will point outward or inward depending upon the
orientation of the points used to calculate them, and to get a correct com-
putation we therefore must modify the triangle normals so that they point
outward. Finally, we can define the volume and the centroid of the cell as
follows

V =

mt∑
k=1

V k, ~c = ~cc +
3

4V

mt∑
k=1

V k~ckr . (3.3)

In MRST, all cell quantities are computed inside a loop, which may not be as
efficient as the computation of the face quantities.

Computer exercises:

15. Go back to Exercise 6 in Section 3.1. What would you do to randomly
perturb all nodes in the grid except for those that lie on an outer face
whose normal vector has no component in the y-direction?

16. Exercise 10 on page 77 extended the function triangleGrid from pla-
nar triangulations to triangulated surfaces in 3D. Verify that the function
computeGeometry computes cell areas, cell centroids, face centroids, and
face lengths correctly for general 3D triangulated surfaces.

17. How would you write a function that purges all cells that have an invalid
vertex (with value NaN) from a grid?

3.5 Examples of more complex grids

To help the user generate test cases, MRST supplies a routines for generating
example grids. We have previously encountered twister, which perturbs the
x and y coordinates in a grid. Likewise, in Chapter 2.5 we used simpleGrdecl

to generate a simple Eclipse input stream for a stratigraphic grid describing
a wavy structure with a single deviated fault. The routine has several options
that allow the user to specify the magnitude of the fault displacement, flat
rather than a wavy top and bottom surfaces, and vertical rather than inclined
pillars, see Figure 3.33.

Similarly, the routine with the somewhat cryptic name makeModel3 gen-
erates a corner-point input stream that models parts of a dome that is cut
through by two faults, see Figure 3.34. Similarly, extrudedTriangleGrid.m gen-
erates a 2.5D prismatic grid with a laterally curved fault in the middle. Al-
ternatively, the routine can generate a 2.5D PEBI grid in which the curved
fault is laterally stair-stepped, see Figure 3.34.

SAIGUP: shallow-marine reservoirs

Having discussed the corner-point format in some detail, it is now time to
return to the SAIGUP model. In the following, we will look at the grid rep-
resentation in more detail and show some examples of how to interact and

Page: 101 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



102 3 Grids in Subsurface Modeling

simpleGrdecl ([20, 20, 5]); simpleGrdecl ([20, 20, 5], ...
@(x) .05*(sin(2*pi*x)−1.5));

simpleGrdecl ([20, 20, 5], ...
@(x) .25*(x−.5),' flat ' , true );

Fig. 3.33. The simpleGrdecl routine can be used to produce faulted, two-block
grids of different shapes.

makeModel3 ([30,20,5]); extrudedTriangleGrid (50); extrudedTriangleGrid (50, true );

Fig. 3.34. Three different example grids created by the grid example functions
makeModel3 and extrudedTriangleGrid.

visualize different features of the grid (see also the last video of the second
MRST Jolt on grids and petrophysical data [139]). In Chapter 2.5, we saw
that parsing the input file creates the following structure

grdecl =

cartDims: [40 120 20]

COORD: [29766x1 double]

ZCORN: [768000x1 double]

ACTNUM: [96000x1 int32]

PERMX: [96000x1 double]

: : :

In the following, we will (mostly) use the first four fields:

1. The dimension of the underlying logical Cartesian grid: Eclipse keyword
SPECGRID, equal 40× 120× 20.

2. The coordinates of pillars: Eclipse keyword COORD, top and bottom co-
ordinate per vertex in the logical 40 × 120 areal grid, i.e., 6 × 41 × 121
values.

3. The coordinates along the pillars: Eclipse keyword ZCORN, eight values per
cell, i.e., 8× 40× 120× 20 values.

4. The boolean indicator for active cells: Eclipse keyword ACTNUM, one value
per cell, i.e., 40× 120× 20 values.

Page: 102 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 103

As we have seen above, we can use the routine processGRDECL to process the
Eclipse input stream and turn the corner-point grid into MRST’s unstructured
description. The interested reader may ask the processing routine to display
diagnostic output

G = processGRDECL(grdecl, 'Verbose', true);
G = computeGeometry(G)

and consult the SAIGUP tutorial (saigupModelExample.m) or the technical
documentation of the processing routine for an explanation of the resulting
output.

The model has been created using vertical pillars with lateral resolution of
75 meters and a vertical resolution of 4 meters, giving a typical aspect ratio
of 18.75. This can be seen, e.g., by extracting the pillars and corner points
and analyzing the results as follows:

[X,Y,Z] = buildCornerPtPillars(grdecl,'Scale',true);
dx = unique(diff(X)).'
[x,y,z] = buildCornerPtNodes(grdecl);
dz = unique(reshape(diff(z,1,3),1,[]))

The resulting grid has 78 720 cells that are almost equal in size (as can easily
be seen by plotting hist(G.cells.volumes)), with cell volumes varying between
22 500 m3 and 24 915 m3. Altogether, the model has 264 305 faces: 181 649 ver-
tical faces on the outer boundary and between lateral neighbors, and 82 656
lateral faces on the outer boundary and between vertical neighbors. Most of
the vertical faces are not part of a fault and are therefore parallelograms with
area equal 300 m2. However, the remaining 26–27 000 faces are a result of the
subdivision introduced to create a matching grid along the (stair-stepped)
faults. Figure 3.35 shows where these faces appear in the model and a his-
togram of their areas: the smallest face has an area of 5.77·10−4 m2 and there
are 43, 202, and 868 faces with areas smaller than 0.01, 0.1, and 1 m2, re-
spectively. The processGRDECL has an optional parameter 'Tolerance' that sets
the minimum distance used to distinguish points along the pillars (the default
value is zero). By setting this to parameter to 5, 10, 25, or 50 cm, the area of
the smallest face is increased to 0.032, 0.027, 0.097, or 0.604 m2, respectively.
In general, we advice against aggressive use of this tolerance parameter; one
should instead develop robust discretization schemes and, if necessary, suitable
post-processing methods that eliminate or ignore faces with small areas.

Next, we will show a few examples of visualizations of the grid model that
will highlight various mechanisms for interacting with the grid and accessing
parts of it. As a first example, we start by plotting the layered structure of
the model. To this end, we use a simple trick: create a matrix with ones in all
cells of the logical Cartesian grid and then do a cumulative summation in the
vertical direction to get increasing values,

val = cumsum(ones(G.cartDims),3);

Page: 103 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



104 3 Grids in Subsurface Modeling

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

Face area, m2

plotFaces (G , G.faces.tag >0 & ...
G.faces.areas >=290),'y','edgea',.1 );

plotFaces (G , G.faces.areas <290,'r', 'edgea',.1 );

Fig. 3.35. Faces that have been subdivided for the SAIGUP mode. The left plot
shows a histogram of the faces areas. The right plot shows all fault faces (yellow)
and fault faces having area less than 290 m2 (red).

Fig. 3.36. Visualizing the layered structure of the SAIGUP model.

which we then plot using a standard call to plotCellData, see the left plot in
Figure 3.36. Unfortunately, our attempt at visualizing the layered structure
was not very successful. We therefore try to extract and visualize only the
cells that are adjacent to a fault:

cellList = G.faces.neighbors(G.faces.tag>0, :);
cells = unique(cellList(cellList>0));

In the first statement, we go through all faces and extract the neighbors
of all faces that are marked with a tag (i.e., lies at a fault face). The list
may have repeated entries if a cell is attached to more than one fault face
and contain zeros if a fault face is part of the outer boundary. We get
rid of these in the second statement, and can then plot the result using
plotCellData(G,val(G.cells.indexMap),cells), giving the result in the right
plot of Figure 3.36. Let us inspect the fault structure in the lower-right corner
of the plot. If we disregard using cutGrdecl as discussed on page 85, there are
basically two ways we can extract parts of the model, that both rely on the
construction of a map of cell numbers of logical indices. In the first method,

Page: 104 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 105

Fig. 3.37. Details from the SAIGUP model showing a zoom of the fault structure
in the lower-right corner of the right plot in Figure 3.36. The left plot shows the cells
attached to the fault faces, and in the right plot the fault faces have been marked
with gray color and red edges.

we first construct a logical set for the cells in a logically Cartesian bounding
box and then use the built-in function ismember to extract the members of
cells that lie within this bounding box:

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap); ijk = [ijk{:}];
[I,J,K] = meshgrid(1:9,1:30,1:20);
bndBox = find(ismember(ijk,[I(:), J(:), K (:)], 'rows' ));
inspect = cells(ismember(cells,bndBox));

The ismember function has an operational count of O(n log n). A faster alter-
native is to use logical operations having an operational count of O(n). That
is, we construct a vector of boolean numbers that are true for the entries we
want to extract and false for the remaining entries

[ijk{1:3}] = ind2sub(G.cartDims, G.cells.indexMap);

I = false(G.cartDims(1),1); I(1:9)=true;
J = false(G.cartDims(2),1); J(1:30)=true;
K = false(G.cartDims(3),1); K(1:20)=true;

pick = I(ijk{1}) & J(ijk{2}) & K(ijk{3});
pick2 = false(G.cells.num,1); pick2(cells) = true;
inspect = find(pick & pick2);

Both approaches produce the same index set; the resulting plot is shown in
Figure 3.37. To mark the fault faces in this subset of the model, we do the
following steps

cellno = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .';
faces = unique(G.cells.faces(pick(cellno), 1));
inspect = faces(G.faces.tag(faces)>0);
plotFaces(G, inspect, [.7 .7 .7], 'EdgeColor','r ' );

The first statement constructs a list of all cells in the model, the second
extracts a unique list of face numbers associated with the cells in the logical
vector pick (which represents the bounding box in logical index space), and the

Page: 105 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



106 3 Grids in Subsurface Modeling

Fig. 3.38. A ’sieve’ plot of the porosity in the SAIGUP model. Using this technique,
one can more easily see the structure in the interior of the model.

third statement extracts the faces within this bounding box that are marked
as fault faces.

Logical operations are also useful in other circumstances. As an example,
we will extract a subset of cells forming a sieve that can be used to visualize
the petrophysical quantities in the interior of the model:

% Every fifth cell in the x−direction
I = false(G.cartDims(1),1); I(1:5:end)=true;
J = true(G.cartDims(2),1);
K = true(G.cartDims(3),1);
pickX = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Every tenth cell in the y−direction
I = true(G.cartDims(1),1);
J = false(G.cartDims(2),1); J(1:10:end) = true;
pickY = I(ijk{1}) & J(ijk{2}) & K(ijk{3});

% Combine the two picks
plotCellData(G,rock.poro, pickX | pickY, 'EdgeColor','k','EdgeAlpha',.1);

Composite grids

One advantage of an unstructured grid description is that it easily allows
the use of composite grids consisting of geometries and topologies that vary
throughout the model. That is, different grid types of cells or different grid
resolution may be used locally to adapt to well trajectories and flow and
geological constraints, see e.g., [88, 157, 81, 151, 38, 64, 218] and references
therein.

You may already have encountered a composite grid if you did Exercise 12
on page 77, where we sought an unstructured grid that adapted to two skew

Page: 106 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 107

Fig. 3.39. A composite grid consisting of a regular Cartesian mesh with radial
refinement around two well positions.

faults and was padded with rectangular cells near the boundary. As another
example, we will generate a Cartesian grid that has a radial refinement around
two wells in the interior of the domain. This composite grid will be constructed
from a set of control points using the pebi routine. To this end, we first con-
struct the generating points for a unit refinement, as discussed in Figure 3.25
on page 90

Pw = [];
for r = exp(−3.5:.2:0),

[x,y,z] = cylinder(r,28); Pw = [Pw [x (1,:); y (1,:)]];
end
Pw = [Pw [0; 0]];

Then this point set is translated to the positions of the wells and glued into
a standard regular point lattice (generated using meshgrid):

Pw1 = bsxfun(@plus, Pw, [2; 2]);
Pw2 = bsxfun(@plus, Pw, [12; 6]);
[x,y] = meshgrid(0:.5:14, 0:.5:8);
P = unique([Pw1'; Pw2'; x (:) y (:)], 'rows');
G = pebi(triangleGrid(P));

The resulting grid is shown in Figure 3.39. To get a good grid, it is important
that the number of points around the cylinder has a reasonable match with the
density of the points in the regular lattice. If not, the transition cells between
the radial and the regular grid may exhibit quite unfeasible geometries. The
observant reader will also notice the layer of small cells at the boundary, which
is an effect of the particular distribution of the generating points (see the left
plot in Figure 3.10 on page 72) and can, if necessary be avoided by a more
meticulous choice of points.

In the left plot of Figure 3.40, we have combined these two approaches to
generate an areal grid consisting of three characteristic components: Carte-
sian grid cells at the outer boundary, hexagonal cells in the interior, and a

Page: 107 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



108 3 Grids in Subsurface Modeling

Fig. 3.40. Examples of composite grids. The left plot shows an areal grid consist-
ing of Cartesian, hexagonal, and radial parts. The right plot shows the same grid
extruded to 3D with two stair-stepped faults added.

radial grid with exponential radial refinement around two wells. The right
plot shows a 2.5D in which the areal Voronoi grid has been extruded to 3D
along vertical pillars. In addition, structural displacement has been modelled
along two areally stair-stepped faults that intersect near the west boundary.
Petrophysical parameters have been sampled from layers 40–44 of the SPE10
data set [55].

Multiblock grids

A somewhat different approach to get grids whose geometry and topology vary
throughout the physical domain is to use multiblock grids in which different
types of structured or unstructured griding are glued together. The resulting
grid can be non-matching across block interfaces (see e.g., [231, 19, 230]) or
have grid lines that are continuous (see e.g., [105, 131]). MRST does not have
any grid-factory routine for generating advanced multiblock grids, but offers
a the function glue2DGrid for gluing together rectangular blocks in 2D. In
the following, we will show a few examples of such grids.

As our first example, let us generate a curvilinear grid that has a local
refinement at its center as shown in Figure 3.41 (see also Exercise 11 on
page 77). To this end, we start by generating three different block types shown
in red, green, and blue colors to the left in the figure:

G1 = cartGrid([ 5 5],[1 1]);
G2 = cartGrid([20 20],[1 1]);
G3 = cartGrid([15 5],[3 1]);

Once these are in place, we can simply translate the blocks and glue them
together and then apply the twister function to make a curvilinear transfor-
mation of each grid line:

Page: 108 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 109

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Fig. 3.41. Using a multiblock approach to construct a rectilinear grid with refine-
ment.

G = glue2DGrid(G1, translateGrid(G2,[1 0]));
G = glue2DGrid(G, translateGrid(G1,[2 0]));
G = glue2DGrid(G3, translateGrid(G, [0 1]));
G = glue2DGrid(G, translateGrid(G3,[0 2]));
G = twister(G);

Let us now replace the central block by a patch consisting of triangular cells.
To this end, we start by regenerating G2

[N,M]=deal(10,15);
[x,y] = ndgrid( linspace(0,1,N+1), linspace(0,1,M+1));
x(2:N ,2:M) = x(2:N,2:M) + 0.3*randn(N−1,M−1)*max(diff(xv));
y(2:N ,2:M) = y(2:N,2:M) + 0.3*randn(N−1,M−1)*max(diff(yv));
G2 = computeGeometry(triangleGrid([x(:) y(:)]));

The glue2DGrid routine relies on face tags as explained in 3.4 on page 93 that
can be used to identify the external faces that are facing East, West, North,
and South. Generally, such tags does not make much sense for triangular grids
and are therefore not supplied. However, to be able to find the correct interface
to glue together, we need to supply tags on the perimeter of the triangular
patch, where the normal vectors follow the axial directions and tags therefore
make sense. To this end, we start by computing the true normal vectors:

hf = G2.cells.faces(:,1);
hf2cn = gridCellNo(G2);
sgn = 2*(hf2cn == G2.faces.neighbors(hf, 1)) − 1;
N = bsxfun(@times, sgn, G2.faces.normals(hf,:));
N = bsxfun(@rdivide, N, G2.faces.areas(hf,:));
n = zeros(numel(hf),2); n(:,1)=1;

Then, all interfaces that face the East are those whose dot-product with the
vector (1, 0) is identical to −1:

Page: 109 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



110 3 Grids in Subsurface Modeling

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Fig. 3.42. Using a multiblock approach to construct rectilinear grid with triangular
and polygonal refinements.

Fig. 3.43. An example of a 3D multiblock grid.

G2.cells.faces(:,2) = zeros(size(hf));
i = sum(N.*n,2)==−1; G2.cells.faces(i,2) = 1;

Similarly, we can identify all the interfaces facing the West, North, and South.
The left plot in Figure 3.42 shows the resulting multiblock grid. Likewise, the
right plot shows another multiblock grid where the central refinement is the
dual to the triangular patch and G3 has been scaled in the y-direction and
refined in the x-direction so that the grid lines are no longer matching with
the grid lines of G1.

As a last example, let us use this technique to generate a 3D multiblock
grid that consists of three blocks in the vertical direction

G = glue2DGrid(G1, translateGrid(G2,[0 1]));
G = glue2DGrid(G, translateGrid(G1,[0 2]));
G = makeLayeredGrid(G, 5);
G.nodes.coords = G.nodes.coords(:,[3 1 2]);

That is, we first generate an areal grid in the xy-plane, extrude it to 3D
along the z direction, and then permute the axis so that their relative orien-
tation is correctly preserved (notice that simply flipping [1 2 3]→[1 3 2],
for instance, will not create a functional grid).

Page: 110 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



3.5 Examples of more complex grids 111

Computer exercises:

17. How would you populate the grids shown in Figures 3.33 and 3.34 with
petrophysical properties so that spatial correlation and displacement across
the fault(s) is correctly accounted for? As an illustrative example, you can
try to sample petrophysical properties from the SPE 10 data set.

18. Select at least one of the models in the data sets BedModels1 or BedModel2
and try to find all inactive cells and then all cells that do not have six faces.
Hint: it may be instructive to visualize these models both in physical space
and in index space.

19. Extend your function from Exercise 12 on page 77 to also include radial
refinement in near-well regions as shown in Figure 3.39.

20. Make a grid similar to the one shown to the right in Figure 3.40. Hint:
although it is not easy to see, the grid is matching across the fault, which
means that you can use the method of fictitious domain to make the fault
structure.

21. As pointed out in Exercise 11 on page 77, MRST
does not yet have a grid factory routine to gener-
ate structured grids with local nested refinement
as shown in the figure to the right. While it is not
very difficult to generate the necessary vertices if
each refinement patch is rectangular and matches
the grid cells on the coarser level, building up the
grid structure may prove to be a challenge. Try
to develop an efficient algorithm and implement
in MRST.

Page: 111 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 112 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Part II

Single-Phase Flow

Page: 113 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 114 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4

Mathematical Models and Basic Discretizations

If you have read the chapters of the book in chronological order, you have
already encountered the equations modeling flow of a single, incompressible
fluid through a porous media twice: first in Section 1.4 where we showed how
to use MRST to compute vertical equilibrium inside a gravity column, and
then in Section 2.4.2, in which we discussed the concept of rock permeabil-
ity. In this section, we will review the mathematical modeling of single-phase
flow in more detail, introduce basic numerical methods for solving the result-
ing equations, and discuss how these are implemented in MRST and can be
combined with the tools introduced in Chapters 2 and 3 to develop efficient
simulators for single-phase incompressible flow. Solvers for compressible flow
will be discussed in more detail in Chapter 7.

4.1 Fundamental concept: Darcy’s law

Mathematical modeling of single-phase flow in porous media started with the
work of Henry Darcy, a French hydraulic engineer, who in the middle of the
19th century was engaged to enlarge and modernize the waterworks of the city
of Dijon. To understand the physics of flow through the sand filters that were
used to clean the water supply, Darcy designed a vertical experimental tank
filled with sand, in which water was injected at the top and allowed to flow out
at the bottom of the tank; Figure 4.1 shows a conceptual illustration. Once the
sand pack is filled with water, and the inflow and outflow rates are equal, the
hydraulic head at the inlet and at the outlet can be measured using mercury-
filled manometers. The hydraulic head is given as, h = E/mg = z + p/ρg,
relative to a fixed datum. As water flows through the porous medium, it
will experience a loss of energy. In a series of experiments, Darcy measured
the water volumetric flow rate out of the tank and compared this rate with
the loss of hydrostatic head from top to bottom of the column. From the
experiments, he established that for the same sand pack, the discharge (flow
rate) Q [m3/s] is proportional to the cross-sectional area A [m2] and the

Page: 115 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



116 4 Mathematical Models and Basic Discretizations

Q

Q

A

L

hb

ht

Fig. 4.1. Conceptual illustration of Darcy’s experiment.

Fig. 4.2. The macroscopic Darcy velocity represents an average of microscopic fluid
fluxes.

difference in hydraulic head (height of the water) ht − hb [m], and inversely
proportional to the flow length of the tank L [m]. Altogether, this can be
summarized as

Q

A
= κ

ht − hb
L

(4.1)

which was presented in 1856 as an appendix to [59] entitled “Determination of
the laws of flow of water through sand” and is what we today call Darcy’s law.
In (4.1), κ [m/s] denotes the hydraulic conductivity, which is a function both
of the medium and the fluid flowing through it. It follows from a dimensional
analysis that κ = ρgK/µ, where g [m/s2] is the gravitational acceleration, µ
[kg/ms] is the dynamic viscosity, and K [m2] is the intrinsic permeability of
a given sand pack.

The specific discharge v = Q/A, or Darcy flux, through the sand pack rep-
resents the volume of fluid per total area per time and has dimensions [m/s].
Somewhat misleading, v is often referred to as the Darcy velocity. However,
since only a fraction of the cross-sectional area is available for flow (the major-

Page: 116 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.2 General flow equations for single-phase flow 117

Fig. 4.3. Illustration of a control volume Ω on which one can apply the principle
of conservation to derive macroscopic continuity equations.

ity of the area is blocked by sand grains), v is not a velocity in the microscopic
sense. Instead, v is the apparent macroscopic velocity obtained by averaging
the microscopic fluxes inside representative elementary volumes (REVs) which
were discussed in Section 2.3.2. The macroscopic fluid velocity, defined as vol-
ume per area occupied by fluid per time, is therefore given by v/φ, where φ
is the porosity associated with the REV.

Henceforth, we will, with a slight abuse of notation, refer to the specific
discharge as the Darcy velocity. In modern differential notation, Darcy’s law
for a single-phase fluid reads,

~v = −K

µ
(∇p− gρ∇z), (4.2)

where p is the fluid pressure and z is the vertical coordinate. The equation
expresses conservation of momentum and was derived from the Navier–Stokes
equations by averaging and neglecting inertial and viscous effects by Hubbert
[101] and later from Stokes flow by Whitaker [232]. The observant reader will
notice that Darcy’s law (4.2) is analogous to Fourier’s law (1822) for heat
conduction, Ohm’s law (1827) in the field of electrical networks, or Fick’s
law (1855) for fluid concentrations in diffusion theory, except that for Darcy
there are two driving forces, pressure and gravity. Notice also that Darcy’s law
assumes a reversible fluid process, which is a special case of the more general
physical laws of irreversible processes that were first described by Onsager.

4.2 General flow equations for single-phase flow

To derive a mathematical model for single-phase flow on the macroscopic
scale, we first make a continuum assumption based on the existence of REVs
as discussed in the previous section and then look at a control volume as shown
in Figure 4.3. From the fundamental law of mass conservation, we know that
the accumulation of mass inside this volume must equal the net flux over the
boundaries,

Page: 117 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



118 4 Mathematical Models and Basic Discretizations

∂

∂t

∫
Ω

φρ d~x+

∫
∂Ω

ρ~v · ~n ds =

∫
Ω

ρq d~x, (4.3)

where ρ is the density of the fluid, φ is the rock porosity, ~v is the macroscopic
Darcy velocity, ~n denotes the normal at the boundary ∂Ω of the computa-
tional domain Ω, and q denotes fluid sources and sinks, i.e., outflow and inflow
of fluids per volume at certain locations. Applying Gauss’ theorem, this con-
servation law can be written on the alternative integral form∫

Ω

[ ∂
∂t
φρ+∇ · (ρ~v)

]
d~x =

∫
Ω

ρq d~x. (4.4)

This equation is valid for any volume Ω, and in particular volumes that are
infinitesimally small, and hence it follows that the macroscopic behavior of
the single-phase fluid must satisfy the continuity equation

∂(φρ)

∂t
+∇ · (ρ~v) = ρq. (4.5)

Equation (4.5) contains more unknowns than equations and to derive a closed
mathematical model, we need to introduce what is commonly referred to as
constitutive equations that give the relationship between different states of
the system (pressure, volume, temperature, etc.) at given physical conditions.
Darcy’s law, discussed in the previous section, is an example of a constitutive
relation that has been derived to provide a phenomenological relationship be-
tween the macroscale ~v and the fluid pressure p. In Section 2.4.1 we introduced
the rock compressibility cr = d ln(φ)/dp, which describes the relationship be-
tween the porosity φ and the pressure p. In a similar way, we can introduce
the fluid compressibility to relate the density ρ to the fluid pressure p.

A change in density will generally cause a change in both the pressure p
and the temperature T . The usual way of describing these changes in ther-
modynamics is to consider the change of volume V for a fixed number of
particles,

dV

V
=

1

V

(
∂V

∂p

)
T

dp+
1

V

(
∂V

∂T

)
p

dT, (4.6)

where the subscripts T and p indicate that the change takes place under
constant temperature and pressure, respectively. Since ρV is constant for a
fixed number of particles, dρV = ρdV , and (4.6) can written in the equivalent
form

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
T

dp+
1

ρ

(
∂ρ

∂T

)
p

dT = cfdp+ αfdT, (4.7)

where the cf denotes the isothermal compressibility and αf denotes the ther-
mal expansion coefficient. In many subsurface systems, the density changes
slowly so that heat conduction keeps the temperature constant, in which case
(4.7) simplifies to

cf =
1

ρ

dρ

dp
=
d ln(ρ)

dp
. (4.8)

Page: 118 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.2 General flow equations for single-phase flow 119

The factor cf , which we henceforth will refer to as the fluid compressibility,
is non-negative and will generally depend on both pressure and temperature,
i.e., cf = cf (p, T ).

Introducing Darcy’s law and fluid and rock compressibilities in (4.5), we
obtain the following parabolic equation for the fluid pressure

ctφρ
∂p

∂t
−∇ ·

[ρK
µ

(∇p− gρ∇z)
]

= ρq, (4.9)

where ct = cr + cf denotes the total compressibility. Notice that this equation
is generally nonlinear since both ρ and ct may depend on p. In the following,
we will look briefly at several special cases in which the governing single-
phase equation becomes a linear equation for the primary unknown; more
extensive discussions can be found in standard textbooks like [191, Chap. 1],
[53, Chap. 2]. For completeness, we will also briefly review the concept of an
equation-of-state.

Incompressible flow

In the special case of an incompressible rock and fluid (that is, ρ and φ are
independent of p so that ct = 0), (4.9) simplifies to an elliptic equation with
variable coefficients,

−∇ ·
[K
µ
∇(p− gρz)

]
= q. (4.10)

If we introduce the fluid potential, Φ = p − gρz, (4.10) can be recognized as
the (generalized) Poisson’s equation −∇·K∇Φ = q or as the Laplace equation
∇ · K∇Φ = 0 if there are no volumetric fluid sources or sinks. In the next
section, we will discuss in detail how to discretize the second-order spatial
Laplace operator L = ∇ · K∇, which is a key technological component that
will enter almost any software for simulation of flow in porous rock formations.

Constant compressibility

If the fluid compressibility is constant and independent of pressure, (4.8) can
be integrated from a known density ρ0 at a pressure datum p0 to give the
following equation,

ρ(p) = ρ0e
cf (p−p0) (4.11)

which applies well to most liquids that do not contain large quantities of
dissolved gas. To develop the differential equation, we first assume that the
porosity and the fluid viscosity do not depend on pressure. Going back to the
definition of fluid compressibility (4.8), it also follows from this equation that
∇p = (cfρ)−1∇ρ, which we can use to eliminate ∇p from Darcy’s law (4.2).
Inserting the result into (4.5) gives us the following continuity equation

∂ρ

∂t
− 1

µφcf
∇ ·
(
K∇ρ− cfgρ2K∇z

)
= ρq, (4.12)

Page: 119 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



120 4 Mathematical Models and Basic Discretizations

which in the absence of gravity forces and source terms is a linear equation
for the fluid density that is similar to the classical heat equation with variable
coefficients,

∂ρ

∂t
=

1

µφcf
∇ ·
(
K∇ρ

)
. (4.13)

Slightly compressible flow

In the case that the fluid compressibility is small, it is sufficient to use a linear
relationship

ρ = ρ0

[
1 + cf (p− p0)

]
. (4.14)

We further assume that φ is a function of ~x only and that µ is constant. For
simplicity, we also assume that g and q are both zero. Then, we can simplify
(4.9) as follows:

(cfφρ)
∂p

∂t
=
cfρ

µ
∇p · K∇p+

ρ

µ
∇ · (K∇p)

If cf is sufficiently small, in the sense that cf∇p · K∇p � ∇ · (K∇p), we can
neglect the first term on the right-hand side to derive a linear equation similar
to (4.13) for the fluid pressure

∂p

∂t
=

1

µφcf
∇ ·
(
K∇p

)
. (4.15)

Ideal gas

If the fluid is a gas, compressibility can be derived from the gas law, which
for an ideal gas can be written in two alternative forms,

pV = nRT, ρ = p(γ − 1)e. (4.16)

In the first form, T is temperature, V is volume, R is the gas constant (8.314
J K−1mol−1), and n = m/M is the amount of substance of the gas in moles,
where m is the mass and M is the molecular weight. In the second form, γ
is the adiabatic constant, i.e., ratio of specific heat at constant pressure and
constant volume, and e is the specific internal energy (internal energy per unit
mass). In either case, it follows from (4.8) that cf = 1/p.

If the fluid is a gas, we can neglect gravity, and once again we assume that
φ is a function of ~x only. Inserting (4.16) into (4.9) gives

∂(ρφ)

∂t
= φ(γ − 1)e

∂p

∂t
=

1

µ
∇ ·
(
ρK∇p

)
=

(γ − 1)e

µ
∇ ·
(
pK∇p

)
from which it follows that

φµ
∂p

∂t
= ∇ ·

(
pK∇p

)
⇔ φµ

p

∂p2

∂t
= ∇ ·

(
K∇p2

)
. (4.17)

Page: 120 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.2 General flow equations for single-phase flow 121

Equation of state

Equations (4.11), (4.14), and (4.16) are all examples of what is commonly
referred to as equations of state, which provide constitutive relationships be-
tween mass, pressures, temperature, and volumes at thermodynamic equilib-
rium. Another popular form of these equations are the so-called cubic equa-
tions of state, which can be written as cubic functions of the molar volume
Vm = V/n = M/ρ involving constants that depend on the pressure pc, the
temperature Tc, and the molar volume Vc at the critical point, i.e., the point at

which ( ∂p∂V )T = ( ∂
2p

∂V 2 )T ≡ 0. A few particular examples include the Redlich–
Kwong equation of state

p =
RT

Vm − b
− a√

T Vm(Vm + b)
,

a =
0.42748R2T

5/2
c

pc
, b =

0.08662RTc
pc

,

(4.18)

the modified version called Redlich–Kwong–Soave

p =
RT

Vm − b
− aα√

T Vm(Vm + b)
,

a =
0.427R2T 2

c

pc
, b =

0.08664RTc
pc

,

α =
[
1 +

(
0.48508 + 1.55171ω − 0.15613ω2

)
(1−

√
T/Tc)

]2
,

(4.19)

as well as the Peng–Robinson equation of state,

p =
RT

Vm − b
− aα

V 2
m + 2bVm − b2)

,

a =
0.4527235R2T 2

c

pc
, b =

0.077796RTc
pc

,

α =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

)
(1−

√
T/Tc)

]2
.

(4.20)

Here, ω denotes the acentric factor of the species, which is a measure of the
centricity (deviation from spherical form) of the molecules in the fluid. The
Peng–Robinson model is much better at predicting the densities of liquids
than the Redlich–Kwong–Soave model, which was developed to fit pressure
data of hydrocarbon vapor phases. If we introduce

A =
aαp

(RT )2
, B =

bp

RT
, Z =

pV

RT
,

the Redlich–Kwong–Soave equation (4.19) and the Peng–Robinson equation
(4.20) can be written in alternative polynomial forms,

0 = Z3 − Z2 + Z(A−B −B2)−AB, (4.21)

0 = Z3 − (1−B)Z2 + (A− 2B − 3B2)Z − (AB −B2 −B3), (4.22)

which illustrates why they are called cubic equations of state.

Page: 121 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



122 4 Mathematical Models and Basic Discretizations

4.3 Auxiliary conditions and equations

The governing equations for single-phase flow discussed above are all parabolic,
except for the incompressible case in which the governing equation is elliptic.
For the solution to be well-posed1 inside a finite domain for any of the equa-
tions, one needs to supply boundary conditions that determine the behavior
on the external boundary. For the parabolic equations describing unsteady
flow, one also needs to impose an initial condition that determines the initial
state of the fluid system. In this section, we will discuss these conditions in
more detail. We will also discuss models for representing flow in and out of the
reservoir rock through wellbores. Because this flow typically takes place on a
length scale that is much smaller than the length scales of the global flow in-
side the reservoir, it is customary to model it using special analytical models.
Finally, we also discuss a set of auxiliary equations for describing the move-
ment of fluid elements and/or neutral particles that follow the single-phase
flow without affecting it.

4.3.1 Boundary and initial conditions

In reservoir simulation one is often interested in describing closed flow systems
that have no fluid flow across its external boundaries. This is a natural assump-
tion when studying full reservoirs that have trapped and contained petroleum
fluids for million of years. Mathematically, no-flow conditions across external
boundaries are modeled by specifying homogeneous Neumann conditions,

~v · ~n = 0 for ~x ∈ ∂Ω. (4.23)

With no-flow boundary conditions, any pressure solution of (4.10) is imma-
terial and only defined up to an additive constant, unless a datum value is
prescribed at some internal point or along the boundary.

It is also common that parts of the reservoir may be in communication
with a larger aquifer system that provides external pressure support, which
can be modeled in terms of a Dirichlet condition of the form

p(~x) = pa(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (4.24)

The function pa can, for instance, be given as a hydrostatic condition. Alter-
natively, parts of the boundary may have a certain prescribed influx, which
can be modeled in terms of an inhomogeneous Neumann condition,

~v · ~n = ua(~x, t) for ~x ∈ Γa ⊂ ∂Ω. (4.25)

Combinations of these conditions are used when studying parts of a reservoir
(e.g., sector models). There are also cases, e.g., when describing groundwater

1 A solution is well-posed if it exists, is unique, and depends continuously on the
initial and boundary conditions.

Page: 122 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.3 Auxiliary conditions and equations 123

Fig. 4.4. Illustration of a well inside a grid cell. The proportions are not fully to
scale: whereas the diameter of a well varies from 5 to 40 inches, a grid block may
extend from tens to hundreds of meters in the lateral direction and from a few
decimeters to ten meters in the vertical direction.

systems or CO2 sequestration in saline aquifers, where (parts of) the bound-
aries are open or the system contains a background flow. More information
of how to set boundary conditions will be given in Section 5.1.4. In the com-
pressible case in (4.9), we also need to specify an initial pressure distribution.
Typically, this pressure distribution will be hydrostatic, as in the gravity col-
umn we discussed briefly in Section 1.4, and hence be given by the ordinary
differential equation,

dp

dz
= ρg, p(z0) = p0. (4.26)

4.3.2 Injection and production wells

In a typical reservoir simulation, the inflow and outflow in wells occur on a
subgrid scale. In most discretized flow models, the pressure is modelled using
a single pressure value inside each grid cell. The size of each grid cell must
therefore be chosen so small that the pressure variation inside the cell can be
approximated accurately in terms of its volumetric average. Far away from
wells, the spatial variations in pressure tend to be relatively slow, at least
in certain directions, and one can therefore choose cell sizes in the order of
tens or hundreds of meters, which is a reasonable size compared with the
extent of the reservoir. Near the well, however, the pressure will have large
variations over short distances, and to compute a good approximation of these
pressure variations, one would need grid cells than are generally smaller than
what is computationally tractable. As a result, one with a setup similar to
what is illustrated in Figure 4.4, where the radius of the well is typically
between 1/100 and 1/1000 of the horizontal dimensions of the grid cell. The
largest percentage of the pressure drop associated with a well occurs near the
well and the pressure at the well radius will thus deviate significantly from
the volumetric pressure average inside the cell. Special analytical models are

Page: 123 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



124 4 Mathematical Models and Basic Discretizations

2rw

h

a) Horizontal view of well b) From above

Fig. 4.5. Radial flow used to develop well model

therefore developed to represent the subgrid variations in the particular flow
patterns near wells.

Normally, fluids are injected from a well at either constant surface rate or
at constant bottom-hole pressure, which is also called wellbore flowing pressure
and refers to the pressure at a certain point inside the wellbore. Similarly,
fluids are produced at constant bottom-hole pressure or at constant surface
liquid rate. The main purpose of a well model is then to accurately compute
the pressure at well radius when the injection or production rate is known,
or to accurately compute the flow rate in our out of the reservoir when the
pressure at well radius is known. The resulting relation between the bottom-
hole pressure and surface flow rate is often called the ’inflow-performance
relation’ or IPR.

The simplest and most widely used inflow-performance relation is the lin-
ear law

qo = J(pR − pbh), (4.27)

which states that the flow rate is directly proportional to the pressure draw-
down in the well; that is, flow rate is proportional to the difference between
the average reservoir pressure pR in the grid cell and the bottom-hole pressure
pbh in the well. The constant of proportionality J is called the productivity
index (PI) for production wells or the well injectivity index (WI) for injectors
and accounts for all rock and fluid properties, as well as geometric factors
that affect the flow. In MRST, we do not distinguish between productivity
and injectivity indices, and henceforth we will only use the shorthand ’WI’.

The basic linear relation (4.27) can be derived from Darcy’s law. Consider a
vertical well that drains a rock with uniform permeabilityK. As an equation of
state, we introduce the formation volume factor B defined as the ratio between
the volume of the fluid at reservoir conditions and the volume of the fluid at
surface conditions. (For incompressible flow, B ≡ 1). The well penetrates the
rock completely over a height h and is open in the radial direction. Fluids
are assumed to only flow in the radial direction and the outer boundary is
circular, see Figure 4.5. In other words, we assume a pseudo-steady, radial

Page: 124 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.3 Auxiliary conditions and equations 125

flow that can be described by Darcy’s law

v =
qB

2πrh
=
K

µ

dp

dr
.

Even if several different flow patterns can be expected when fluids flow toward
a vertical wellbore, two-dimensional radial flow is considered to be the most
representative for vertical oil and gas wells.

We now integrate this equation from the wellbore rw and to the drainage
boundary re where the pressure is constant

2πKh

∫ pe

pbh

1

qµB
dp =

∫ re

rw

1

r
dr.

Here, B and µ are pressure-dependent quantities; B decreases with pressure
and µ increases. The composite effect is that (µB)−1 decreases (almost) lin-
early with pressure. We can therefore approximate µB by (µB)avg evaluated
at the average pressure pavg = (pbh + pe)/2. For convenience, we drop the
subscript in the following. This gives us the pressure as a function of radial
distance

pe = pbh +
qµB

2πKh
ln(re/rw). (4.28)

To close the system, we need to know the location of the drainage boundary
r = re where the pressure is constant. This is often hard to know, and it is
customary to relate q to the volumetric average pressure instead. For pseudo-
steady flow the volumetric average pressure occurs at r = 0.472re. Hence,

q =
2πKh

µB
(
ln(re/rw)− 0.75

)(pR − pbh). (4.29)

The above relation (4.29) was developed for an ideal well under several sim-
plifying assumptions: homogeneous and isotropic formation of constant thick-
ness, clean wellbore, etc. In practice, a well will rarely experience these ideal
conditions. Typically the permeability is altered close to the wellbore under
drilling and completion, the well will only be partially completed, and so on.
The actual pressure performance will therefore deviate from (4.29). To model
this, it is customary to include a skin factor S to account for extra pressure
loss due to alterations in the inflow zone. The resulting equation is

q =
2πKh

µB
(
ln(re/rw)− 0.75 + S

)(pR − pbh). (4.30)

Often the constant −0.75 is included in the skin factor S, and for stimulated
wells the skin factor could be negative. Sometimes h is modified to ch, where
c is the completion factor, i.e., a dimensionless number between zero and one
describing the fraction of the wellbore open to flow.

To use the radial model in conjunction with a reservoir model, the volu-
metric average pressure in the radial model must be related to the computed

Page: 125 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



126 4 Mathematical Models and Basic Discretizations

−100 −80 −60 −40 −20 0 20 40 60 80 100

p
a

p
bhp

r
a−4 −2 0 2 4

Fig. 4.6. Illustration of the pressure distribution inside a cell computed from (4.28)
assuming the well is producing fluids from an infinite domain. Here, pa is the volu-
metric pressure average and ra is the radius at which this value is found. The inset
shows a zoom of the near-well zone.

Producer

Injector

Quarter five-spot

Fig. 4.7. Excerpts of a repeated five-spot pattern.

cell pressure. Analytical solutions are generally not known since real reservoirs
have complicated geometries and irregular boundaries. Well models are there-
fore developed using highly idealized reservoir geometries. One such example
is the so-called repeated five-spot pattern, which consists of a thin, infinitely
large, horizontal reservoir with a staggered pattern of injection and production
wells as shown in Figure 4.7 that repeats itself to infinity in all directions. The
name comes from the fact that each injector is surrounded by four producers,
and vice versa, hence creating tiles of five-spot patterns. If all wells operate at
equal rates, the flow pattern has certain symmetries and it is common to only
consider a quarter of the five spot, as shown in Figure 4.7, subject to no-flow
boundary conditions. An analytical solution for the pressure drop between the
injection and production wells was developed by Muskat [167],

∆p =
qµB

πKh

(
ln(re/rw)−B

)
, (4.31)

where d is the distance between the wells, and B is given by an infinite series.
Muskat [167] originally used B = 0.6190, but a more accurate value, B =

Page: 126 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.3 Auxiliary conditions and equations 127

0.61738575, was later derived by Peaceman [190], who used (4.31) to determine
an equivalent radius re at which the cell pressure is equal to the analytical
pressure. Assuming isotropic permeabilities, square grid blocks, single-phase
flow, and a well at a center of an interior block, Peaceman [192] showed that
the equivalent radius is

re ≈ 0.2
√
∆x∆y

for the two-point discretization that will be discussed in more detail in Sec-
tion 4.4.1.

This basic model has later been extended to cover a lot of other cases,
e.g., off-center wells, multiple wells, non-square grids, anisotropic permeability,
horizontal wells; see for instance [14, 75, 7]. For anisotropic permeabilities–and
horizontal wells–the equivalent radius is defined as [190]

re = 0.28

(√
Ky/Kx∆x

2 +
√
Kx/Ky∆y

2
)1/2

(
Ky/Kx

)1/4
+
(
Kx/Ky

)1/4 , (4.32)

and the permeability is replaced by an effective permeability

Ke =
√
KxKy. (4.33)

If we include gravity forces in the well and assume hydrostatic equilibrium,
the well model thus reads

qi =
2πhcKe

ln(re/rw) + S

1

µiBi

(
pR − pbh − ρi(z − zbh)g

)
, (4.34)

where Ke is given by (4.33) and re is given by (4.32). For deviated wells, h
denotes the length of the grid block in the major direction of the wellbore and
not the length of the wellbore.

At this point we should add a word of caution. The equivalent radius of
a numerical method generally depends on how the method approximates the
pressure inside the grid cell containing the well perforation. The formulas given
above are strictly seen only valid if you use the specific two-point discretization
they were developed for. When using another discretization method, you may
have to compute other values for the equivalent radius, e.g., as discussed in
[137, 148].

4.3.3 Field lines and time-of-flight

Equation (4.10) together with a set of suitable and compatible boundary con-
ditions is all that one needs to describe the flow of an incompressible fluid
inside an incompressible rock. In the remains of this section, we will discuss
a few simple concepts and auxiliary equations that have proven useful to vi-
sualize, analyze, and understand flow fields.

Page: 127 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



128 4 Mathematical Models and Basic Discretizations

A simple way to visualize a flow field is to use field lines resulting from the
vector field: streamlines, streaklines, and pathlines. In steady flow, the three
are identical. However, if the flow is not steady, i.e., when ~v changes with
time, they differ. Streamlines are associated with an instant snapshot of the
flow field and consists of a family of curves that are everywhere tangential to
~v and show the direction a fluid element will travel at this specific point in
time. That is, if ~x(r) is a parametric representation of a single streamline at
this instance t̂ in time, then

d~x

dr
× ~v(~x, t̂) = 0, or equivalently,

d~x

dr
=

~v(t̂)

|~v(t̂)|
. (4.35)

In other words, streamlines are calculated instantaneously throughout the
fluid from an instantaneous snapshot of the flow field. Because two streamlines
from the same instance in time cannot cross, there cannot be flow across it,
and if we align a coordinate along a bundle of streamlines, the flow through
them will be one-dimensional.

Pathlines are the trajectories that individual fluid elements will follow over
a certain period. In each moment of time, the path a fluid particle takes will be
determined by the streamlines associated with the streamlines at this instance
in time. If ~y(t) represents a single path line starting at ~y0 at time t0, then

d~y

dt
= ~v(~y, t), ~y(t0) = ~y0. (4.36)

A streakline is the line traced out by all fluid particles that have passed
through a prescribed point throughout a certain period of time. (Think of dye
injected into the fluid at a specific point). If we ~z(t, s) denote a parametrization
of a streakline and ~z0 the specific point through which all fluid particles have
passed, then

d~z

dt
= ~v(~z, t), ~z(s) = ~z0. (4.37)

Like streamlines, two streaklines cannot intersect each other.
In summary: streamline patterns change over time, but are easy to generate

mathematically. Pathlines and streaklines are recordings of the passage of time
and are obtained through experiments.

Within reservoir simulation streamlines are far more used that pathlines
and streaklines. Moreover, rather than using the arc length r to parametrize
streamlines, it is common to introduce an alternative parametrization called
time-of-flight, which takes into account the reduced volume available for flow,
i.e., the porosity φ. Time-of-flight is defined by the following integral

τ(r) =

∫ r

0

φ(~x(s))

|~v(~x(s))|
ds, (4.38)

where τ expresses the time it takes a fluid particle to travel a distance r
along a streamline (in the interstitial velocity field ~v/φ). Alternatively, by the
fundamental theorem of calculus and the directional derivative,

Page: 128 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.3 Auxiliary conditions and equations 129

Fig. 4.8. Illustration of time-of-flight, shown as gray isocontour lines, and stream-
lines shown as thick black lines.

dτ

dr
=

φ

|~v|
=

~v

|~v|
· ∇τ,

from which it follows that τ can be expressed by the following differential
equation [60, 61]

~v · ∇τ = φ. (4.39)

In lack of a better name, we will refer to this as the time-of-flight equation.

4.3.4 Tracers and volume partitions

Somewhat simplified, tracers can be considered as neutral particles that pas-
sively flow with the fluid without altering its flow properties. The concentra-
tion of a tracer is given by a continuity equation on the same form as (4.5),

∂(φC)

∂t
+∇ ·

(
~vC
)

= qC . (4.40)

Communication patterns within a reservoir can be determined by simulating
the evolution of artificial, non-diffusive tracers whose concentration does not
change upon fluid compression or expansion. A simple flow diagnostics is to
set the tracer concentration equal to one in a particular fluid source or at a
certain part of the inflow boundary and compute the solution approached at
steady-state conditions from the non-conservative equation,

~v · ∇C = qC , C|inflow = 1. (4.41)

The resulting tracer distribution gives the portion of the total fluid volume
coming from a certain fluid source, or parts of the inflow boundary, that
eventually will reach each point in the reservoir. Likewise, by reversing the
sign of the flow field and assigning unit tracers to a particular fluid sink or
parts of the outflow, one can compute the portion of the fluid arriving at a

Page: 129 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



130 4 Mathematical Models and Basic Discretizations

source or outflow boundary that can be attributed to a certain point in the
reservoir. By repeating this process for all parts of the inflow, one can easily
obtain a partition of the instantaneous flow field.

A more dynamic view can be obtained by utilizing the fact that streamlines
and time-of-flight can be used to define an alternative curvilinear and flow-
based coordinate system in three dimensions. To this end, we introduce the
bi-streamfunctions ψ and χ [25], for which ~v = ∇ψ × ∇χ. In the streamline
coordinates (τ, ψ, χ), the gradient operator is expressed as

∇(τ,ψ,χ) = (∇τ)
∂

∂τ
+ (∇ψ)

∂

∂ψ
+ (∇χ)

∂

∂χ
. (4.42)

Moreover, a streamline Ψ is defined by the intersection of a constant value
for ψ and a constant value for χ. Because ~v is orthogonal to ∇ψ and ∇χ, it
follows from (4.39) that

~v · ∇(τ,ψ,χ) = (~v · ∇τ)
∂

∂τ
= φ

∂

∂τ
. (4.43)

Therefore, the coordinate transformation (x, y, z) → (τ, ψ, χ) will reduce the
three-dimensional transport equation (4.40) to a family of one-dimensional
transport equations along each streamline [60, 117], which for incompressible
flow reads

∂C

∂t
+
∂C

∂τ
= 0. (4.44)

In other words, there is no exchange of the quantity C between streamlines
and each streamline can be viewed as an isolated flow system. Assuming a
prescribed concentration history C0(t) at the inflow, gives a time-dependent
boundary-value problem for the concentration at the outflow (4.44). Here, the
response is given as (see [60]),

C(t) = C0(t− τ), (4.45)

which is easily verified by inserting the expression into (4.44) and the fact that
the solution is unique [96]. For the special case of continuous and constant
injection, the solution is particularly simple

C(t) =

{
0, t < τ,

C0, t > τ.

4.4 Basic finite-volume discretizations

Research on numerical solution of the Laplace/Poisson equation has a long
tradition, and there exist a large number of different finite-difference and
finite-volume methods, as well as finite-element methods based on standard

Page: 130 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.4 Basic finite-volume discretizations 131

Galerkin, mixed, or discontinuous Galerkin formulations, which all have their
merits. In Chapter 6, we will discuss consistent discretizations of Poisson-type
equations in more detail. We introduce a general framework for formulating
such method on general polyhedral grids and present several recent methods
that are specially suited for irregular grids with strongly discontinuous coef-
ficients, which are typically seen in realistic reservoir simulation models. In
particular, we will discuss multipoint flux-approximation (MPFA) methods
and mimetic finite-difference (MFD) methods, which are both available in
add-on modules that are part of the standard MRST releases. As a starting
point, however, we will in rest of this section present the simplest example
of a finite-volume discretization, the two-point flux-approximation (TPFA)
scheme, which is used extensively throughout industry and also is the default
discretization method in MRST. We will give a detailed derivation of the
method and point out its advantages and shortcomings. For completeness,
we also briefly outline how to discretize the time-of-flight and the stationary
tracer equations.

4.4.1 Two-point flux-approximation

To keep technical details at a minimum, we will in the following without loss
of generality consider the simplified single-phase flow equation

∇ · ~v = q, ~v = −K∇p, in Ω ⊂ Rd. (4.46)

In classical finite-difference methods, partial differential equations are approx-
imated by replacing the derivatives with appropriate divided differences be-
tween point-values on a discrete set of points in the domain. Finite-volume
methods, on the other hand, have a more physical motivation and are de-
rived from conservation of (physical) quantities over cell volumes. Thus, in
a finite-volume method the unknown functions are represented in terms of
average values over a set of finite-volumes, over which the integrated PDE
model is required to hold in an averaged sense. Although finite-difference and
finite-volume methods have fundamentally different interpretation and deriva-
tion, the names are used interchangeably in the scientific literature. The main
reason for this is probably that for certain low-order methods, the discrete
equations derived for the cell-centered values in a mass-conservative finite-
difference method are identical to the discrete equations for the cell averages
in the corresponding finite-volume method. Herein, we will stick to this con-
vention and not make a strict distinction between the two types of methods

To develop a finite-volume discretization for (4.46), we start by rewriting
the equation in integral form using a single cell Ωi in the discrete grid as
control volume ∫

∂Ωi

~v · ~n ds =

∫
Ωi

q d~x. (4.47)

Page: 131 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



132 4 Mathematical Models and Basic Discretizations

pi
Ωi

Γi,k

pk
Ωk

~ni,k
~ci,k

πi,k

Fig. 4.9. Two cells used to define the two-point finite-volume discretization of the
Laplace operator.

This is a simpler form of (4.3), where that the accumulation term has disap-
peared because φ and ρ are independent of time and the constant ρ has been
eliminated.

Equation (4.47) ensures that mass is conserved for each grid cell. The next
step is to use Darcy’s law to compute the flux across each face of the cell,

vi,k =

∫
Γik

~v · ~n ds, Γi,k = ∂Ωi ∩ ∂Ωk. (4.48)

We will refer to the faces Γi,k as half-faces since they are associated with
a particular grid cell Ωi and a certain normal vector ~ni,k. However, since
the grid is assumed to be matching, each interior half face will have a twin
half-face Γk,i that has identical area Ak,i = Ai,k but opposite normal vector
~nk,i = −~ni,k. If we further assume that the integral over the cell face in (4.48)
is approximated by the midpoint rule, we use Darcy’s law to write the flux as

vi,k ≈ Ai,k~v(~xi,k) · ~ni,k = −Ai,k
(
K∇p)(~xi,k) · ~ni,k, (4.49)

where ~xi,k denotes the centroid on Γi,k. The idea is now to use a one-sided
finite difference to express the pressure gradient as the difference between the
pressure πi,k at the face centroid and at some point inside the cell. However, in
a finite-volume method, we only know the cell averaged value of the pressure
inside the cell. We therefore must make some additional assumption that
will enable us to reconstruct point values that are needed to estimate the
pressure gradient in Darcy’s law. If we assume that the pressure is linear (or
constant) inside each cell, the reconstructed pressure value πi at the cell center
is identical to the average pressure pi inside the cell, and hence it follows that
(see Figure 4.9)

vi,k ≈ Ai,kKi
(pi − πi,k)~ci,k
|~ci,k|2

· ~ni,k = Ti,k(pi − πi,k). (4.50)

Here, we have introduced one-sided transmissibilities Ti,k that are associated
with a single cell and gives a two-point relation between the flux across a cell

Page: 132 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.4 Basic finite-volume discretizations 133

face and the difference between the pressure at the cell and face centroids. We
will refer to these one-sided transmissibilities as half-transmissibilities since
they are associated with a half face.

To derive the final discretization, we impose continuity of fluxes across all
faces, vi,k = −vk,i = vik and continuity of face pressures πi,k = πk,i = πik.
This gives us two equations,

T−1
i,k vik = pi − πik, −T−1

k,i vik = pk − πik.

By eliminating the interface pressure πik, we end up with the following two-
point flux-approximation (TPFA) scheme,

vik =
[
T−1
i,k + T−1

k,i

]−1
(pi − pk) = Tik(pi − pk). (4.51)

where is the Tik the transmissibility associated with the connection between
the two cells. As the name suggests, the TPFA scheme uses two ’points’,
the cell averages pi and pk, to approximate the flux across the interface Γik
between the cells Ωi and Ωk. In the derivation above, the cell fluxes were
parametrized in terms of the index of the neighboring cell. Extending the
derivation to also include fluxes on exterior faces is trivial since we either
know the flux explicitly for Neumann boundary conditions (4.23) or (4.25),
or know the interface pressure for Dirichlet boundary conditions (4.24).

By inserting the expression for vik into (4.47), we see that the TPFA
scheme for (4.46), in compact form, seeks a set of cell averages that satisfy
the following system of equations∑

k

Tik(pi − pk) = qi, ∀Ωi ⊂ Ω (4.52)

This system is clearly symmetric, and a solution is, as for the continuous
problem, defined up to an arbitrary constant. The system is made positive
definite, and symmetry is preserved by specifying the pressure in a single
point. In MRST, we have chosen to set p1 = 0 by adding a positive constant
to the first diagonal of the matrix A = [aij ], where:

aij =

{∑
k Tik if j = i,

−Tij if j 6= i,

The matrix A is sparse and will have a banded structure for structured grids
(tridiagonal for 1D grids and penta- and heptadiagonal for logically Cartesian
grids in 2D and 3D, respectively). The TPFA scheme is monotone, robust,
and relatively simple to implement, and is currently the industry standard
with reservoir simulation.

Example 4.1. To tie the links with standard finite-difference methods on
Cartesian grids, we will derive the two-point discretization for a 2D Cartesian
grid with isotropic permeability. Consider the flux in the x-direction between

Page: 133 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



134 4 Mathematical Models and Basic Discretizations

vi,k

∆xi ∆xk

∆ypi pkπi,k

Fig. 4.10. Two cells used to derive the TPFA discretization for a 2D Cartesian grid

two cells i and k as illustrated in Figure 4.10. As above, we impose mass
conservation inside each cell. For cell i this reads:

vi,k = ∆y
(pi − πi,k)(

1
2∆xi

)2 ( 1
2∆xi, 0

)
Ki

(
1, 0
)T

= ∆y
2Ki

∆xi

(
pi − πi,k

)
and likewise for cell k:

vk,i = ∆y
(pk − πk,i)(

1
2∆xk

)2 (− 1
2∆xk, 0

)
Kk

(
−1, 0

)T
= ∆y

2Kk

∆xk

(
pk − πk,i

)
Next, we impose continuity of fluxes and face pressures,

vi,k = −vk,i = vik, πi,k = πk,i = πik

which gives us two equations

∆xi
2Ki∆y

vik = pi − πik, − ∆xk
2Kk∆y

vik = pk − πik.

Finally, we eliminate πik to obtain

vik = 2∆y
(∆xi
Ki

+
∆xk
Kk

)−1(
pi − pk

)
,

which shows that the transmissibility is given by the harmonic average of the
permeability values in the two adjacent cells, as one would expect.

In [4], we showed how one could develop an efficient and self-contained
MATLAB program that in approximately thirty compact lines solved the in-
compressible flow equation (4.46) using the two-point method outlined above.
The program was designed for Cartesian grids with no-flow boundary condi-
tions only and relied strongly on a logical ijk numbering of grid cells. For this
reason, the program has limited applicability beyond highly idealized cases
like the SPE10 model. However, in its simplicity, it presents an interesting
contrast to the general-purpose implementation in MRST that handles un-
structured grids, wells, and more general boundary conditions. The interested
reader is encouraged to read the paper and try the accompanying program
and example scripts that can be downloaded from

http://folk.uio.no/kalie/matlab-ressim/

Page: 134 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://folk.uio.no/kalie/matlab-ressim/


4.4 Basic finite-volume discretizations 135

4.4.2 Discrete div and grad operators

While the double-index notation vi,k and vik used in the previous section is
simple and easy to comprehend when working with a single interface between
two neighboring cells, it becomes more involved when we want to introduce
the same type of discretizations for more complex equations than the Poisson
equation for incompressible flow. To prepare for discussions that will follow
later in the book, we will in the following introduce a more abstract way of
writing the two-point finite-volume discretization introduced in the previous
section. The idea is to introduce discrete operators for the divergence and
gradient operators that mimic their continuous counterparts, which will en-
able us to write the discretized version of the Poisson equation (4.46) in the
same form as its continuous counterpart. To this end, we start by a quick
recap of the definition of unstructured grids. As discussed in detail in Sec-
tion 3.4, the grid structure in MRST, consists of three objects: The cells,
the faces, and the nodes. Each cell corresponds to a set of faces, and each
face to a set of edges, which again are determined by the nodes. Each ob-
ject has given geometrical properties (volume, areas, centroids). As before,
let us denote by nc and nf , the number of cells and faces, respectively. To
define the topology of the grid, we will mainly use two different mappings.
The first mapping is given by N : {1, . . . , nc} → {0, 1}nf and maps a cell
to the set of faces that constitute this cell. In a grid structure G, this is rep-
resented as the G.cells.faces array, where the first column that gives the
cell numbers is not stored since it is redundant and instead must be com-
puted by a call f2cn = gridCellNo(G);. The second mapping consists in fact
of two mappings that, for a given face, give the corresponding neighboring
cells, N1, N2 : {1, . . . , nf} → {1, . . . , nc}. In a grid structure G, N1 is given by
G.faces.neighbors(:,1) and N2 by G.faces.neighbors(:,2). This is illustrated
in Figure 4.11.

Let us now construct the discrete versions of the divergence and gradient
operators, which we denote div and grad. The mapping div is a linear map-
ping from faces to cells. We consider a discrete flux v ∈ Rnf . For a face f , the
orientation of the flux v[f ] is from N1(f) to N2(f). Hence, the total amount
of matter leaving the cell c is given by

div(v)[c] =
∑

f∈N(c)

v[f ] 1{c=N1(f)} −
∑

f∈N(c)

v[f ] 1{c=N2(f)}. (4.53)

The grad mapping maps Rnc to Rnf and it is defined as

grad(p)[f ] = p[N2(f)]− p[N1(f)], (4.54)

for any p ∈ Rnc . In the continuous case, the gradient operator is the adjoint
of the divergence operator (up to a sign), as we have∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x = 0, (4.55)

Page: 135 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



136 4 Mathematical Models and Basic Discretizations

5

6

7

8

2

1

2

3

4 1

3 4

5

6

7
8

9

c F(c)

1 1

1 2

1 3

1 4

2 5

2 6

2 7

2 8

2 2

3 1
...

...
...

...

f

1

2

3

4

5

6

7

8
...
...

C1

3

1

1

9

4

2

2

2
...
...

C2

1

2

8

1

2

5

6

7
...
...

Fig. 4.11. Illustration of the mappings from cells to faces and from faces to cells
used to define the discrete divergence and gradient operators.

for vanishing boundary conditions. Let us prove that this property holds also
in the discrete case. To simplify the notations, we set Sc = {1, . . . , nc} and
Sf = {1, . . . , nf}. For any v ∈ Rnf and p ∈ Rnc , we have

∑
c∈Sc

div(v)[c]p[c] =
∑
c∈Sc

p[c]

( ∑
f∈N(c)

v[f ] 1{c=N1(f)} −
∑

f∈N(c)

v[f ] 1{c=N2(f)}

)

=
∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)}

−
∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N2(f)} 1{f∈N(c)} (4.56)

We can switch the order in the sums above and obtain∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)} =∑
f∈Sf

∑
c∈Sc

v[f ]p[c] 1{c=N1(f)} 1{f∈N(c)}.

For a given face f , we have that 1{c=N1(f)}1{f∈N(c)} is nonzero if and only if
c = N1(f) and therefore∑

f∈Sf

∑
c∈Sc

1{c=N1(f)}1{f∈N(c)}v[f ]p[c] =
∑
f∈Sf

v[f ]p[N1(f)].

In the same way, we have∑
c∈Sc

∑
f∈Sf

v[f ]p[c] 1{c=N2(f)} 1{f∈N(c)} =
∑
f∈Sf

v[f ]p[N2(f)]

Page: 136 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.4 Basic finite-volume discretizations 137

so that (4.56) yields∑
c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f ]v[f ] = 0. (4.57)

Until now, the boundary conditions have been ignored. They are included by
introducing one more cell number c = 0 to denote the exterior. Then we can
consider external faces and extend the mappings N1 and N2 to Sc ∪ {0} so
that, if a given face f satisfies N1(f) = 0 or N2(f) = 0 then it is external.
Note that the grad operator only defines values on internal faces. Now taking
external faces into account, we obtain∑

c∈Sc

div(v)[c]p[c] +
∑
f∈Sf

grad(p)[f ]v[f ]

=
∑

f∈S̄f\Sf

(
p[N1(f)] 1{N2(f)=0} − p[N2(f)] 1{N1(f)=0}

)
v[f ], (4.58)

where S̄f denotes the set of internal and external faces. The identity (4.58) is
the discrete counterpart to∫

Ω

p∇ · ~v d~x+

∫
Ω

~v · ∇p d~x =

∫
∂Ω

p~v · ~n ds. (4.59)

Going back to (4.46), we see that the vector v ∈ Rnf is a discrete approxima-
tion of the flux on faces. Given f ∈ Sf , we have

v[f ] ≈
∫
Γf

~v(x) · ~nf ds,

where ~nf is the normal to the face f , where the orientation is given by the
grid. The relation between the discrete pressure p ∈ Rnc and the discrete flux
is given by the two-point flux approximation discussed in the previous section,

v[f ] = −T [f ] grad(p)[f ] ≈ −
∫
Γf

K(x)∇p · ~nf ds, (4.60)

where T [f ] denotes the transmissibility of the face f , as defined in (4.51).
Hence, the discretization of (4.46) is

div(v) = q (4.61a)

v = −T grad(p). (4.61b)

where the multiplication in (4.61b) holds element-wise.

Example 4.2. To illustrate the use of the discrete operators, let us set up and
solve the classical Poisson equation on a simple box geometry,

− div(Tgrad(p)) = q, Ω = [0, 1]× [0, 1] (4.62)

subject to no-flow boundary conditions with q consisting of a point source at
(0,0) and a point sink at (1,1). First, we construct a small Cartesian grid

Page: 137 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



138 4 Mathematical Models and Basic Discretizations

G = computeGeometry(cartGrid([5 5],[1 1]));

for which T equals a scalar multiple of the identity matrix and is therefore
dropped for simplicity. The div and grad operators will be constructed as
sparse matrices. To this end, we will use (4.54) and (4.57), which implies that
the sparse matrix used to construct div is the negative transpose of the matrix
that defines grad. Moreover, since we assume no-flow boundary conditions,
we only need to let N1 and N2 account for internal connections:

N = G.faces.neighbors;
N = N(all(N ~= 0, 2), :);
nf = size(N,1);
nc = G.cells.num;
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
grad = @(x) C*x;
div = @(x) −C'*x;

∂
∂y

∂
∂x

C =

Once we have the discrete operators, we can write (4.62) in residual form,
f(p) = Ap + q = 0, and then use automatic differentiation as discussed in
Example A.3 on page 477 to obtain A by computing ∂f/∂p

p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1); % source term
q(1) = 1; q(nc) = −1; % −> quarter five−spot

eq = div(grad(p))+q; % equation
eq(1) = eq(1) + p(1); % make solution unique
p = −eq.jac{1}\eq.val; % solve equation

Next, we try to solve the same type of flow problem on a non-rectangular
domain. That is, we still consider the unit square, but remove two half-circles
of radius 0.4 centered at (0.5,0) and (0.5,1), respectively. To construct the
corresponding grid, we use the fictitious grid approach from Section 3.1 (see
Exercise 6 on page 65):

G = cartGrid([20 20],[1 1]);
G = computeGeometry(G);
r1 = sum(bsxfun(@minus,G.cells.centroids,[0.5 1]).ˆ2,2);
r2 = sum(bsxfun(@minus,G.cells.centroids,[0.5 0]).ˆ2,2);
G = extractSubgrid(G, (r1>0.16) & (r2>0.16));

The construction of the discrete operators is agnostic to the exact layout of the
grid, and since the transmissibility matrix T is still a multiple of the identity
matrix, since the grid cells are equidistant squares, we can simply reuse the
exact same set-up as above:

Page: 138 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.4 Basic finite-volume discretizations 139

% Grid information
N = G.faces.neighbors;
:
% Operators
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
:
% Assemble and solve equations
p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1);
q(1) = 1; q(nc) = −1;
eq = div(grad(p))+q;
eq(1) = eq(1) + p(1);
p = −eq.jac{1}\eq.val;
plotCellData(G,p);

∂
∂y

∂
∂x

Notice that the C matrix has almost the same sparsity structure as in our
first problem, except that the nonzero band now are curved since the number
of cells in each column/row of the grid changes throughout the domain.

Example 4.3. To illustrate the power of the combination of an unstructured
grid format and discrete differential operators, we also go through how you
can use this technique to solve the Poisson equation on an unstructured grid.
As an example, we use the Voronoi grid generated from the seamount data set
shown in Figure 3.11 on page 72. Now comes the important point: Because the
discrete differential operators are defined in terms of the two general matrices
N1 and N2 that describe the internal connections in the grid, their construction
remains exactly the same as for the Cartesian grid:

load seamount

G = pebi(triangleGrid([x(:) y(:)], delaunay(x,y)));
G = computeGeometry(G);

N = G.faces.neighbors;
N = N(all(N ~= 0, 2), :);
nf = size(N,1);
nc = G.cells.num;
C = sparse([(1:nf)'; (1:nf )'], N, ...

ones(nf,1)*[−1 1], nf, nc);
grad = @(x) C*x;

Here, the directional derivatives do not follow the axial directions and hence
C will have a general sparse structure and not the banded structure we saw
for the Cartesian grids in the previous example. Likewise, because the cell
centers are no longer equidistant points on a uniform mesh, the diagonal
entries in the transmissibility matrix will not be the same constant for all
cells and hence cannot be scaled out of the discrete system. For historical
reasons, MRST only supplies a routine for computing half-transmissibilities

Page: 139 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



140 4 Mathematical Models and Basic Discretizations

defined in (4.50) on page 132. These are defined for all faces in the grid. Since
we have assumed no-flow boundary conditions, we hence only need to find the
half-transmissibilities associated with the interior faces and compute their
harmonic average to get the transmissibilities defined in (4.51):

hT = computeTrans(G, struct('perm', ones(nc,1)));
cf = G.cells.faces(:,1);
T = 1 ./ accumarray(cf, 1 ./ hT, [G.faces.num, 1]);
T = T(all(N~=0,2),:);

p = initVariablesADI(zeros(nc,1));
q = zeros(nc, 1); q([135 282 17]) = [−1 .5 .5];
eq = div(T.*grad(p))+q;
eq(1) = eq(1) + p(1);
p = −eq.jac{1}\eq.val;

You may also notice that we have changed our source terms slightly so that
there is now a fluid sink at the center and fluid sources to the north-west and
south-east. We will return to a more detailed discussion of the computation
of transmissibilities and assembly of discrete linear systems in Section 5.2

4.4.3 Time-of-flight and tracer

The transport equations (4.39) and (4.41) can be written on the common form

∇ ·
(
u~v
)

= h(~x, u), (4.63)

where u = τ and h = φ+τ∇·~v for time-of-flight and u = C and h = qC+C∇·~v
for the artificial tracer.

To discretize the steady transport equation (4.63), we integrate it over a
single grid cell Ωi and use Gauss’ divergence theorem to obtain∫

∂Ωi

u~v · ~n ds =

∫
Ωi

h
(
~x, u(~x)

)
d~x.

In Section 4.4.1 we discussed how to discretize the flux over an interface Γik
between two cells Ωi and Ωk for the case that u ≡ 1. To be consistent with the
notation used above, we will call this flux vik. If we can define an appropriate
value uik at the interface Γik, we can write the flux across the interface as∫

Γik

u~v · ~n ds = uikvik. (4.64)

The obvious idea of setting uik = 1
2 (ui + uk) gives a centered scheme that is

unfortunately notoriously unstable. By inspecting the direction information
is propagating in the transport equation, we can instead use the so-called
upwind value

Page: 140 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



4.4 Basic finite-volume discretizations 141

uik =

{
ui, if vij ≥ 0,

uk, otherwise.
(4.65)

This can be thought of as adding extra numerical dispersion which will sta-
bilize the resulting scheme so that it does not introduce spurious oscillations.

For completeness, let us also write this discretization using the abstract
notation defined in the previous section. If we discretize u by a vector u ∈ Rnc

and h by a vector function h(u) ∈ Rnc , the transport equation (4.63) can be
written in the discrete form

div(uv) = h(u). (4.66)

We also substitute the expression for v from (4.61b) and use (4.65) to define
u at each face f . Then, we define, for each face f ∈ Sf ,

(uv)[f ] = uuw[f ]T [f ] grad(p)[f ], (4.67)

where

uuw[f ] =

{
u[N1(f)]), if grad(p)[f ] > 0,

u[N2(f)]), otherwise.
(4.68)

Time-of-flight and tracer distributions can of course also be computed
based on tracing streamlines by solving the ordinary differential equations
(4.35). The most commonly used method for tracing streamlines on hexahedral
grids is a semi-analytical tracing algorithm introduced by Pollock [195], which
uses analytical expressions of the streamline paths inside each cell based on
the assumption that the velocity field is piecewise linear locally. Although
Pollock’s method is only correct for regular grids, it is often used also for highly
skewed and irregular grids. Other approaches for tracing on unstructured grids
and the associated accuracy are discussed in [56, 198, 109, 154, 86, 153, 121].
On unstructured polygonal grids, tracing of streamlines becomes significantly
more involved. Because the general philosophy of MRST is that solvers should
work independent of grid type – so that the user can seamlessly switch from
structured to fully unstructured, polygonal grids – we prefer to use finite-
volume methods rather than streamline tracing to compute time-of-flight and
tracer distributions.

Computer exercises:

22. Compare the discrete differentiation operators for selected grids from Chap-
ter 3, e.g., Exercises 6 to 8 on page 66 and Exercises 11 and 12 on page 77.
Can you explain the differences?

Page: 141 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 142 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5

Incompressible Solvers

A simulation model can be considered to consist of two main parts; the first
part describes the reservoir rock and the second part describes the mathemat-
ical laws that govern fluid behavior. We have already discussed how to model
the reservoir rock and its petrophysical properties in Chapters 2 and 3 and
shown how the resulting geological models are represented in MRST using a
grid object, usually called G, that describes the geometry of the reservoir, and
a rock object, usually called rock, that describes petrophysical parameters.
From the properties in these objects, one can compute spatial discretization
operators that are generic and not tied to a particular set of flow equations
as discussed in Section 4.4.2.

To form a full simulation model for porous media flow, however, we also
need to introduce forcing terms and fluid properties. In MRST, the fluid
behavior is represented as a fluid object that describes basic fluid properties
such as density, viscosity, and compressibility. These fluid objects can then
be extended to model more complex behavior for specific models, for instance
to include properties like relative permeability and capillary pressure that
describe the interaction between a multiphase flow interacts and a porous
rock. Forcing terms other than gravity are represented similarly using objects
with data structures that are specific to boundary conditions, (volumetric)
source terms, and models of injection and production wells. In addition, it is
convenient to introduce a state object holding the reservoir states (primary
unknowns and derived quantities) like pressure, fluxes, face pressures, etc.

There are two different ways the data objects outlined above can be com-
bined to form a full simulator. In Example 4.2, we saw how one can use
discrete differential operators to write the flow equations in residual form and
then employ automatic differentiation to linearize and form a linear system.
Whereas this technique is elegant and will prove highly versatile for com-
pressible flow models later in the book, it is an overkill for incompressible
single-phase flow, since these equations already are linear. In this chapter we
therefore outline how one can use a classic procedural approach to implement
the discretized flow equations from the previous chapter. We start by outlin-

Page: 143 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



144 5 Incompressible Solvers

ing the data structures and constructors needed to set up fluid properties and
forcing terms, and once this is done, we move on to discuss in detail how to
build two-point discretizations and assemble and solve corresponding linear
systems. The codes presented are simplified version of the basic flow solvers
for incompressible flow that are implemented in the add-on modules incomp

and diagnostics of MRST. Then at the end of the chapter, we go through
a few examples and give all code lines that are necessary for full simulation
setups with various driving mechanisms.

5.1 Basic data structures in a simulation model

In the previous chapter, we showed an example of a simple flow solver that did
not contain any fluid properties and assumed no-flow boundary conditions and
point sources as the only forcing term. In this section we will outline the basic
data structures that are needed to set up more comprehensive single-phase
simulation models.

5.1.1 Fluid properties

The only fluid properties we need in the basic single-phase flow equation are
the viscosity and the fluid density for incompressible models and the fluid
compressibility for compressible models. For more complex single-phase and
multiphase models, there are other fluid and rock-fluid properties that will
be needed by flow and transport solvers. To simplify the communication of
fluid properties, MRST uses so-called fluid object that contain basic fluid
properties as well as a few function handles that can be used to evaluate rock-
fluid properties that are relevant for multiphase flow. This basic structure can
be expanded further to represent more advanced fluid models.

The following shows how to initialize a simple fluid object that only re-
quires viscosity and density as input

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

After initialization, the fluid object will contain pointers to functions that can
be used to evaluate petrophysical properties of the fluid:

fluid =

properties: @(varargin)properties(opt,varargin{:})

saturation: @(x,varargin)x.s

relperm: @(s,varargin)relperm(s,opt,varargin{:})

Only the first function is relevant for single-phase flow, and returns the vis-
cosity when called with a single output argument and the viscosity and the
density when called with two output arguments. The other two functions can

Page: 144 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.1 Basic data structures in a simulation model 145

be considered as dummy functions that can be used to ensure that the single-
phase fluid object is compatible with solvers written for more advanced fluid
models. The saturation function accepts a reservoir state as argument (see
Section 5.1.2) and returns the corresponding saturation (volume fraction of
the fluid phase) which will either be empty or set to unity, depending upon
how the reservoir state has been initialized. The relperm function accepts a
fluid saturation as argument and returns the relative permeability, i.e., the
reduction in permeability due to the presence of other fluid phases, which is
always identical to one for a single-phase model.

5.1.2 Reservoir states

To hold the dynamic state of the reservoir, MRST uses a special data struc-
ture. We will in the following refer to realizations of this structure as state
objects. In its basic form, the structure contains three elements: a vector
pressure with one pressure per cell in the model, a vector flux with one flux
per grid face in the model, and a vector s with one saturation value for each
cell, which should either be empty or be an identity vector since we only have
a single fluid. The state object is typically initialized by a call to the following
function

state = initResSol(G, p0, s0);

where p0 is the initial pressure and s0 is an optional parameter that gives the
initial saturation (which should be identical to one for single-phase models).
Notice that this initialization does not initialize the fluid pressure to be at
hydrostatic equilibrium. If such a condition is needed, it must be enforced
explicitly by the user. In the case that the reservoir has wells, one should use
the alternative function:

state = initState(G, W, p0, s0);

This will give a state object with an additional field wellSol, which is a
vector with length equal the number of wells. Each element in the vector is
a structure that has two fields wellSol.pressure and wellSol.flux. These
two fields are vectors of length equal the number of completions in the well
and contain the bottom-hole pressure and flux for each completion.

5.1.3 Fluid sources

The simplest way to describe flow into or flow out from interior points of the
reservoir is to use volumetric source terms. These source terms can be added
using the following function:

src = addSource(src, cells, rates);
src = addSource(src, cells, rates, 'sat', sat);

Here, the input values are:

Page: 145 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



146 5 Incompressible Solvers

– src: structure from a prior call to addSource which will be updated on out-
put or an empty array (src==[]) in which case a new structure is created.
The structure contains the following fields:

– cell: cells for which explicit sources are provided
– rate: rates for these explicit sources
– value: pressure or flux value for the given condition
– sat: fluid composition of injected fluids in cells with rate>0

– cells: indices to the cells in the grid model in which this source term should
be applied.

– rates: vector of volumetric flow rates, one scalar value for each cell in
cells. Note that these values are interpreted as flux rates (typically in
units of [m3/day] rather than as flux density rates (which must be inte-
grated over the cell volumes to obtain flux rates).

– sat: optional parameter that specifies the composition of the fluid injected
from this source. An n × m array of fluid compositions with n being
the number of elements in cells and m is the number of fluid phases.
For m = 3, the columns are interpreted as: 1=’aqua’, 2=’liquid’, and
3=’vapor’. This field is for the benfit of multiphase transport solvers, and
is ignored for all sinks (at which fluids flow out of the reservoir). The
default value is sat = [], which corresponds to single-phase flow. As a
special case, if size(sat,1)==1, then the saturation value will be repeated
for all cells specified by cells.

For convenience, values and sat may contain a single value; this value is then
used for all faces specified in the call.

There can only be a single net source term per cell in the grid. Moreover, for
incompressible flow with no-flow boundary conditions, the source terms must
sum to zero if the model is to be well posed, or alternatively sum to the flux
across the boundary. If not, we would either inject more fluids than we extract,
or vice versa, and hence implicitly violate the assumption of incompressbilitity.

5.1.4 Boundary conditions

As discussed in Section 4.3.1, all outer faces in a grid model are assumed to
be no-flow boundaries in MRST unless other conditions are specified explic-
itly. The basic mechanism for specifying Dirichlet and Neumann boundary
conditions is to use the function:

bc = addBC(bc, faces, type, values);
bc = addBC(bc, faces, type, values, 'sat' , sat);

Here, the input values are:

– bc: structure from a prior call to addBC which will be updated on output
or an empty array (bc==[]) in which case a new structure is created. The
structure contains the following fields:

Page: 146 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.1 Basic data structures in a simulation model 147

– face: external faces for which explicit conditions are set
– type: cell array of strings denoting type of condition
– value: pressure or flux value for the given condition
– sat: fluid composition of fluids passing through inflow faces, not

used for single-phase models

– faces: array of external faces at which this boundary condition is applied.
– type: type of boundary condition. Supported values are ’pressure’ and

’flux’, or cell array of such strings.
– values: vector of boundary conditions, one scalar value for each face in

faces. Interpreted as a pressure value in units of [Pa] when type equals
’pressure’ and as a flux value in units of [m3/s] when type is ’flux’. If the
latter case, the positive values in values are interpreted as injection fluxes
into the reservoir, while negative values signify extraction fluxs, i.e., fluxes
out of the reservoir.

– sat: optional parameter that specifies the composition of the fluid injected
across inflow faces. Similar setup as for explained for source terms in
Section 5.1.3.

There can only be a single boundary condition per face in the grid. Solvers
assume boundary conditions are given on the boundary; conditions in the in-
terior of the domain yield unpredictable results. Moreover, for incompressible
flow and only Neumann conditions, the boundary fluxes must sum to zero
if the model is to be well posed. If not, we would either inject more fluids
than we extract, or vice versa, and hence implicitly violate the assumption of
incompressbilitity.

For convenience, MRST also offers two additional routines that can be
used to set Dirichlet and Neumann conditions at all outer faces in a certain
direction for grids having a logical IJK numbering:

bc = pside(bc, G, side, p);
bc = fluxside(bc, G, side, flux)

The side argument is a string that must match one out of the following six
alias groups:

1: ’West’, ’XMin’, ’Left’
2: ’East’, ’XMax’, ’Right’
3: ’South’, ’YMin’, ’Back’
4: ’North’, ’YMax’, ’Front’
5: ’Upper’, ’ZMin’, ’Top’
6: ’Lower’, ’ZMax’, ’Bottom’

These groups correspond to the cardinal directions mentioned as the first
alternative in each group. The user should also be aware of an important dif-
ference in how fluxes are specified in addBC and fluxside. Specifying a scalar
value in addBC means that this value will be copied to all faces the boundary
condition is applied to, whereas a scalar value in fluxside sets the cummula-
tive flux for all faces that make up the global side to be equal the specified
value.

Page: 147 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



148 5 Incompressible Solvers

5.1.5 Wells

Wells are similar to source terms in the sense that they describe injection or
extraction of fluids from the reservoir, but differ in the sense that they not
only provide a volumetric flux rate, but also contain a model that couples this
flux rate to the difference between the average reservoir in the grid cell and
the pressure inside the wellbore. As discussed in Section 4.3.2, this relation
can be written for each perforation as

vp = J(pi − pf ) (5.1)

where J is the well index, pi is the pressure in the perforated grid cell, and
pf is the flowing pressure in the wellbore. The latter can be found from the
pressure at the top of hte well and the density of the fluid in each perforation.
For single-phase, incompressible this pf = pwh + ρ∆zf , where pwh is the
pressure at the well head and ∆zf is the vertical distance from this point and
to the perforation.

The structure used to represent wells in MRST, which by convention is
called W, consists of the following fields:

– cells: an array index to cells perforated by this well
– type: string describing which variable is controlled (i.e., assumed to be

fixed), either ’bhp or ’rate’
– val: the target value of the well control (pressure value for type=’bhp’ or

the rate for type=’rate’.
– r: the wellbore radius (double).
– dir: a char describing the direction of the perforation, one of the cardinal

directions ’x’, ’y’ or ’z’
– WI: the well index: either the productivity index or the well injectivity index

depending on whether the well is producing or injecting.
– dZ: the height differences from the well head, which is defined as the ’high-

est’ contact (i.e., the contact with the minimum z-value counted amongst
all cells perforated by this well)

– name: string giving the name of the well
– compi: fluid composition, only used for injectors
– refDepth: reference depth of control mode
– sign: define if the well is intended to be producer or injector

Well structures are created by a call to the function

W = addWell(W, G, rock, cellInx);
W = addWell(W, G, rock, cellInx, 'pn', pv, ... );

Here, cellInx is a vector of indices to the cells perforated by the well, and
’pn’/pv denote one or more ’key’/value pairs that can be used to specify
optional parameters that influence the well model:

Page: 148 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.1 Basic data structures in a simulation model 149

– type: string specifying well control, ’bhp’ (default) means that the well is
controlled by bottom-hole pressure, whereas ’rate’ means that the well is
rate controlled.

– val: target for well control. Interpretation of this values depends upon type.
For ’bhp’ the value is assumed to be in unit Pascal, and for ’rate’ the value
is given in unit [m3/sec]. Default value is 0.

– radius: wellbore radius in meters. Either a single, scalar value that applies
to all perforations, or a vector of radii, with one value for each perforation.
The default radius is 0.1 m.

– dir: well direction. A single CHAR applies to all perforations, while a
CHAR array defines the direction of the corresponding perforation.

– innerProduct: used for consistent discretizations discussed in Chapter 6
– WI: well index. Vector of length equal the number of perforations in the

well. The default value is -1 in all perforations, whence the well index will
be computed from available data (cell geometry, petrophysical data, etc)
in grid cells containing well completions

– Kh: permeability times thickness. Vector of length equal the number of per-
forations in the well. The default value is -1 in all perforations, whence
the thickness will be computed from the geometry of each perforated cell.

– skin: skin factor for computing effective well bore radius. Scalar value or
vector with one value per perforation. Default value: 0.0 (no skin effect).

– Comp i: fluid composition for injection wells. Vector of saturations. Default
value: Comp_i = [1, 0, 0] (water injection)

– Sign: well type: production (sign=−1) or injection (sign=1). Default value:
[] (no type specified)

– name: string giving the name of the well. Default value is ’Wn’ where n is
the number of this well, i.e., n=numel(W)+1

For convenience, MRST also provides the function

W = verticalWell(W, G, rock, I, J, K)
W = verticalWell(W, G, rock, I, K)

that can be used to specify vertical wells in models described by Cartesian
grids or grids that have some kind of extruded structure. Here,

– I,J: gives the horizontal location of the well heel. In the first mode, both
I and J are given and then signify logically Cartesian indices so that I is
the index along the first logical direction while J is the index along the
second logical direction. This mode is only supported in grids which have
an underlying Cartesian (logical) structure such as purely Cartesian grids
or corner-point grids.
In the second mode, only I is described and gives the cell index of the
topmost cell in the column through which the vertical well will be com-
pleted. This mode is supported for logically Cartesian grids containing a
three-component field G.cartDims or for otherwise layered grids which
contain the fields G.numLayers and G.layerSize.

Page: 149 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



150 5 Incompressible Solvers

– K: a vector of layers in which this well should be completed. If isemmpty(K)

is true, then the well is assumed to be completed in all layers in this grid
column and the vector is replaced by 1:num_layers.

5.2 Incompressible two-point pressure solver

The two-point flux-approximation scheme introduced in Section 4.4.1 is im-
plemented as two different routines in the incomp module:

hT = computeTrans(G,rock)

computes the half-face transmissibilities and does not depend on the fluid
model, the reservoir state, or the driving mechanisms, whereas

state = incompTPFA(state, G, hT, fluid, 'mech1', obj1, ...)

takes the complete model description as input and assembles and solves
the two-point system. Here, mech arguments the drive mechanism (’src’,
’bc’, and/or ’wells’) using correctly defined objects obj, as discussed in Sec-
tions 5.1.3–5.1.5. Notice that computeTrans may fail to compute sensible trans-
missibilities if the permeability field in rock is not given in SI units. Likewise,
incompTPFA may produce strange results if the inflow and outflow specified
by the boundary conditions, source terms, and wells does not sum to zero and
hence violates the assumption of incompressibility. However, if fixed pressure
is specified in wells or on parts of the outer boundary, there will be an outflow
or inflow that will balance the net rate that is specified elsewhere. In the re-
mains of this section, we will discuss more details of the incompressible solver
and demonstrate how simple it is to implement the TPFA method on general
polyhedral grid by going through the essential code lines needed to compute
half-transmissibilities and solve and assemble the global system. The impa-
tient reader can jump directly to Section 5.4, which contains several examples
that demonstrate the use of the incompressible solver for single-phase flow.

To focus on the discretization and keep the discussion simple, we will not
look at the full implementation of the two-point solver in incomp. Instead,
we discuss excerpts from two simplified functions, simpleComputeTrans and
simpleIncompTPFA, that are located in the 1phase directory of the mrst-book

module and together form a simplified single-phase solver which has been
created for pedagogical purposes. The standard computeTrans function from
mrst-core can be used for different representations of petrophysical parame-
ters and includes functionality to modify the discretization by overriding the
definition of cell and face centers and/or including multipliers that modify the
values of the half-transmissibilities, see e.g., Sections 2.4.3 and 2.5.5. Likewise,
the incompTPFA solver from the incomp module is implemented for a general,
incompressible flow model with multiple fluid phases with flow driven by a
general combination of boundary conditions, fluid sources, and well models.

Page: 150 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.2 Incompressible two-point pressure solver 151

Ti,k = Ai,kKi
~ci,k · ~ni,k
|~ci,k|2

Tik = [T−1
i,k + T−1

k,i ]−1

∑
k

Tik(pi − pk) = qi

pi
Ωi

Γi,k

pk
Ωk

~ni,k
~ci,k

πi,k

Fig. 5.1. Two-point discretization on general polyhedral cells

Assume that we have a standard grid G that contains cell and face cen-
troids, e.g., as computed by the computeGeometry function discussed in Sec-
tion 3.4. Then, the essential code lines of simpleComputeTrans are as follows:
First, we define the vectors ~ci,k from cell centroids to face centroids, see Fig-
ure 5.1. To this end, we first need to determine the map from faces to cell
number so that the correct cell centroid is subtracted from each face centroid.

hf = G.cells.faces(:,1);
hf2cn = gridCellNo(G);
C = G.faces.centroids(hf,:) − G.cells.centroids(hf2cn,:);

The face normals in MRST are assumed to have length equal to the corre-
sponding face areas, and hence correspond to Ai,k~ni,k in (4.50). To get the
correct sign, we look at the neighboring information that describes which cells
share the face: if the current cell number is in the first column, the face normal
has a positive sign. If not, it gets a negative sign:

sgn = 2*(hf2cn == G.faces.neighbors(hf, 1)) − 1;
N = bsxfun(@times, sgn, G.faces.normals(hf,:));

The permeability tensor may be stored in different formats, as discussed in
Section 2.5, and we therefore use an utility function to extract it:

[K, i, j] = permTensor(rock, G.griddim);

Finally, we compute the half transmissibilities, CTKN/CTC. To limit mem-
ory use, this is done in a for-loop (which is rarely used in MRST):

hT = zeros(size(hf2cn));
for k=1:size(i,2),

hT = hT + C(:,i(k)) .* K(hf2cn, k) .* N (:, j(k ));
end
hT = hT./ sum(C.*C,2);

The actual code has a few additional lines that perform various safeguards
and consistency checks.

Page: 151 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



152 5 Incompressible Solvers

Once the half transmissibilities have been computed, they can be passed
to the simpleIncompTPFA solver. The first thing this solver needs to do is adjust
the half transmissibilities to account for fluid viscosity, since they were derived
for a fluid with unit viscosity:

mob = 1./fluid.properties(state);
hT = hT .* mob(hf2cn);

Then we loop through all faces and compute the face transmissibility as the
harmonic average of the half-transmissibilities

T = 1 ./ accumarray(hf, 1 ./ hT, [G.faces.num, 1]);

Here, we have used the MATLAB function accumarray which constructs an ar-
ray by accumulation. A call to a = accumarray(subs,val) will use the subscripts
in subs to create an array a based on the values val. Each element in val has a
corresponding row in subs. The function collects all elements that correspond
to identical subscripts in subs and stores the sum of those values in the ele-
ment of a corresponding to the subscript. In our case, G.cells.faces(:,1) gives
the global face number for each half face, and hence the call to accumarray

will sum the transmissibilities of the half-faces that correspond to a given
global face and store the result in the correct place in a vector of G.faces.num
elements. The function accumarray is very powerful and is used a lot in MRST
in place of nested for-loops. In fact, we will employ this function to loop over
all the cells in the grid and collect and sum the transmissibilities of the faces
of each cell to define the diagonal of the TPFA matrix:

nc = G.cells.num;
i = all(G.faces.neighbors ~= 0, 2);
n1 = G.faces.neighbors(i,1);
n2 = G.faces.neighbors(i,2);
d = accumarray([n1; n2], repmat(T(i ),[2,1]),[ nc, 1]);

Now that we have computed both the diagonal and the off-diagonal element
of A, the discretization matrix itself can be constructed by a straightforward
call to MATLAB’s sparse function:

I = [n1; n2; (1:nc )'];
J = [n2; n1; (1:nc )'];
V = [−T(i); −T(i); d ]; clear d;
A = sparse(double(I), double(J), V, nc, nc);

Finally, we check if Dirichlet boundary conditions are imposed on the system,
and if not, we modify the first element of the system matrix to (somewhat
arbitrarily) fix the pressure in the first cell to zero, before we solve the system
to compute the pressure:

A(1) = 2*A(1);
p = mldivide(A, rhs);

Page: 152 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.3 Upwind solver for time-of-flight and tracer 153

To solve the system we rely on MATLAB’s default solver mldivide, which for
a sparse system boils down to calling a direct solver from UMFPACK imple-
menting an unsymmetric, sparse, multifrontal LU factorization add citation.
While this solver is efficient for small to medium-sized systems, larger systems
are more efficiently solved using more problem-specific solvers. To provide flex-
ibility, the linear solver can be passed as a function-pointer argument to both
incompTPFA and simpleIncompTPFA.

Once the pressures have been computed, we can compute pressure values
at the face centroids using the half-face transmissibilities

fp = accumarray(G.cells.faces(:,1), p(hf2cn).*hT, [G.faces.num,1])./ ...
accumarray(G.cells.faces(:,1), hT, [G.faces.num,1]);

and likewise construct the fluxes across the interior faces

ni = G.faces.neighbors(i,:);
flux = −accumarray(find(i), T(i).*(p(ni(:,2))−p(ni(:,1))), [nf, 1]);

In the code excerpts given above, we did not account for gravity forces and
general Dirichlet or Neumann boundary conditions, which both will compli-
cate the code beyond the scope of the current presentation. The interested
reader should consult the actual code to work out these details.

We will short discuss several examples that demonstrate how this code can
be used to solve flow problems on structured and unstructured grids. However,
before doing so, we outline another flow solver from the diagnostics module
visualizing flow patterns

5.3 Upwind solver for time-of-flight and tracer

The diagnostics module provides various functionality that can used to
probe a reservoir model to establish communication patterns between inflow
and outflow regions, time lines for fluid movement, and various measures of
reservoir heterogeneity. At the hart of this module, lies the function

tof = computeTimeOfFlight(state, G, rock, mech1, obj1, ...)

which implements the upwind, finite-volume discretization introduced in Sec-
tion 4.4.3 for solving the time-of-flight equation ~v · ∇τ = φ to compute the
time it takes a neutral particle to travel from the nearest fluid source or inflow
boundary to each point in the reservoir. Here, the mech arguments specify the
drive mechanism (’src’, ’bc’, and/or ’wells’) specified in terms of specific ob-
jects obj, as discussed in Sections 5.1.3 to 5.1.5. The same routine can also
compute tracer concentrations that can be used to define volumetric partitions
if the user specifies extra input parameters. Likewise, the backward time-of-
flight, i.e., the time it takes to travel from any point in the reservoir and to
the nearest fluid sink or outflow boundary, can be computed from the same

Page: 153 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



154 5 Incompressible Solvers

equation if we change the sign of the flow field and modify the boundary con-
ditions and/or source terms accordingly. In the following, we will go through
the main parts of how this discretization is implemented.

We start by identifying all volumetric sources of inflow and outflow, which
may be described as source/sink terms in src and/or as wells in W,

[qi,qs] = deal([]);
if ~isempty(W),

qi = [qi; vertcat(W.cells)];
qs = [qs; vertcat(state.wellSol.flux)];

end
if ~isempty(src),

qi = [qi; src.cell];
qs = [qs; src.rate];

end

and collect the results in a vector q of source terms having one value per cell

q = sparse(src.cell, 1, src.rate, G.cells.num, 1);

We also need to compute the accumulated inflow and outflow from boundary
fluxes for each cell. This will be done in three steps. First, we create an empty
vector ff with one entry per global face, find all faces that have Neumann
conditions, and insert the corresponding value in the correct row

ff = zeros(G.faces.num, 1);
isNeu = strcmp('flux', bc.type);
ff(bc.face(isNeu)) = bc.value(isNeu);

For faces having Dirichlet boundary conditions, the flux is not specified and
must be extracted from the solution computed by the pressure solver, i.e.,
from the state object that holds the reservoir state. We also need to set the
correct sign so that fluxes into a cell are positive and fluxes out of a cell are
negative. To this end, we use the fact that the normal vector of face i points
from cell G.faces.neighbors(i,1) to G.faces.neighbors(i,2). In other words,
the sign of the flux across an outer face is correct if neighbors(i,1)==0, but if
neighbors(i,2)==0 we need to reverse the sign

isDir = strcmp('pressure', bc.type);
i = bc.face(isDir);
if ~isempty(i)

ff(i) = state.flux(i) .* (2*(G.faces.neighbors(i,1)==0) − 1);
end

The last step is to sum all the fluxes across outer faces and collect the result
in a vector qb that has one value per cell

is_outer = ~all(double(G.faces.neighbors) > 0, 2);
qb = sparse(sum(G.faces.neighbors(is_outer,:), 2), 1, ...

ff(is_outer), G.cells.num, 1);

Page: 154 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.3 Upwind solver for time-of-flight and tracer 155

Here, G.faces.neighbors(is_outer,:), 2) gives the index of the cell that is at-
tached to each outer face (since the entry in one of the columns must be zero
for an outer face).

Once the contributions to inflow and outflow are collected, we can start
building the upwind flux discretization matrix A. The off-diagonal entries are
defined defined such that Aji = max(vij , 0) and Aij = −min(vij , 0), where vij
is the flux computed by the TPFA scheme discussed in the previous section.

i = ~any(G.faces.neighbors==0, 2);
out = min(state.flux(i), 0);
in = max(state.flux(i), 0);

The diagonal entry equals the outflux minus the divergence of the velocity,
which can be obtained by summing the off-diagonal rows. This will give the
correct equation in all cell except for those with a positive fluid source. Here,
the net outflux equals the divergence of the velocity and we hence end up with
an undetermined equation. In these cells, we can as a resonable approximate1

set the time-of-flight to be equal the time it takes to fill the cell, which means
that the diagonal entry should be equal the fluid rate inside the cell.

n = double(G.faces.neighbors(i,:));
inflow = accumarray([n(:, 2); n (:, 1)], [in; −out]);
d = inflow + max(q+qb, 0);

Having obtained diagonal and all the nonzero off-diagonal elements, we can
assemble the full matrix

nc = G.cells.num;
A = sparse(n(:,2), n (:,1), in, nc, nc) ...

+ sparse(n(:,1), n (:,2), −out, nc, nc);
A = −A + spdiags(d, 0, nc, nc);

We have now established the complete discretization matrix, and time-of-flight
can be computed by a simple matrix inversion

tof = A \ poreVolume(G,rock);

If there are no gravity forces and the flux has been computed by a monotone
scheme, one can show that the discretization matrix A can be permuted to
a lower-triangular form [169, 168]. In the general case, the permuted matrix
will be block triangular with irreducible diagonal blocks. Such systems can
be inverted very efficiently using a permuted back-substitution algorithm as
long as the irreducible diagonal blocks are small. In our experience, MATLAB
is quite good at detecting such structures and using the simple backslash (\)
operator is therefore efficient, even for quite large models. However, for models
of real petroleum assets described on stratigraphic grids (see Chapter 3.3), it

1 Notice, however, that to get the correct values for 1D cases, it is more natural to
set time-of-flight equal half the time it takes to fill the cell.

Page: 155 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



156 5 Incompressible Solvers

is often necessary to preprocess flux fields to get rid of numerical clutter that
would otherwise introduce large irreducible blocks inside stagnant regions.
By specifying optional parameters to computeTimeOfFlight, the function will
get rid of such small cycles in the flux field and set the time-of-flight to a
prescribed upper value in all cells that have sufficiently small influx. This
tends to reduce the computational cost significantly for large models with
complex geology and/or significant compressibility effects.

In addition to time-of-flight, we can compute stationary tracers as dis-
cussed in Section 4.3.4. This is done by passing an optional parameter,

tof = computeTimeOfFlight(state, G, rock, ..., 'tracer ', tr)

where tr is a cell-array of vectors that each gives the indexes of the cells that
emit a unique tracer. For incompressible flow, the discretization matrix of the
tracer equation is the same as that for time-of-flight, and all we need to do is
to assemble the right-hand side

numTrRHS = numel(tr);
TrRHS = zeros(nc,numTrRHS);
for i=1:numTrRHS,

TrRHS(tr{i},i) = 2*qp(tr{i});
end

Since we have doubled the rate in any cells with a positive source when con-
structing the matrix A, the rate on the right-hand side must also be doubled.

Now we can solve the combined time-of-flight, tracer problem as a linear
system with multiple right-hand side,

T = A \ [poreVolume(G,rock) TrRHS];

which means that we essentially get the tracer for free as long as the number
of tracers does not exceed the number of right-hand columns MATLAB can
be handled in one solve. We will return to a more thorough discussion of
the tracer partitions in the next chapter and show how these can be used to
delineate connectivities within the reservoir. In the rest of this chapter, we
will consider time-of-flight and streamlines as a means to study flow patterns
in reservoir models.

5.4 Simulation examples

You have now been introduced to all the functionality from the incomp module
that is necessary to solve a single-phase flow problem as well as the time-of-
flight solver from the diagnostics module, which can be used to compute
time lines in the reservoir. In following, we will discuss several examples, in
which we demonstrate step-by-step how to set up a flow model, solve it, and
visualize and analyze the resulting flow field. Complete codes can be found in
the 1phase directory of the mrst-book module.

Page: 156 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 157

5.4.1 Quarter five-spot

As our first example, we show how to solve −∇ · (K∇p) = q with no-flow
boundary conditions and two source terms at diagonally opposite corners
of a 2D Cartesian grid covering a 500 × 500 m2 area. This setup mimics a
standard quarter five-spot well pattern, which you already have encountered
in Figure 4.7 on page 126 when we discussed well models. The full code is
available in the script quarterFiveSpot.m.

We use a nx×ny grid with homogeneous petrophysical data, permeability
of 100 mD, and porosity of 0.2:

[nx,ny] = deal(32);
G = cartGrid([nx,ny ],[500,500]);
G = computeGeometry(G);
rock = makeRock(G, 100*milli*darcy, .2);

As we saw above, all we need to know to develop the spatial discretization is
the reservoir geometry and the petrophysical properties. This means that we
can compute the half transmissibilities without knowing any details about the
fluid properties and the boundary conditions and/or sources/sinks that will
drive the global flow:

hT = simpleComputeTrans(G, rock);

The result of this computation is a vector with one value per local face of each
cell in the grid, i.e., a vector with G.cells.faces entries.

The reservoir is horizontal and gravity forces are therefore not active. We
create a fluid with properties that are typical for water:

gravity reset off

fluid = initSingleFluid('mu' , 1*centi*poise, ...
'rho' , 1014*kilogram/meterˆ3);

To drive the flow, we will use a fluid source at the south-west corner and a
fluid sink at the north-east corner of the model. The time scale of the problem
is defined by the strength of the source term. In our case, we set the source
terms such that a unit time corresponds to the injection of one pore volume
of fluids. By convention, all flow solvers in MRST automatically assume no-
flow conditions on all outer (and inner) boundaries if no other conditions are
specified explicitly.

pv = sum(poreVolume(G,rock));
src = addSource([], 1, pv);
src = addSource(src, G.cells.num, −pv);
display(src)

The data structure used to represent the fluid sources contains three elements:

src =

Page: 157 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



158 5 Incompressible Solvers

cell: [2x1 double]

rate: [2x1 double]

sat: []

The src.cell gives the cell numbers where the source term is nonzero, and
the vector src.rate specifies the fluid rates, which by convention are positive
for inflow into the reservoir and negative for outflow from the reservoir. The
last data element src.sat specifies fluid saturations, which only has meaning
for multiphase flow models and hence is set to be empty here.

To simplify communication among different flow and transport solvers,
all unknowns (reservoir states) are collected in a structure. Strictly speaking,
this structure need not be initialized for an incompressible model in which
none of the fluid properties depend on the reservoir states. However, to avoid
treatment of special cases, MRST requires that the structure is initialized and
passed as argument to the pressure solver. We therefore initialize it with a
dummy pressure value of zero and a unit fluid saturation since we only have
a single fluid

state = initResSol(G, 0.0, 1.0);
display(state)

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

This completes the setup of the model. To solve for the pressure, we simply
pass the reservoir state, grid model, half transmissibilities, fluid model, and
driving forces to the flow solver, which assembles and solves the incompressible
flow equation.

state = simpleIncompTPFA(state, G, hT, fluid, 'src', src);
display(state)

As explained above, simpleIncompTPFA solves for pressure as the primary vari-
able and then uses transmissibilities to reconstruct the face pressure and inter-
cell fluxes. After a call to the pressure solver, the state object is therefore
expanded by a new field facePressure that contains pressures reconstructed
at the face centroids

state =

pressure: [1024x1 double]

flux: [2112x1 double]

s: [1024x1 double]

facePressure: [2112x1 double]

Figure 5.2 shows the resulting pressure distribution. To improve the visual-
ization of the flow field, we show streamlines. In MRST, Pollock’s method
[195] for semi-analytical tracing of streamlines has been implemented in the
streamlines add-on module. Here, we will use this functionality to trace

Page: 158 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 159

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , state.pressure );
plotGrid (G , src.cell , 'FaceColor', 'w');
axis equal tight ; colormap (jet (128));

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

hf= streamline (Sf );
hb= streamline (Sb );
set ([ hf ; hb ], 'Color', 'k' );

Fig. 5.2. Solution of the quarter five-spot problem on a 32× 32 uniform grid. The
left plot shows the pressure distribution and in the right plot we have imposed
streamlines passing through centers of the cells on the NW–SE diagonal.

streamlines forward and backward, starting from the midpoint of all cells
along the NW–SE diagonal in the grid

mrstModule add streamlines;
seed = (nx:nx−1:nx*ny).';
Sf = pollock(G, state, seed, 'substeps', 1);
Sb = pollock(G, state, seed, 'substeps', 1, ' reverse ' , true);

The pollock routine produces a cell array of individual streamlines that can
be passed onto MATLAB’s built-in streamline routine for plotting, as shown
to the right in Figure 5.2.

To get a better picture of how fast the fluids will flow through our domain,
we solve the time-of-flight equation (4.39) subject to the condition that τ = 0
at the inflow, i.e., at all points where q > 0. For this purpose, we use the
computeTimeOfFlight solver discussed in Section 5.3, which can compute both
the forward time-of-flight from inflow points and into the reservoir,

toff = computeTimeOfFlight(state, G, rock, 'src', src);

and the backward time-of-flight from outflow points and backwards into the
reservoir

tofb = computeTimeOfFlight(state, G, rock, 'src', src, 'reverse ' , true);

Isocontours of time-of-flight define natural time lines in the reservoir, and
to emphasize this fact, the left plot in Figure 5.3 shows the time-of-flight
plotted using only a few colors to make a rough contouring effect. The sum of

Page: 159 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



160 5 Incompressible Solvers

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , toff );
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (16)); caxis ([0,1]);

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

plotCellData (G , toff+tofb);
plotGrid (G , src.cell , 'FaceColor','w');
axis equal tight ;
colormap (jet (128));

Fig. 5.3. Solution of the quarter five-spot problem on a 32×32 uniform grid. The left
plot shows time-of-flight plotted with a few color levels to create a crude contouring
effect. The right plot shows a plot of the total travel time to distinguish high-flow
and stagnant regions.

the forward and backward time-of-flights gives the total time it takes a fluid
particle to travel through the reservoir, from an inflow point to an outflow
point. The total travel time can be used to visualize high-flow and stagnant
regions as demonstrated in the right plot of Figure 5.3.

Computer exercises:

23. Run the quarter five-spot example with the following modifications:
a) Replace the Cartesian grid by a curvilinear grid, e.g., using twister or

a random perturbation of internal nodes as shown in Figure 3.3.
b) Replace the Cartesian grid by the locally refined grid from Exercise 11

on page 77
c) Replace the homogeneous permeability by a heterogeneous permeabil-

ity derived from the Carman–Kozeny relation (2.6)
d) Set the domain to be a single layer of the SPE10 model. Hint: use

getSPE10rock() to sample the petrophysical parameters and remember
to convert to SI units.

Notice that the pollock function may not work for non-Cartesian grids.
24. Construct a grid similar to the one in Exercise 6 on page 65, except that the

domain is given a 90◦ flip so that axis of the cylindrical cut-outs align with
the z-direction. Modify the code presented above so that you can compute
a five-spot setup with one injector near each corner and a producer in the
narrow middle section between the cylindrical cut-outs.

Page: 160 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 161

5.4.2 Boundary conditions

To demonstrate how to specify boundary conditions, we will go through essen-
tial code lines of three different examples; the complete scripts can be found
in boundaryConditions.m. In all three examples, the reservoir is 50 meter
thick, is located at a depth of approximately 500 meters, and is restricted to a
1× 1 km2 area. The permeability is uniform and anisotropic, with a diagonal
(1000, 300, 10) mD tensor, and the porosity is uniform and equal 0.2 In the
first two examples, the reservoir is represented as a 20 × 20 × 5 rectangular
grid, and in the third example the reservoir is given as a corner-point grid of
the same Cartesian dimension, but with an uneven uplift and four intersecting
faults (as shown in the left plot of Figure 3.34):

[nx,ny,nz] = deal(20, 20, 5);
[Lx,Ly,Lz] = deal(1000, 1000, 50);
switch setup

case 1,
G = cartGrid([nx ny nz], [Lx Ly Lz ]);

case 2,
G = cartGrid([nx ny nz], [Lx Ly Lz ]);

case 3,
G = processGRDECL(makeModel3([nx ny nz], [Lx Ly Lz/5]));
G.nodes.coords(:,3) = 5*(G.nodes.coords(:,3) ...

− min(G.nodes.coords(:,3)));
end
G.nodes.coords(:,3) = G.nodes.coords(:,3) + 500;

Setting rock and fluid parameters, computing transmissibilities, and initializ-
ing the reservoir state can be done as explained in the previous section, and
details are not included for brevity.

Linear pressure drop

In the first example (setup=1), we specify a Neumann condition with total
inflow of 5000 m3/day on the east boundary and a Dirichlet condition with
fixed pressure of 50 bar on the west boundary:

bc = fluxside(bc, G, 'EAST', 5e3*meterˆ3/day);
bc = pside (bc, G, 'WEST', 50*barsa);

This completes the definition of the model, and we can pass the resulting
objects to the simpleIncompTFPA solver to compute the pressure distribution
shown to the right in Figure 5.4. In the absence of gravity, these boundary
conditions will result in a linear pressure drop from east to west inside the
reservoir.

Hydrostatic boundary conditions

In the next example, we will use the same model, except that we now include
the effects of gravity and assume hydrostatic equilibrium at the outer vertical

Page: 161 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



162 5 Incompressible Solvers

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

 

x
y

 

D
e

p
th

[bar]

51

52

53

54

55

56

57

58

59

60

61

Fig. 5.4. First example of a flow driven by boundary conditions. In the left plot,
faces with Neumann conditions are marked in blue and faces with Dirichlet condi-
tions are marked in red. The right plot shows the resulting pressure distribution.

boundaries of the model. First, we initialize the reservoir state according to
hydrostatic equilibrium, which is straightforward to compute if we for sim-
plicity assume that the overburden pressure is caused by a column of fluids
with the exact same density as in the reservoir:

state = initResSol(G, G.cells.centroids(:,3)*rho*norm(gravity), 1.0);

There are at least two different ways to specify hydrostatic boundary condi-
tions. The simplest approach is to use the function psideh, i.e.,

bc = psideh([], G, 'EAST', fluid);
bc = psideh(bc, G, 'WEST', fluid);
bc = psideh(bc, G, 'SOUTH', fluid);
bc = psideh(bc, G, 'NORTH', fluid);

Alternatively, we can do it manually ourselves. To this end, we need to extract
the reservoir perimeter defined as all exterior faces are vertical, i.e., whose
normal vector have no z-component,

f = boundaryFaces(G);
f = f(abs(G.faces.normals(f,3))<eps);

To get the hydrostatic pressure at each face, we can either compute it directly
by using the face centroids,

fp = G.faces.centroids(f,3)*rho*norm(gravity);

or we use the initial equilibrium that has already been established in the
reservoir by can sample from the cells adjacent to the boundary

cif = sum(G.faces.neighbors(f,:),2);
fp = state.pressure(cif);

Page: 162 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 163

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

 

 
[bar]

50.5

51

51.5

52

52.5

53

53.5

54

0

200

400

600

800

1000

0

200

400

600

800

1000

500

510

520

530

540

550

 

x
y

 

D
e

p
th

[bar]
40

42

44

46

48

50

52

54

Fig. 5.5. A reservoir with hydrostatic boundary condition and fluid extracted from
a sink penetrating two cells in the upper two layers of the model. The left plot shows
the boundary and the fluid sink, while the right plot shows the resulting pressure
distribution.

The latter may be useful if the initial pressure distribution has been computed
by a more elaborate procedure than what is currently implemented in psideh.
In either case, the boundary conditions can now be set by the call

bc = addBC(bc, f, 'pressure ' , fp);

To make the problem a bit more interesting, we also include a fluid sink at
the midpoint of the upper two layers in the model,

ci = round(.5*(nx*ny−nx));
ci = [ci; ci+nx*ny];
src = addSource(src, ci, repmat(−1e3*meterˆ3/day,numel(ci),1));

The boundary conditions and source terms are shown to the left in Figure 5.5
and the resulting pressure distribution to the right. The fluid sink will cause
a pressure draw-down, which will have an ellipsoidal shape because of the
anisotropy in the permeability field.

Conditions on non-rectangular domain

In the last example, we consider a case where the outer boundary of the
reservoir is not a simple hexahedron. In such cases, it may not be as simple
as above to determine the exterior faces that lie on the perimeter of the
reservoir. In particular, faults having a displacement may give exterior faces
at the top an bottom of the model that are not part of what one would call
the reservoir perimeter when setting boundary conditions other than no-flow.
Likewise, other geological processes like erosion may cause gaps in the model
that lead to exterior faces that are not part of the natural perimeter. This
is illustrated in the left plot of Figure 5.6, where we have tried to specify
boundary conditions using the same procedure as in the linear pressure-drop
example (Figure 5.4).

Page: 163 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



164 5 Incompressible Solvers

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640

0

200

400

600

800

1000 0

200

400

600

800

1000

500

520

540

560

580

600

620

640
0

200
400

600
800

1000
200

400

600

800

500

520

540

560

580

600

620

 

y

x

 
D

e
p
th

[bar]
50

55

60

65

70

75

Fig. 5.6. Specifying boundary conditions along the outer perimeter of a corner-
point model. The upper-left plot shows the use of fluxside (blue color) and pside

(red color) to set boundary conditions on the east and west global boundaries. In
the upper-right point, the same functions have been used along with a specification
of subranges in the global sides. In the lower-left plot, we have utilized user-supplied
information to correctly set the conditions only along the perimeter. The lower-right
plot shows the resulting pressure solution.

If the reservoir neither had faults with displacement nor holes inside its
perimeter, we could use the subrange feature of fluxside and pside to restrict
the boundary conditions to a subset of the global side, i.e., for our particular
choice of grid parameters, set

bc = fluxside([], G, 'EAST', 5e3*meterˆ3/day, 4:15, 1:5);
bc = pside (bc, G, 'WEST', 50*barsa, 7:17, []);

Unfortunately, this will not work properly in the current case, as shown in
the middle plot of Figure 5.6. The problem is that fluxside and pside define
their ’east’ sides to consist of all faces that only belong to one cell and are
categorized to be on the east side of this cell.

To find the faces that are on the perimeter, we need to use expert knowl-
edge. In our case, this amounts to utilizing the fact that the perimeter is
defined as those faces that lie on the bounding box of the model. On these
faces, we distribute the total flux to individual faces according to the face
area. For the Neumann condition we therefore get

Page: 164 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 165

x = G.faces.centroids(f,1);
[xm,xM] = deal(min(x), max(x));
ff = f(x>xM−1e−5);
bc = addBC(bc, ff, 'flux ' , (5e3*meterˆ3/day) ...

* G.faces.areas(ff)/ sum(G.faces.areas(ff)));

The Dirichlet condition can be specified in a similar manner.

Computer exercises:

25. Consider a 2D box with a sink at the midpoint and inflow across the perime-
ter specified either in terms of a constant pressure or a constant flux. Are
there differences in the two solutions, and if so, can you explain why? Hint:
use time-of-flight, total travel time, and/or streamlines to investigate the
flow pattern.

26. Apply the production setup from Figure 5.5 on page 163, with hydrostatic
boundary conditions and fluids extracted from two cells at the midpoint of
the model, to the model depicted in Figure 5.6 on the facing page.

27. Compute the flow patterns for all the bed models in data sets BedModels1

and BedModel2 subject to linear pressure drop first in the x and then in the
y-direction. These models are examples of small-scale models constructed
to model small-scale heterogeneity and compute representative properties
in simulation models on a larger scale, and a linear pressure drop is the
most wide-spread computational setup used for flow-based upscaling. What
happens if you try to specify flux conditions?

28. Consider models from the CaseB4 data set. Use appropriate boundary con-
ditions to drive flow across the faults and compare flow patterns computed
on the pillar and on the stair-stepped grid, as well as solutions computed
for the two different model resolutions. Can you explain any differences you
observe?

5.4.3 Structured versus unstructured stencils

We have so far only discussed grids that have an underlying structured cell
numbering. The two-point schemes can also be applied to fully unstructured
and polyhedral grids. To demonstrate this, we use the triangular grid gener-
ated from the seamount data set that is supplied with MATLAB, see Fig-
ure 3.8, scaled to cover a 1 × 1 km2 area. Based on this grid, we define a
non-rectangular reservoir. The reservoir is assumed to be homogeneous with
an isotropic permeability of 100 mD and the resident fluid has the same prop-
erties as in the previous examples. A constant pressure of 50 bar is set at
the outer perimeter and fluid is drained from a well located at (450, 500) at
a constant rate of one pore volume over fifty years. (All details are found in
the script stencilComparison.m).

Page: 165 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



166 5 Incompressible Solvers

We start by generating the triangular grid, which will subsequently be
used to define the extent of the reservoir:

load seamount

T = triangleGrid([x(:) y(:)], delaunay(x,y));
[Tmin,Tmax] = deal(min(T.nodes.coords), max(T.nodes.coords));
T.nodes.coords = bsxfun(@times, ...

bsxfun(@minus, T.nodes.coords, Tmin), 1000./(Tmax − Tmin));
T = computeGeometry(T);

Next, we generate two Cartesian grids that cover the same domain, one with
approximately the same number of cells as the triangular grid and a 10× 10
refinement of this grid that will give us a reference solution,

G = computeGeometry(cartGrid([25 25], [1000 1000]));
inside = isPointInsideGrid(T, G.cells.centroids);
G = removeCells(G, ~inside);

The function isPointInsideGrid implements a simple algorithm for finding
whether one or more points lie inside the circumference of a grid. First, all
boundary faces are extracted and then the corresponding nodes are sorted so
that they form a closed polygon. Then, MATLAB’s built-in function inpolygon

can be used to check whether the points are inside this polygon or no.
To construct a radial grid centered around the point at which we will

extract fluids, we start by using the same code as on page 91 to generate a
set of points inside [−1, 1]× [−1, 1] that are graded radially towards the origin
(see e.g., Figure 3.25),

P = [];
for r = exp([−3.5:.2:0, 0, .1 ]),

[x,y] = cylinder(r,25); P = [P [x (1,:); y (1,:)]];
end
P = unique([P'; 0 0], 'rows');

The points are scaled and translated so that their origin is moved to the point
(450,500), from which fluid will be extracted:

[Pmin,Pmax] = deal(min(P), max(P));
P = bsxfun(@minus, bsxfun(@times, ...

bsxfun(@minus, P, Pmin), 1200./(Pmax−Pmin)), [150 100]);

Then, we remove all points outside of the triangular grid, before the point set
is passed to two grid-factory routines to first generate a triangular and then
a Voronoi grid:

inside = isPointInsideGrid(T, P);
V = computeGeometry( pebi( triangleGrid(P(inside,:)) ));

Once the grids have been constructed, the setup of the remaining part of
the model will be the same in all cases. To avoid unnecessary replication of

Page: 166 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 167

code, we collect the grids in a cell array and use a simple for-loop to set up
and simulate each model realization:

g = {G, T, V, Gr};
for i=1:4

rock = makeRock(g{i}, 100*milli*darcy, 0.2);
hT = simpleComputeTrans(g{i}, rock);
pv = sum(poreVolume(g{i}, rock));

tmp = (g{i}.cells.centroids − repmat([450, 500],g{i}.cells.num,[])).ˆ2;
[~,ind] = min(sum(tmp,2));
src{i} = addSource(src{i}, ind, −.02*pv/year);

f = boundaryFaces(g{i});
bc{i} = addBC([], f, 'pressure ' , 50*barsa);

state{i} = incompTPFA(initResSol(g{i},0,1), ...
g{i}, hT, fluid, ' src ' , src{i}, 'bc' , bc{i}, 'MatrixOutput', true);

[tof{i},A{i}] = computeTimeOfFlight(state{i}, g{i}, rock,...
' src ' , src{i},'bc' ,bc{i}, ' reverse ' , true);

end

The pressure solutions computed on the four different grids are shown in Fig-
ure 5.7, while Figure 5.8 compares the sparsity patterns of the corresponding
linear systems for the three coarse grids.

As expected, the Cartesian grid gives a banded matrix consisting of five
diagonals that correspond to each cell and its four neighbors in the cardinal
directions. Even though this discretization is not able to predict the complete
draw-down at the center (the reference solution predicts a pressure slightly
below 40 bar), it captures the shape of the draw-down region quite accurately;
the region appears ellipsoidal because of the non-unit aspect ratio in the plot.
In particular, we see that the points in the radial plot follow those of the
fine-scale reference closely. The spread in the points as r → 300 is not a grid-
orientation effect, but the result of variations in the radial distance to the
fixed pressure at the outer boundary on all four grids.

The unstructured triangular grid is more refined near the well and is hence
able to predict the pressure draw-down in the near-well region more accurately.
However, the overall structure of this grid is quite irregular, as can be seen
from the sparsity pattern of the linear system shown in Figure 5.8, and the
irregularity gives significant grid-orientation effects. This can be seen from the
irregular shape of the color contours in the upper part of Figure 5.7 as well as
from the spread in the scatter plot. In summary, this grid is not well suited
for resolving the radial symmetry of the pressure draw-down in the near-well
region. But to be fair, the grid was not generated for this purpose either.

Except for close to the well and close to the exterior boundary, the topology
of the radial grid is structured in the sense that each cell has four neighbors,

Page: 167 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



168 5 Incompressible Solvers

0 50 100 150 200 250 300
40

41

42

43

44

45

46

47

48

49

50

 

 

Reference

Cartesian

Triangular

Radial

Fig. 5.7. Comparison of the pressure solution for three different grid types: uniform
Cartesian, triangular, and a graded radial grid. The scattered points used to generate
the triangular domain and limit the reservoir are sampled from the seamount data
set and scaled to cover a 1× 1 km2 area. Fluids are drained from the center of the
domain, assuming a constant pressure of 50 bar at the perimeter.

0 100 200 300 400

0

100

200

300

400

nz = 2330

Cartesian

0 200 400

0

100

200

300

400

500

nz = 2244

Triangular

0 100 200 300 400

0

100

200

300

400

nz = 3045

Radial

Fig. 5.8. Sparsity patterns for the TPFA stencils on the three different grid types
shown in Figure 5.7.

Page: 168 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 169

two in the radial direction and two in the angular direction, and the cells are
regular trapezoids. This should, in principle, give a banded sparsity pattern
provided that the cells are ordered starting at the natural center point and
moving outward, one ring at the time. To verify this claim, you can execute
the following code:

[~,q]=sort(state{3}.pressure);
spy(state{3}.A(q,q));

However, as a result of how the grid was generated, by first triangulating and
then forming the dual, the cells are numbered from west to east, which explains
why the sparsity pattern is so far from being a simple banded structure. While
this may potentially affect the efficiency of a linear solver, it has no impact
on the accuracy of the numerical approximation, which is good because of
the grading towards the well and the symmetry inherent in the grid. Slight
differences in the radial profile compared with the Cartesian grid(s) can mainly
be attributed to the fact that the source term and the fixed pressure conditions
are not located at the exact same positions in the simulations, due to the
inherent difference in the discretizations.

In Figure 5.9, we also show the sparsity pattern of the linear system used
to compute the reverse time-of-flight from the well and back into the reservoir.
Using the default cell ordering, the sparsity pattern of each upwind matrix
will appear as a less dense version of the pattern for the corresponding TPFA
matrix. However, whereas the TPFA matrices represent an elliptic equation
in which information propagates in both directions across cell interfaces, the
upwind matrices are based on one-way connections arising from fluxes between
pairs of cells that are connected in the TPFA discretization. To reveal the
true nature of the system, we can permute the system by either sorting the
cell pressures in ascending order (potential ordering) or using the function
dmperm to compute a Dulmage–Mendelsohn decomposition. As pointed out in
Section 5.3, the result is a lower triangular matrix, from which it is simple to
see that the unidirectional propagation of information one would expect for a
hyperbolic equations having only positive characteristics.

Computer exercises:

29. Compare the sparsity patterns resulting from the potential ordering and
use of dmperm for both the upwind and the TPFA matrices.

30. Investigate the flow patterns in more details using forward time-of-flight,
travel time, and streamlines.

31. Replace the boundary conditions by a constant influx, or set pressure values
sampled from a radially symmetric pressure solution in an infinite domain.

Page: 169 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



170 5 Incompressible Solvers

0 100 200 300 400

0

100

200

300

400

nz = 1408

Cartesian

0 100 200 300 400

0

100

200

300

400

nz = 1408

0 200 400

0

100

200

300

400

500

nz = 1405

Triangular

0 200 400

0

100

200

300

400

500

nz = 1405

0 100 200 300 400

0

100

200

300

400

nz = 1745

Radial

0 100 200 300 400

0

100

200

300

400

nz = 1745

Fig. 5.9. Sparsity patterns for the upwind stencils used to compute time-of-flight on
the three different grid types shown in Figure 5.7. In the lower row, the matrices have
been permuted to lower-triangular form by sorting the cell pressures in ascending
order.

5.4.4 Using Peaceman well models

Whereas it may be sufficient to consider flow driven by sources, sinks, and
boundary conditions in many subsurface applications, the key aspect in reser-
voir simulation is in most cases to predict the amount of fluids that are pro-
duced and/or injected from one or more wells. As we saw in Section 4.3.2,
flow in and out of a wellbore takes place on a scale that is much smaller than
those of a single grid cell in typical sector and field models and is therefore
commonly modeled using a semi-analytical model of the form (4.34). In this
section, we will go through two examples to demonstrate how such models can
be included in the simulation setup using data objects and utility functions in-
troduced in Section 5.1.5. The first example is a highly idealized box model. In
the second example we consider a realistic model of a shallow-marine reservoir
taken from the SAIGUP study, see Section 2.5.5.

Box reservoir

We consider a reservoir consisting of a homogeneous 500×500×25 m3 sand box
with a isotropic permeability of 100 mD, represented on a regular 20× 20× 5
Cartesian grid. The fluid is the same as in the examples above. All code lines
necessary to set up the model, solve the flow equations, and visualize the
results are found in the script firstWellExample.m.

Page: 170 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 171

Setting up the model is quickly done, once you have gotten familiar with
MRST:

[nx,ny,nz] = deal(20,20,5);
G = computeGeometry( cartGrid([nx,ny,nz], [500 500 25]) );
rock = makeRock(G, 100*milli*darcy, .2);
fluid = initSingleFluid('mu',1*centi*poise,'rho',1014*kilogram/meterˆ3);
hT = computeTrans(G, rock);

The reservoir will be produced by a well pattern consisting of a vertical injector
and a horizontal producer. The injector is located in the south-west corner of
the model and operates at a constant rate of 3000 m3 per day. The producer
is completed in all cells along the upper east rim and operates at a constant
bottom-hole pressure of 1 bar (i.e., 105 Pascal in SI units):

W = verticalWell([], G, rock, 1, 1, 1:nz, 'Type', ' rate ' , 'Comp i', 1, ...
'Val' , 3e3/day(), 'Radius', .12*meter, 'name', 'I ' );

W = addWell(W, G, rock, nx : ny : nx*ny, 'Type', 'bhp', 'Comp i', 1, ...
'Val' , 1.0e5, 'Radius', .12*meter, 'Dir' , 'y' , 'name', 'P');

In addition to specifying the type of control on the well (’bhp’ or ’rate’), we
also need to specify the radius and the fluid composition, which is ’1’ here
since we have a single fluid. After initialization, the array W contains two data
objects, one for each well:

Well #1: | Well #2:
cells: [5x1 double] | cells: [20x1 double]
type: ’rate’ | type: ’bhp’
val: 0.0347 | val: 100000

r: 0.1000 | r: 0.1000
dir: [5x1 char] | dir: [20x1 char]
WI: [5x1 double] | WI: [20x1 double]
dZ: [5x1 double] | dZ: [20x1 double]

name: ’I’ | name: ’P’
compi: 1 | compi: 1

refDepth: 0 | refDepth: 0
sign: 1 | sign: []

This concludes the specification of the model. We can now assemble and solve
the system

gravity reset on;
resSol = initState(G, W, 0);
state = incompTPFA(state, G, hT, fluid, 'wells' , W);

The result is shown in Figure 5.10. As expected, the inflow rate decays with
the distance to the injector. The flux intensity depicted in the lower-right plot
is computed using the following command, which first maps the vector of face
fluxes to a vector with one flux per half face and then sums the absolute value
of these fluxes to get a flux intensity per cell:

cf = accumarray(getCellNoFaces(G), ...
abs(faceFlux2cellFlux(G, state.flux)));

Page: 171 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



172 5 Incompressible Solvers

P

I

0 5 10 15 20
120

130

140

150

160

170

180
Producer inflow profile [m

3
/d]

Pressure [bar] Flux intensity [m
3
/day]

Fig. 5.10. Solution of a single-phase, incompressible flow problem inside a box
reservoir with a vertical injector and a horizontal producer.

Shallow-marine reservoir

In the final example, we will return to the SAIGUP model discussed in Sec-
tion 3.5. This model does not represent a real reservoir, but is one out of a large
number of models that were built to be plausible realizations that contain the
types of structural and stratigraphic features one could encounter in models
of real clastic reservoirs. Continuing from Section 3.5, we simply assume that
the grid and the petrophysical model has been loaded and processed. All de-
tails are given in the script saigupWithWells.m. (The script also explains how
to speed up the grid processing by using two C-accelerated routines for con-
structing a grid from Eclipse input and computing areas, centroids, normals,
volumes, etc).

The permeability input is an anisotropic tensor with zero vertical perme-
ability in a number of cells. As a result, some parts of the reservoir may be
completely sealed off from the wells. This will cause problems for the time-of-
flight solver, which requires that all cells in the model must be flooded after
some finite time that can be arbitrarily large. To avoid this potential problem,
we assign a small constant times the minimum positive vertical permeability
to the grid blocks that have zero cross-layer permeability.

is_pos = rock.perm(:, 3) > 0;
rock.perm(~is_pos, 3) = 1e−6*min(rock.perm(is_pos, 3));

Similar safeguards are implemented in most commercial simulators.

Page: 172 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



5.4 Simulation examples 173

Fig. 5.11. Incompressible, single-phase simulation of the SAIGUP model. The upper
plot shows pressure distribution, and the lower plot shows cells with total travel time
less than fifty years.

The reservoir is produced from six producers spread throughout the middle
of the reservoir; each producer operates at a fixed bottom-hole pressure of
200 bar. Pressure support is provided by eight injectors located around the
perimeter, each operating at a prescribed and fixed rate. As in the previous
example, the wells are described using a Peaceman model. For simplicity,
all wells chosen to be vertical and are assigned using the logical ij sub-index
available in the corner-point format. The following code specifies the injectors:

nz = G.cartDims(3);
I = [ 3, 20, 3, 25, 3, 30, 5, 29];
J = [ 4, 3, 35, 35, 70, 70,113,113];
R = [ 1, 3, 3, 3, 2, 4, 2, 3]*500*meterˆ3/day;
W = [];
for i = 1 : numel(I),
W = verticalWell(W, G, rock, I(i), J(i), 1:nz, 'Type', ' rate ' , ...

'Val' , R(i), 'Radius', .1*meter, 'Comp i', 1, ...
'name', [ ' I$ {' , int2str(i), '}$' ]);

end

The producers are specified in the same way. Figure 5.11 shows the well posi-
tions and the pressure distribution. We see a clear pressure buildup along the
east, south, and west rim of the model. Similarly, there is a pressure draw-

Page: 173 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



174 5 Incompressible Solvers

down in the middle of the model around producers P2, P3, and P4. The total
injection rate is set so that one pore volume will be injected in a little less
than forty years.

Although this is a single-phase simulation, let us for a while think of our
setup in terms of injection and production of different fluids (since the fluids
have identical properties, we can think of a ’blue’ fluid being injected into a
’black’ fluid). In an ideal situation, one would wish that the ’blue’ fluid would
sweep the whole reservoir before it breaks through to the production wells, as
this would maximize the displacement of the ’black’ fluid. Even in the simple
quarter five-spot examples in Section 5.4.1 (see Figure 5.3), we saw that this
was not the case, and one cannot expect that this will happen here, either. The
lower plot in Figure 5.11 shows all cells in which the total travel time (sum
of forward and backward time-of-flight) is less than fifty years. By looking
at such a plot, one can get a quite a good idea of regions in which there is
very limited communication between the injectors and producers (i.e., areas
without colors). If this was a multiphase flow problem, these areas would
typically contain bypassed oil and be candidates for infill drilling or other
mechanisms that would improve the volumetric sweep. We will come back
to a more detailed discussion of flow patterns and volumetric connections in
Section 12.4.2.

Computer exercises:

32. Change the parameter 'Dir' from 'y' to 'z ' in the box example and rerun
the case. Can you explain why you get a different result?

33. Switch the injector in the box example to be controlled by a bottom-hole
pressure of 200 bar. Where would you place the injector to maximize pro-
duction rate if you can only perforate (complete) it in five cells?

34. Consider the SAIGUP model: can you improve the well placement and/or
the distribution of fluid rates. Hint: is it possible to utilize time-of-flight
information?

35. Use the function getSPE10setup to set up an incompressible, single-phase
version of the full SPE 10 benchmark. Compute pressure, time-of-flight and
tracer concentrations associated with each well. Hint: You may need to
replace MATLAB’s standard backslash-solver by a highly-efficient iterative
solver like AGMG [185, 10] to get reasonable computational performance.
Also, beware that you may run out of memory if your computer is not
sufficiently powerful.

Page: 174 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7

Single-Phase Flow and Rapid Prototyping

In previous chapters we have outlined and explained in detail how to dis-
cretize and solve incompressible flow problems. This chapter will teach you
how to discretize the basic equations for single-phase, compressible flow. To
this end, we will rely heavily on the library for automatic differentiation (AD),
which was briefly discussed in Section A.5, and the discrete differential and
averaging operators that were introduced in Section 4.4.2. As briefly shown
in Examples 4.2 and 4.3 in the same section, these discrete operators enable
you to implement discretized flow equations in a form that is compact and
close to their mathematical description. Use of automatic differentiation then
ensures that no analytical derivatives have to be programmed explicitly as
long as the discrete flow equations and constitutive relationships are imple-
mented as a sequence of algebraic operations. In MRST, discrete operators
and automatic differentiation are combined with a flexible grid structure, a
highly vectorized and interactive scripting language, and a powerful graph-
ical environment. This is in our opinion the main reason why the software
has proved to be an efficient tool for developing new computational meth-
ods and workflow tools. In this chapter, we try to substantiate this claim by
showing several examples of rapid prototyping by first developing a compact
and transparent solver for compressible flow, and then extending the basic
single-phase model to include pressure-dependent viscosity, non-Newton fluid
behavior, and temperature effects. Complete scripts for all the examples can
be found in the ad−1ph subdirectory of the book module.

7.1 Implicit discretization

As our basic model, we consider the single-phase continuity equation,

∂

∂t
(φρ) +∇ · (ρ~v) = q, ~v = −K

µ
(∇p− gρ∇z) . (7.1)

The primary unknown is usually the fluid pressure p. Additional equations
are supplied to provide relations between p and the other quantities in the

Page: 201 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



202 7 Single-Phase Flow and Rapid Prototyping

equation, e.g., by specifying φ = φ(p), an equation-of-state ρ = ρ(p) for the
fluid, and so on; see the discussion in Section 4.2. (Notice that q is defined
slightly differently in (7.1) than in (4.5)).

Using the discrete operators introduced in Section 4.4.2, the basic implicit
discretization of (7.1) reads

(φρ)n+1 − (φρ)n

∆tn
+ div(ρv)n+1 = qn+1, (7.2a)

vn+1 = − K

µn+1

[
grad(pn+1)− gρn+1grad(z)

]
. (7.2b)

Here, φ ∈ Rnc denotes the vector with one porosity value per cell, v is the
vector of fluxes per face, and so on. The superscript refers to discrete times
at which one wishes to compute the unknown reservoir states and ∆t denotes
the distance between two such consecutive points in time.

In many cases of practical interest it is possible to simplify (7.2). For in-
stance, if the fluid is only slightly compressible, several terms can be neglected
so that the nonlinear equation reduces to a linear equation in the unknown
pressure pn+1, which we can write on residual form as

pn+1 − pn

∆tn
− 1

ctµφ
div
(
K grad(pn+1)

)
− qn = 0. (7.3)

The assumption of weak compressibility is not always applicable and for
generality we assume that φ and ρ depend nonlinearly on p so that (7.2) gives
rise to a nonlinear system of equations that needs to be solved in each time
step. As we will see later in this chapter, the viscosity may also depend on
pressure, flow velocity, and/or temperature, which adds further nonlinearity
to the system. If we now collect all the discrete equations, we can write the
resulting system of nonlinear equations in short vector form as

F (xn+1;xn) = 0, (7.4)

where xn+1 is the vector of unknown state variables at the next time step and
the vector of current states xn can be seen as a parameter.

To solve the nonlinear system (7.4) we will use the Newton–Raphson
method (see Example A.4 on page 478): Assume that we have a guess x0

and want to move this towards the correct solution, F (x) = 0. To this end,
we write x = x0 +∆x and solve for ∆x from the following equation

0 = F (x0 +∆x) ≈ F (x0) +∇F (x0)δx.

This gives rise to an iterative scheme in which the approximate solution xi+1

in the (i+ 1)-th iteration is obtained from

dF

dx
(xi)δxi+1 = −F (xi), xi+1 ← xi + δxi+1. (7.5)

Page: 202 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.2 A simulator based on automatic differentiation 203

Here, J = dF /dx is the Jacobian matrix, while δxi+1 is referred to as the
Newton update at iteration number i + 1. Theoretically, the Newton process
exhibits quadratic convergence under certain smoothness and differentiability
requirements on F . Obtaining such convergence in practice, however, will cru-
cially depend on having a sufficiently accurate Jacobian matrix. For complex
flow models the computation of residual equations will typically involve eval-
uation of many constitutive laws that altogether make up complex nonlinear
dependencies. Analytical derivation and subsequent coding of the Jacobian
can therefore be very time-consuming and prone to human errors. Fortu-
nately, the computation of the Jacobian matrix can in almost all cases be
broken down to nested differentiation of elementary operations and functions
and is therefore a good candidate for automation using automatic differen-
tiation. This will add an extra computational overhead to your code, but in
most cases the added cost is completely offset by the reduced development
time. Likewise, unless your model problem is very small, the dominant com-
putational cost of solving a nonlinear PDE comes from the linear solver called
within each Newton iteration.

The idea of using automatic differentiation to develop reservoir simulators
is not new. This technique was introduced in an early version of the commer-
cial Intersect simulator [62], but has mainly been pioneered through a reim-
plementation of the GPRS research simulator [43]. The new simulator, called
AD-GPRS is primarily based on fully implicit formulations [226, 239, 225] in
which independent variables and residual equations are AD structures imple-
mented using ADETL, a library for forward-mode AD realized by expression
templates in C++ [237, 236]. This way, the Jacobi matrices needed in the
nonlinear Newton-type iterations can be constructed from the derivatives that
are implicitly computed when evaluating the residual equations. In [136], the
authors discuss how to use the alternative backward-mode differentiation to
improve computational efficiency.

7.2 A simulator based on automatic differentiation

We will now present step-by-step how you can use the AD class in MRST
to implement an implicit solver for the compressible, single-phase continu-
ity equation (7.1). In particular, we revisit the discrete spatial differentiation
operators from Section 4.4.2 and introduce additional discrete averaging oper-
ators that together enable us to write the discretized equations in an abstract
residual form that resembles the semi-continuous form of the implicit dis-
cretization in (7.2). Starting from this residual form, it is relatively simple
to obtain a linearization using automatic differentiation and set up a Newton
iteration.

7.2.1 Model setup and initial state

For simplicity, we consider a homogeneous box-model:

Page: 203 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



204 7 Single-Phase Flow and Rapid Prototyping

[nx,ny,nz] = deal( 10, 10, 10);
[Lx,Ly,Lz] = deal(200, 200, 50);
G = cartGrid([nx, ny, nz], [Lx, Ly, Lz ]);
G = computeGeometry(G);

rock = makeRock(G, 30*milli*darcy, 0.3);
0

50

100

150

200

0

50

100

150

200

0

10

20

30

40

50

Beyond this point, our implementation is agnostic to details about the grid,
except when we specify well positions on page 205, which would typically
have involved a few more code lines for a complex corner-point model like the
SAIGUP or the Norne models discussed in Sections 3.5 and 3.3.1.

We assume a constant rock compressibility cr. Accordingly, the pore vol-
ume pv of a grid cell obeys the differential equation1 crpv = dpv/dp or

pv(p) = pvr e
cr(p−pr), (7.6)

where pvr is the pore volume at reference pressure pr. To define the relation
between pore volume and pressure, we use an anonymous function:

cr = 1e−6/barsa;
p_r = 200*barsa;
pv_r = poreVolume(G, rock);

pv = @(p) pv_r .* exp( cr * (p − p_r) );
100 150 200 250 300

599.9

599.95

600

600.05

600.1

The fluid is assumed to have a constant viscosity, µ = 5 cP. As for the rock, we
assume a constant fluid compressibility c resulting in the differential equation
cρ = dρ/dp for the fluid density. Accordingly,

ρ(p) = ρre
c(p−pr), (7.7)

where ρr is the density at reference pressure pr. With this set, we can define
the equation-of-state for the fluid:

mu = 5*centi*poise;
c = 1e−3/barsa;
rho_r = 850*kilogram/meterˆ3;
rhoS = 750*kilogram/meterˆ3;
rho = @(p) rho_r .* exp( c * (p − p_r) );

100 150 200 250 300
760

780

800

820

840

860

880

900

920

940

The assumption of constant compressibility will only hold for a limited
range of temperatures. Surface conditions are not inside the validity range of
the constant compressibility assumption. We therefore set the fluid density ρS
at surface conditions separately since we will need it later to evaluate surface

1 To make a closer correspondence between the computer code and the mathemati-
cal equation, we deliberately violate the advice of never using a compound symbol
to denote a single mathematical quantity.

Page: 204 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.2 A simulator based on automatic differentiation 205

show = true(G.cells.num,1);
cellInx = sub2ind(G.cartDims, ...

[I−1; I−1; I; I; I(1:2)−1], ...
[J ; J; J; J; nperf+[2;2]], ...
[K−1; K; K; K−1; K(1:2)−[0; 1]]);

show(cellInx) = false;
plotCellData(G,p_init/barsa, show, ...

'EdgeColor','k' );
plotWell(G,W, 'height' ,10);
view(−125,20), camproj perspective

0

50

100

150

200

0

50

100

150

200

−10

0

10

20

30

40

50

 

P1

 

200.5

201

201.5

202

202.5

203

203.5

Fig. 7.1. Model with initial pressure and single horizontal well.

volume rate in our model of the well, which here is a horizontal wellbore
perforated in eight cells:

nperf = 8;
I = repmat(2, [nperf, 1]);
J = (1:nperf).'+1;
K = repmat(5, [nperf, 1]);
cellInx = sub2ind(G.cartDims, I, J, K);
W = addWell([ ], G, rock, cellInx, 'Name', 'producer', 'Dir' , 'x' );

Assuming the reservoir is initially at equilibrium implies that we must have
dp/dz = gρ(p). In our simple setup, this differential equation can be solved
analytically, but for demonstration purposes, we use one of MATLAB’s built-
in ODE-solvers to compute the hydrostatic distribution numerically, relative
to a fixed datum point p(z0) = pr, where we without lack of generality have
set z0 = 0 since the reservoir geometry is defined relative to this height:

gravity reset on, g = norm(gravity);
[z_0, z_max] = deal(0, max(G.cells.centroids(:,3)));
equil = ode23(@(z,p) g .* rho(p), [z_0, z_max], p_r);
p_init = reshape(deval(equil, G.cells.centroids(:,3)), [], 1);

This finishes the model setup, and at this stage we plot the reservoir with well
and initial pressure as shown in Figure 7.1.

7.2.2 Discrete operators and equations

We are now ready to discretize the model. As seen in Section 4.4.2, the dis-
crete version of the gradient operator maps from the set of cells to the set
of faces, and for a pressure-field, it computes the pressure difference between
neighboring cells of each face. Likewise, the discrete divergence operator is a
linear mapping from the set of faces to the set of cells, and for a flux field, it
sums the outward fluxes for each cell. The complete code needed to form the

Page: 205 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



206 7 Single-Phase Flow and Rapid Prototyping

grad and div operators has already been presented in Examples 4.2 and 4.3,
but here we repeat it to make the example more self-contained.

To define the discrete operators, we need to first compute the map between
interior faces and cells

N = double(G.faces.neighbors);
intInx = all(N ~= 0, 2);
N = N(intInx, :);

Exterior faces need not be included since they will have zero flow because of
our assumption of no-flow boundary conditions. It now follows that grad(x) =
x(N(:, 2)) − x(N(:, 1)) = Cx, where C is a sparse matrix with values ±1
in columns N(i, 2) and N(i, 1) for row i. As a linear mapping, the discrete
div-function is simply the negative transpose of grad; this follows from the
discrete version of the Gauss–Green theorem, (4.57). In addition, we define an
averaging operator that for each face computes the arithmetic average of the
neighboring cells, which we will need to evaluate density values at grid faces:

n = size(N,1);
C = sparse([(1:n)'; (1:n )'], N, ...

ones(n,1)*[−1 1], n, G.cells.num);
grad = @(x) C*x;
div = @(x) −C'*x;
avg = @(x) 0.5 * (x(N (:,1)) + x(N (:,2)));

∂
∂x

∂
∂y

∂
∂z

This is all we need to define the spatial discretization for a homogeneous
medium on a grid with cubic cells. To make a generic spatial discretization
that also can account for more general cell geometries and heterogeneities,
we need to include transmissibilities. To this end, we first compute one-sided
transmissibilities Ti,j using the function computeTrans, which was discussed
in detail in Section 5.2, and then use harmonic averaging to obtain face-
transmissibilities. That is, for neighboring cells i and j, we compute Tij =
(T−1
i,j + T−1

j,i )−1 as in (4.51) on page 133.

hT = computeTrans(G, rock); % Half−transmissibilities
cf = G.cells.faces(:,1);
nf = G.faces.num;
T = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]); % Harmonic average
T = T(intInx); % Restricted to interior

Having defined the necessary discrete operators, we are in a position to use
the basic implicit discretization from (7.2). We start with Darcy’s law (7.2b),
which for each face f can be written

~v[f ] = −T [f ]

µ

(
grad(p)− g ρa[f ] grad(z)

)
, (7.8)

where the density at the interface is evaluated using the arithmetic average

Page: 206 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.2 A simulator based on automatic differentiation 207

ρa[f ] = 1
2

(
ρ[N1(f)] + ρ[N2(f)]

)
. (7.9)

Similarly, we can write the continuity equation for each cell c as

1

∆t

[(
φ(p)[c]ρ(p)[c]

)n+1 −
(
φ(p)[c]ρ(p)[c]

)n]
+ div(ρav)[c] = 0. (7.10)

The two residual equations (7.8) and (7.10) are implemented as anonymous
functions of pressure:

gradz = grad(G.cells.centroids(:,3));
v = @(p) −(T/mu).*( grad(p) − g*avg(rho(p)).*gradz );

presEq = @(p,p0,dt) (1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) ...
+ div( avg(rho(p)).*v(p) );

In the code above, p0 is the pressure field at the previous time step (i.e.,
pn), while p is the pressure at the current time step (pn+1). Having defined
the discrete expression for Darcy-fluxes, we can check that this is in agree-
ment with our initial pressure field by computing the magnitude of the flux,
norm(v(p_init))*day. The result is 1.5× 10−6 m3/day, which should convince
us that the initial state of the reservoir is sufficiently close to equilibrium.

7.2.3 Well model

The production well will appear as a source term in the pressure equation.
We therefore need to define an expression for flow rate in all cells in which the
well is connected to the reservoir (which we will refer to as well connections).
Inside the well, we assuming instantaneous flow so that the pressure drop is
always hydrostatic. For a horizontal well, the hydrostatic term is zero and
could obviously be disregarded, but we include it for completeness and as a
robust precaution, in case we later want to reuse the code with a different
well path. Approximating the fluid density in the well as constant, computed
at bottom-hole pressure, the pressure pc[w] in connection w of well Nw(w) is
given by

pc[w] = pbh[Nw(w)] + g∆z[w] ρ(pbh[Nw(w)]), (7.11)

where ∆z[w] is the vertical distance from the bottom-hole to the connection.
We use the standard Peaceman model introduced in Section 4.3.2 to relate
the pressure at the well connection to the average pressure inside the grid
cell. Using the well-indices provided in W, the mass flow-rate at connection c
is then given by

qc[w] =
ρ(p[Nc(w)])

µ
WI[w]

(
pc[w]− p[Nc(w)]

)
, (7.12)

where p[Nc(w)] is the pressure in the cell Nc(w) containing connection w. In
our code, this model is implemented as follows:

Page: 207 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



208 7 Single-Phase Flow and Rapid Prototyping

wc = W(1).cells; % connection grid cells
WI = W(1).WI; % well−indices
dz = W(1).dZ; % depth relative to bottom−hole

p_conn = @(bhp) bhp + g*dz.*rho(bhp); %connection pressures
q_conn = @(p, bhp) WI .* (rho(p(wc)) / mu) .* (p_conn(bhp) − p(wc));

pbh

qc

We also include the total volumetric well-rate at surface conditions as a free
variable. This is simply given by summing all mass well-rates and dividing by
the surface density:

rateEq = @(p, bhp, qS) qS−sum(q_conn(p, bhp))/rhoS;

With free variables p, bhp, and qS, we are now lacking exactly one equation
to close the system. This equation should account for boundary conditions in
the form of a well-control. Here, we choose to control the well by specifying a
fixed bottom-hole pressure

ctrlEq = @(bhp) bhp−100*barsa;

7.2.4 The simulation loop

What now remains is to set up a simulation loop that will evolve the transient
pressure. We start by initializing the AD variables. For clarity, we append _ad

to all variable names to distinguish them from doubles. The initial bottom-
hole pressure is set to the corresponding grid-cell pressure.

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);

This gives the following AD pairs that make up the unknowns in our system:

p_ad = ADI Properties:
val: [1000x1 double]
jac: {[1000x1000 double]

[1000x1 double]
[1000x1 double]}

∂p

∂p
≡ I

∂p

∂qs
≡ 0

∂p

∂pbh
≡ 0

bhp_ad = ADI Properties:
val: 2.0188e+07
jac: {[1x1000 double]

[1]
[0]}

∂pbh

∂p
≡ 0

∂pbh

∂qs

∂pbh

∂pbh

qS_ad = ADI Properties:
val: 0
jac: {[1x1000 double]

[0]
[1]}

∂qs

∂p
≡ 0

∂qs

∂
qs

∂qs

∂pbh

To solve the global flow problem, we will have to stack all the equations into
one big system for which we can compute the Jacobian and perform a Newton
update. We therefore set indices for easy access to individual variables in the
stack:

[p_ad, bhp_ad, qS_ad] = initVariablesADI(p_init, p_init(wc(1)), 0);
nc = G.cells.num;
[pIx, bhpIx, qSIx] = deal(1:nc, nc+1, nc+2);

Page: 208 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.2 A simulator based on automatic differentiation 209

Next, we set parameters to control the time steps in the simulation and the
iterations in the Newton solver:

numSteps = 52; % number of time−steps
totTime = 365*day; % total simulation time
dt = totTime / numSteps; % constant time step
tol = 1e−5; % Newton tolerance
maxits = 10; % max number of Newton its

Simulation results from all time steps are stored in a structure sol. For effi-
ciency, this structure is preallocated and initialized so that the first entry is
the initial state of the reservoir:

sol = repmat(struct('time', [ ], 'pressure ' , [ ], 'bhp', [ ], ...
'qS', []), [numSteps + 1, 1]);

sol(1) = struct('time', 0, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

We now have all we need to set up the time-stepping algorithm, which consists
of an outer and an inner loop. The outer loop updates the time step, advances
the solution one step forward in time, and stores the result in the sol structure.
This procedure is repeated until we reach the desired final time:

t = 0; step = 0;
while t < totTime,

t = t + dt; step = step + 1;
fprintf('\nTime step %d: Time %.2f −> %.2f days\n', ...

step, convertTo(t − dt, day), convertTo(t, day));
% Newton loop
resNorm = 1e99;
p0 = double(p_ad); % Previous step pressure
nit = 0;
while (resNorm > tol) && (nit <= maxits)

: % Newton update
:
resNorm = norm(res);
nit = nit + 1;
fprintf(' Iteration %3d: Res = %.4e\n', nit, resNorm);

end
if nit > maxits, error('Newton solves did not converge')
else % store solution

sol(step+1) = struct('time', t, 'pressure ' , double(p_ad), ...
'bhp', double(bhp_ad), 'qS', double(qS_ad));

end
end

The inner loop performs the Newton iteration by computing and assembling
the Jacobian of the global system and solving the linearized residual equation
to compute an iterative update. The first step to this end is to evaluate the
residual for the flow pressure equation and add source terms from wells:

Page: 209 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



210 7 Single-Phase Flow and Rapid Prototyping

eq1 = presEq(p_ad, p0, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, bhp_ad);

Most of the lines we have implemented so far are fairly standard, except
perhaps for the definition of the residual equations as anonymous functions,
and equivalent statements can be found in almost any computer program
solving this type of time-dependent equation by an implicit method. Now,
however, comes what is normally the tricky part: linearization of the equations
that make up the whole model and assembly of the resulting Jacobian matrices
to generate the Jacobian for the full system. And here you have the magic of
automatic differentiation – you do not have to do this at all! The computer
code necessary to evaluate all the Jacobians has been defined implicitly by the
functions in the AD class in MRST that overloads the elementary operators
used to define the residual equations. The calling sequence is obviously more
complex than the one depicted in Figure A.6 on page 475, but the operators
used are in fact only the three elementary operators plus, minus, and multiply
applied to scalars, vectors, and matrices, as well as element-wise division by
a scalar. When the residuals are evaluated using the anonymous functions
defined above, the AD library also evaluates the derivatives of each equation
with respect to each independent variable and collects the corresponding sub-
Jacobians in a list. To form the full system, we simply evaluate the residuals of
the remaining equations (the rate equation and the equation for well control)
and concatenate the three equations into a cell array:

eqs = {eq1, rateEq(p_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});

In doing this, the AD library will correctly combine the various sub-Jacobians
and set up the Jacobian for the full system. Then, we can extract this Jacobian,
compute the Newton increment, and update the three primary unknowns:

J = eq.jac{1}; % Jacobian
res = eq.val; % residual
upd = −(J \ res); % Newton update

% Update variables
p_ad.val = p_ad.val + upd(pIx);
bhp_ad.val = bhp_ad.val + upd(bhpIx);
qS_ad.val = qS_ad.val + upd(qSIx);

The sparsity pattern of the Jacobian is shown in the plot to the left of the
code for the Newton update. The use of a two-point scheme on a 3D Cartesian
grid gives a Jacobi matrix that has a heptadiagonal structure, except for the
off-diagonal entries in the two red rectangles that arise from the well equation
and correspond to derivatives of this equation with respect to cell pressures.

Figure 7.2 shows a plot of the dynamics of the solution. Initially, the
pressure is in hydrostatic equilibrium as shown in Figure 7.1. As the well

Page: 210 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.2 A simulator based on automatic differentiation 211

0 100 200 300 400
0

500

1000

time [days]

ra
te

 [
m

3
/d

a
y
]

0 100 200 300 400
100

150

200

a
v
g
 p

re
s
s
u
re

 [
b
a
r]

P1

14 days
P1

35 days

P1

70 days
 

P1

140 days

 
120 130 140 150 160 170 180 190 200

Fig. 7.2. Time evolution of the pressure solution for the compressible single-phase
problem. The plot to the left shows the well rate (blue line) and average reservoir
pressure (green circles) as function of time, and the plots to the right show the
pressure after two, five, ten, and twenty pressure steps.

starts to drain the reservoir, there is a draw-down in the pressure near the
well which gradually propagates from the well and outward. As a result, the
average pressure inside the reservoir is reduced, which again causes a decay
in the production rate.

Computer exercises:

41. Apply the compressible pressure solver introduced above to the quarter
five-spot problem discussed in Section 5.4.1.

42. Apply the compressible pressure solver to the three different grid models
studied in Section 5.4.3 that were derived from the seamount data set.
Replace the fixed boundary conditions by a no-flow condition.

43. Use the implementation introduced in Section 7.2 as a template to develop
a solver for slightly compressible flow (7.3). More details about this model
can be found on page 120 in Section 4.2. How large can cf be before the
assumptions in the slightly compressible model become inaccurate? Use
different heterogeneities, well placements, and/or model geometries to in-
vestigate this question in more detail.

44. Extend the compressible solver developed in this section to incorporate
other boundary conditions than no flow.

45. Try to compute time-of-flight by extending the equation set to also include
the time-of-flight equation (4.39). Hint: the time-of-flight and the pressure
equations need not be solved as a coupled system.

46. Same as above, except that you should try to reuse the solver introduced
in Section 5.3. Hint: you must first reconstruct fluxes from the computed
pressure and then construct a state object to communicate with the TOF
solver.

Page: 211 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



212 7 Single-Phase Flow and Rapid Prototyping

7.3 Pressure-dependent viscosity

One particular advantage of using automatic differentiation in combination
with the discrete differential and averaging operators is that it simplifies the
testing of new models and alternative computational approaches. In this sec-
tion, we discuss two examples that hopefully demonstrate this aspect.

In the model discussed in the previous section, the viscosity was assumed
to be constant. However, in the general case the viscosity will increase with
increasing pressures and this effect may be significant for the high pressures
seen inside a reservoir. To illustrate, we introduce a linear dependence, rather
than the exponential pressure-dependence used for the pore volume (7.6) and
the fluid density (7.7). That is, we assume that the viscosity is given by

µ(p) = µ0

[
1 + cµ(p− pr)

]
. (7.13)

Having a pressure dependence means that we have to change two parts of
our discretization: the approximation of the Darcy flux across a cell face (7.8)
and the flow rate through a well connection (7.12). Starting with the latter,
we evaluate the viscosity using the same pressure as was used to evaluate the
density, i.e.,

qc[w] =
ρ(p[Nc(w)])

µ(p[Nc(w)])
WI[w]

(
pc[w]− p[Nc(w)]

)
. (7.14)

For the Darcy flux (7.8), we have two choices: either use a simple arithmetic
average as in (7.9) to approximate the viscosity at each cell face,

v[f ] = − T [f ]

µa[f ]

(
grad(p)− g ρa[f ] grad(z)

)
, (7.15)

or replace the quotient of the transmissibility and the face viscosity by the
harmonic average of the mobility λ = K/µ in the adjacent cells. Both choices
introduce changes in the structure of the discrete nonlinear system, but be-
cause we are using automatic differentiation, all we have to do is code the
corresponding formulas. Let us look at the details of the implementation in
MRST, starting with the arithmetic approach.

Arithmetic average

First, we introduce a new anonymous function to evaluate the relation between
viscosity and pressure:

[mu0,c_mu] = deal(5*centi*poise, 2e−3/barsa);
mu = @(p) mu0*(1+c_mu*(p−p_r));

Then, we can replace the definition of the Darcy flux (changes marked in red):

v = @(p) −(T./mu(avg(p))).*( grad(p) − g*avg(rho(p)).*gradz );

Page: 212 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.3 Pressure-dependent viscosity 213

100 120 140 160 180 200
2.5

3

3.5

4

4.5

5

5.5

pressure [bar]

v
is

c
o
s
it
y
 [
c
P

]

 

 

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
100

120

140

160

180

200

220

time [days]

a
v
g
 p

re
s
s
u
re

 [
b
a
r]

 

 

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

time [days]

ra
te

 [
m

3
/d

a
y
]

 

 

c
µ
=0

c
µ
=0.002

c
µ
=0.005

0 50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

time [days]

c
u

m
m

u
la

ti
v
e

 p
ro

d
u

c
ti
o

n
 [

m
3
]

 

 

c
µ
=0

c
µ
=0.002

c
µ
=0.005

Fig. 7.3. The effect of increasing the degree of pressure-dependence for the viscosity.

and similarly for flow rate through each well connection:

q_conn = @(p,bhp) WI.*(rho(p(wc))./ mu(p(wc))) .* (p_conn(bhp) − p(wc));

In Figure 7.3 we illustrate the effect of increasing the pressure dependence of
the viscosity. Since the reference value is given at p = 200 bar which is close
to the initial pressure inside the reservoir, the more we increase cµ, the lower
µ will be in the pressure draw-down zone near the well. Therefore, we see a
significantly higher initial production rate for cµ = 0.005 than for cµ = 0.
On the other hand, the higher value of cµ, the faster the draw-down effect
of the well will propagate into the reservoir, inducing a reduction in reservoir
pressure that eventually will cause production to cease. In terms of overall
production, a stronger pressure dependence may be more advantageous as it
leads to a higher total recovery and higher cumulative production early in the
production period.

Face mobility: harmonic average

A more correct approximation is to write Darcy’s law based on mobility in-
stead of using the quotient of the transmissibility and an averaged viscosity:

v[f ] = −Λ[f ]
(
grad(p)− g ρa[f ] grad(z)

)
. (7.16)

Page: 213 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



214 7 Single-Phase Flow and Rapid Prototyping

The face mobility Λ[f ] can be defined in the same way as the transmissibility
is defined in terms of the half transmissibilities using harmonic averages. That
is, if T [f, c] denotes the half transmissibility associated with face f and cell
c, the face mobility Λ[f ] for face f can be written as

Λ[f ] =
( µ[N1(f)]

T [f,N1(f)]
+

µ[N2(f)]

T [f,N2(f)]

)−1

. (7.17)

In MRST, the corresponding code reads:

hf2cn = getCellNoFaces(G);
nhf = numel(hf2cn);
hf2f = sparse(double(G.cells.faces(:,1)),(1:nhf)',1);
hf2if = hf2f(intInx,:);
fmob = @(mu,p) 1./(hf2if*(mu(p(hf2cn))./hT));

v = @(p) −fmob(mu,p).*( grad(p) − g*avg(rho(p)).*gradz );

Here, hf2cn represents the maps N1 and N2 that enable us to sample the
viscosity value in the correct cell for each half-face transmissibility, whereas
hf2if represents a map from half faces (i.e., faces seen from a single cell) to
global faces (which are shared by two cells). The map has a unit value in row
i and column j if half face j belongs to global face i. Hence, premultiplying a
vector of half-face quantities by hf2if amounts to summing the contributions
from cells N1(f) and N2(f) for each global face f .

Using the harmonic average for a homogeneous model should produce sim-
ulation results that are identical (to machine precision) to those produced by
using arithmetic average. With heterogeneous permeability, there will be small
differences in the well rates and averaged pressures for the specific parame-
ters considered herein. For sub-samples of the SPE 10 data set, we typically
observe maximum relative differences in well rates of the order 10−3.

Computer exercises:

47. Investigate the claim that the difference between using an arithmetic aver-
age of the viscosity and a harmonic average of the fluid mobility is typically
small. To this end, you can for instance use the following sub-sample from
the SPE10 data set: rock = getSPE10rock(41:50,101:110,1:10)

7.4 Non-Newtonian fluid

Viscosity is the material property that measures a fluid’s resistance to flow,
i.e., the resistance to a change in shape, or to the movement of neighboring
portions of the fluid relative to each other. The more viscous a fluid is, the less

Page: 214 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.4 Non-Newtonian fluid 215

easily it will flow. In Newtonian fluids, the shear stress or the force applied per
area tangential to the force, at any point is proportional to the strain rate (the
symmetric part of the velocity gradient) at that point and the viscosity is the
constant of proportionality. For non-Newtonian fluids, the relationship is no
longer linear. The most common nonlinear behavior is shear thinning, in which
the viscosity of the system decreases as the shear rate is increased. An example
is paint, which should flow easily when leaving the brush, but stay on the
surface and not drip once it has been applied. The second type of nonlinearity
is shear thickening, in which the viscosity increases with increasing shear rate.
A common example is the mixture of cornstarch and water. If you search
YouTube for “cornstarch pool” you can view several spectacular videos of
pools filled with this mixture. When stress is applied to the mixture, it exhibits
properties like a solid and you may be able to run across its surface. However,
if you go too slow, the fluid behaves more like a liquid and you fall in.

Solutions of large polymeric molecules are another example of shear-
thinning liquids. In enhanced oil recovery, polymer solutions may be injected
into reservoirs to improve unfavorable mobility ratios between oil and water
and improve the sweep efficiency of the injected fluid. At low flow rates, the
polymer molecule chains tumble around randomly and present large resis-
tance to flow. When the flow velocity increases, the viscosity decreases as the
molecules gradually align themselves in the direction of increasing shear rate.
A model of the rheology is given by

µ = µ∞ + (µ0 − µ∞)

(
1 +

(
Kc

µ0

) 2
n−1

γ̇2

)n−1
2

, (7.18)

where µ0 represents the Newtonian viscosity at zero shear rate, µ∞ represents
the Newtonian viscosity at infinite shear rate, Kc represents the consistency
index, and n represents the power-law exponent (n < 1). The shear rate γ̇ in
a porous medium can be approximated by

γ̇app = 6

(
3n+ 1

4n

) n
n−1 |~v|√

Kφ
. (7.19)

Combining (7.18) and (7.19), we can write our model for the viscosity as

µ = µ0

(
1 + K̄c

|~v|2

Kφ

)n−1
2

, K̄c = 36

(
Kc

µ0

) 2
n−1

(
3n+ 1

4n

) 2n
n−1

, (7.20)

where we for simplicity have assumed that µ∞ = 0.

Rapid prototyping

In the following, we show how easy it is to extend the simulator developed
in the previous sections to model this non-Newtonian fluid behavior (see
nonNewtonianCell.m). To simulate injection, we increase the bottom-hole
pressure to 300 bar. Our rheology model has parameters:

Page: 215 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



216 7 Single-Phase Flow and Rapid Prototyping

mu0 = 100*centi*poise;
nmu = 0.3;
Kc = .1;
Kbc = (Kc/mu0)ˆ(2/(nmu−1))*36*((3*nmu+1)/(4*nmu))ˆ(2*nmu/(nmu−1));

In principle, we could continue to solve the system using the same primary
unknowns as before. However, it has proved convenient to write (7.20) in the
form µ = η µ0 and introduce η as an additional unknown. In each Newton
step, we start by solving the equation for the shear factor η exactly for the
given pressure distribution. This is done by initializing an AD variable for η,
but not for p in etaEq so that this residual now only has one unknown, η.
This will take out the implicit nature of Darcy’s law and hence reduce the
nonlinearity and simplify the solution of the global system.

while (resNorm > tol) && (nit < maxits)

% Newton loop for eta (shear multiplier)
[resNorm2,nit2] = deal(1e99, 0);
eta_ad2 = initVariablesADI(eta_ad.val);
while (resNorm2 > tol) && (nit2 <= maxits)
eeq = etaEq(p_ad.val, eta_ad2);
res = eeq.val;
eta_ad2.val = eta_ad2.val − (eeq.jac{1} \ res);
resNorm2 = norm(res);
nit2 = nit2+1;

end
eta_ad.val = eta_ad2.val;

Once the shear factor has been computed for the values in the previous iterate,
we can use the same approach as earlier to compute a Newton update for the
full system. (Here, etaEq is treated as a system with two unknowns, p and η.)

eq1 = presEq(p_ad, p0, eta_ad, dt);
eq1(wc) = eq1(wc) − q_conn(p_ad, eta_ad, bhp_ad);
eqs = {eq1, etaEq(p_ad, eta_ad), ...

rateEq(p_ad, eta_ad, bhp_ad, qS_ad), ctrlEq(bhp_ad)};
eq = cat(eqs{:});
upd = −(eq.jac{1} \ eq.val); % Newton update

To finish the solver, we need to define the flow equations and the extra equa-
tion for the shear multiplier. The main question to this end is: how should
we compute |~v|? One solution could be to define |~v| on each face as the flux
divided by the face area. In other words, use a code like

phiK = avg(rock.perm.*rock.poro)./G.faces.areas(intInx).ˆ2;
v = @(p, eta) −(T./(mu0*eta)).*( grad(p) − g*avg(rho(p)).*gradz );
etaEq = @(p, eta) eta − (1 + Kbc*v(p,eta).ˆ2./phiK).ˆ((nmu−1)/2);

Page: 216 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.4 Non-Newtonian fluid 217

Although simple, this approach has three potential issues: First, it does not
tell us how to compute the shear factor for the well perforations. Second, it
disregards contributions from any tangential components of the velocity field.
Third, the number of unknowns in the linear system increases by almost a fac-
tor six since we now have one extra unknown per internal face. The first issue
is easy to fix: To get a representative value in the well cells, we simply average
the η values from the cells’ faces. If we now recall how the discrete divergence
operator was defined, we realize that this operation is almost implemented for
us already: if div(x)=-C’*x computes the discrete divergence in each cell of
the field x defined at the faces, then cavg(x)=1/6*abs(C)’*x computes the
average of x for each cell. In other words, our well equation becomes:

wavg = @(eta) 1/6*abs(C(:,W.cells))'*eta;
q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*wavg(eta))) .* (p_conn(bhp) − p(wc));

The second issue would have to be investigated in more detail and this is not
within the scope of this book. The third issue is simply a disadvantage.

To get a method that consumes less memory, we can compute one η value
per cell. Using the following formula, we can compute an approximate velocity
~vi at the center of cell i

~vi =
∑

j∈N(i)

vij
Vi

(
~cij − ~ci

)
, (7.21)

where N(i) is the map from cell i to its neighboring cells, vij is the flux
between cell i and cell j, ~cij is the centroid of the corresponding face, and ~ci
is the centroid of cell i. For a Cartesian grid, this formula simplifies so that an
approximate velocity can be obtained as the sum of the absolute value of the
flux divided by the face area over all faces that make up a cell. Using a similar
trick as we used to compute η in well cells above, our implementation follows
trivially. We first define the averaging operator to compute cell velocity

aC = bsxfun(@rdivide, 0.5*abs(C), G.faces.areas(intInx))';
cavg = @(x) aC*x;

In doing so, we also rename our old averaging operator avg as favg to avoid
confusion and make it more clear that this operator maps from cell values to
face values. Then we can define the needed equations:

phiK = rock.perm.*rock.poro;
gradz = grad(G.cells.centroids(:,3));
v = @(p, eta)
−(T./(mu0*favg(eta))).*( grad(p) − g*favg(rho(p)).*gradz );

etaEq = @(p, eta)
eta − ( 1 + Kbc* cavg(v(p,eta)).ˆ2 ./phiK ).ˆ((nmu−1)/2);

presEq= @(p, p0, eta, dt) ...
(1/dt)*(pv(p).*rho(p) − pv(p0).*rho(p0)) + div(favg(rho(p)).*v(p, eta));

Page: 217 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



218 7 Single-Phase Flow and Rapid Prototyping

0 100 200 300 400
20

30

40

50

60

70

80

90

100

110

120

time [days]

ra
te

 [
m

3
/d

a
y
]

 

 

Newtonian

Cell−based

Face−based

Face−based (not well)

0 100 200 300 400
200

205

210

215

220

225

230

235

time [days]

a
v
g

 p
re

s
s
u

re
 [

b
a

r]

 

 

Newtonian

Cell−based

Face−based

Face−based (not well)

Fig. 7.4. Single-phase injection of a highly viscous, shear-thinning fluid computed
by four different simulation methods: (i) fluid assumed to be Newtonian, (ii) shear
multiplier η computed in cells, (iii) shear multiplier computed at faces, and (iv)
shear multiplier computed at faces, but η ≡ 1 used in well model.

With this approach the well equation becomes particularly simple since all we
need to do is to sample the η value from the correct cell:

q_conn = @(p, eta, bhp) ...
WI .* (rho(p(wc)) ./ (mu0*eta(wc))) .* (p_conn(bhp) − p(wc));

A potential drawback of this second approach is that it may introduce nu-
merical smearing, but this will, on the other hand, most likely increase the
robustness of the resulting scheme.

In Figure 7.4 we compare the predicted flow rates and average reservoir
pressure for two different fluid models: one that assumes that the fluid is a
standard Newtonian fluid (i.e., η ≡ 1) and one that models shear thinning,
which has been computed by both methods discussed above. With shear thin-
ning, the higher pressure in the injection well causes a decrease in the viscosity
which leads to significantly higher injection rates than for the Newtonian fluid
and hence a higher average reservoir pressure. Perhaps more interesting is the
large discrepancy in the rates and pressures predicted by the face-based and
the cell-based simulation algorithms. If we in the face-based method disre-
gard the shear multiplier q_conn, the predicted rate and pressure build-up
is smaller than what is predicted by the cell-based method and closer to the
Newtonian fluid case. We take this as evidence that the differences between
the cell and the face-base methods to a large extent can be explained by differ-
ences in the discretized well models and their ability to capture the formation
and propagation of the strong initial transient. To further back this up, we
have included results from a simulation with ten times as many time steps in

Page: 218 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.4 Non-Newtonian fluid 219

100 200 300
30

40

50

60

70

80

90

100

110

120

time [days]

ra
te

 [
m

3
/d

a
y
]

 

 

Newtonian

Cell−based

Face−based

Face−based (not well)

100 200 300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [days]

s
h

e
a

r 
m

u
lt
ip

lic
a

to
r 

[1
]

Fig. 7.5. Single-phase injection of a highly viscous, shear-thinning fluid; simulation
with ∆t = 1/520 year. The right plot shows the evolution of η as a function of time:
solid lines show min(η) over all cells, dashed lines min(η) over the perforated cells,
and dash-dotted lines average η value.

Figure 7.5, which also includes plots of the evolution of min(η) as a function
of time. Whereas the face-based method predicts a large, immediate drop in
viscosity in the near-well region, the viscosity drop predicted by the cell-based
method is much smaller during the first 20–30 days. This results in a delay in
the peak in the injection rate and a much smaller injected volume.

We leave the discussion here. The parameters used in the example were
chosen quite haphazardly to demonstrate a pronounced shear-thinning effect.
Which method is the most correct for real computations, is a question that
goes beyond the current scope, and could probably best be answered by ver-
ifying against observed data for a real case. Our point here, was mainly to
demonstrate the capability of rapid prototyping that comes with the use of
MRST. However, as the example shows, this lunch is not completely free: you
still have to understand features and limitations of the models and discretiza-
tions you choose to prototype.

Computer exercises:

48. Investigate whether the large differences observed in Figures 7.4 and 7.5
between the cell-based and face-based approaches to the non-Newtonian
flow problem is a result of insufficient grid resolution.

49. The non-Newtonian fluid example has a strong transient during the first
30–100 days. Try to implement adaptive time steps that utilizes this fact.
Can you come up with a strategy that automatically chooses good time
steps?

Page: 219 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



220 7 Single-Phase Flow and Rapid Prototyping

7.5 Thermal effects

As another example of rapid prototyping, we extend the single-phase flow
model (7.1) to account for thermal effects. That is, we assume that ρ(p, T ) is
now a function of pressure and temperature T and extend our model to also
include conservation on energy,

∂

∂t

[
φρ
]

+∇ ·
[
ρ~v
]

= q, ~v = −K

µ

[
∇p− gρ∇z

]
(7.22a)

∂

∂t

[
φρEf (p, t) + (1− φ)Er

]
+∇ ·

[
ρHf~v

]
−∇ ·

[
κ∇T

]
= qe (7.22b)

Here, the rock and the fluid are assumed to be in local thermal equilibrium.
In the energy equation (7.22b), Ef is energy density per mass of the fluid,
Hf = Ef + p/ρ is enthalpy density per mass, Er is energy per volume of the
rock, and κ is the heat conduction coefficient of the rock. Fluid pressure p and
temperature T are used as primary variables.

As in the original isothermal simulator, we must first define constitutive
relationships that express the various physical quantities in terms of the pri-
mary variables. The energy equation includes heating of the solid rock, and
we therefore start by defining a quantity that keeps track of the solid volume,
which also depends on pressure:

sv = @(p) G.cells.volumes − pv(p);

For the fluid model, we use

ρ(p, T ) = ρr
[
1 + βT (p− pr)

]
e−α(T−Tr),

µ(p, T ) = µ0

[
1 + cµ(p− pr)

]
e−cT (T−Tr),

(7.23)

where ρr = 850 kg/m3 is the density and µ0 = 5 cP is the viscosity of the fluid
at reference conditions with pressure pr = 200 bar and temperature Tr = 300
K. The constants are βT = 10−3 bar−1, α = 5 × 10−3 K−1, cµ = 2 × 10−3

bar−1, and cT = 10−3 K−1. This translates to the following code:

mu0 = 5*centi*poise;
cmup = 2e−3/barsa;
cmut = 1e−3;
T_r = 300;
mu = @(p,T) mu0*(1+cmup*(p−p_r)).*exp(−cmut*(T−T_r));

beta = 1e−3/barsa;
alpha = 5*1e−3;
rho_r = 850*kilogram/meterˆ3;
rho = @(p,T) rho_r .* (1+beta*(p−p_r)) .* exp(−alpha*(T−T_r));

We use a simple linear relation for the enthalpy, which is based on the ther-
modynamical relations that give

Page: 220 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.5 Thermal effects 221

dHf = cp dT +

(
1− αTr

ρ

)
dp, α = −1

ρ

∂ρ

∂T

∣∣∣
p
, (7.24)

where cp = 4×103 J/kg. The corresponding code for the enthalpy and energy
densities reads:

Cp = 4e3;
Hf = @(p,T) Cp*T+(1−T_r*alpha).*(p−p_r)./rho(p,T);
Ef = @(p,T) Hf(p,T) − p./rho(p,T);
Er = @(T) Cp*T;

We defer discussing the details of these new relationships and only note that
it is important that the thermal potentials Ef and Hf are consistent with the
equation-of-state ρ(p, T ) to get a physically meaningful model.

Having defined all constitutive relationships in terms of anonymous func-
tions, we can set up the equation for mass conservation and Darcy’s law (with
transmissibility renamed to Tp to avoid name clash with temperature):

v = @(p,T) −(Tp./mu(avg(p),avg(T))).*(grad(p) − avg(rho(p,T)).*gdz);
pEq = @(p,T,p0,T0,dt) ...

(1/dt)*(pv(p).*rho(p,T) − pv(p0).*rho(p0,T0)) ...
+ div( avg(rho(p,T)).*v(p,T) );

The energy equation (7.22b) is a bit more complicated. The accumulation
and the heat-conduction terms are on the same form as the operators appear-
ing in (7.22a) and can hence be discretized in the same way. This means that
we use a rock object to compute transmissibilities for κ instead of K:

tmp = struct('perm',4*ones(G.cells.num,1));
hT = computeTrans(G, tmp);
Th = 1 ./ accumarray(cf, 1 ./ hT, [nf, 1]);
Th = Th(intInx);

The remaining term in (7.22b), ∇ · [ρHf ~v], represents advection of enthalpy
and has a differential operator on the same form as the transport equations
discussed in Section 4.4.3 and must hence be discretized by an upwind scheme.
To this end, we introduce a new discrete operator that will compute the correct
upwind value for the enthalpy density,

upw(H)[f ] =

{
H[N1(f)], if v[f ] > 0,

H[N2(f)], otherwise.
(7.25)

With this, we can set up the energy equation on residual form

upw = @(x,flag) x(N (:,1)) .*double(flag)+x(N(:,2)).*double(~flag);

hEq = @(p, T, p0, T0, dt) ...
(1/dt)*(pv(p ).*rho(p, T ).*Ef(p ,T ) + sv(p ).*Er(T ) ...

− pv(p0).*rho(p0,T0).*Ef(p0,T0) − sv(p0).*Er(T0)) ...
+ div( upw(Hf(p,T),v(p,T)>0).*avg(rho(p,T)).*v(p,T) ) ...
+ div( −Th.*grad(T));

Page: 221 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



222 7 Single-Phase Flow and Rapid Prototyping

and are thus almost done. As a last technical detail, we must also make sure
that the energy transfer in injection and production wells is modelled correctly
using appropriate upwind values:

qw = q_conn(p_ad, T_ad, bhp_ad);
eq1 = pEq(p_ad, T_ad, p0, T0, dt);
eq1(wc) = eq1(wc) − qw;
hq = Hf(bhp_ad,bhT).*qw;
Hcells = Hf(p_ad,T_ad);
hq(qw<0) = Hcells(wc(qw<0)).*qw(qw<0);
eq2 = hEq(p_ad,T_ad, p0, T0,dt);
eq2(wc) = eq2(wc) − hq;

Here, we evaluate the enthalpy using cell values for pressure and temperature
for production wells (for which qw<0) and pressure and temperatures at the
bottom hole for injection wells.

What remains, are trivial changes to the iteration loop to declare the
correct variables as AD structures, evaluate the discrete equations, collect
their residuals, and update the state variables. These details can be found in
the complete code given in singlePhaseThermal.m and have been left out for
brevity.

Understanding thermal expansion

Except for the modifications discussed above, the setup is the exact same as
in Section 7.2. That is, the reservoir is a 200 × 200 × 50 m3 rectangular box
with homogeneous permeability of 30 mD, constant porosity 0.3, and a rock
compressibility of 10−6 bar−1, realized on a 10× 10× 10 Cartesian grid. The
reservoir is realized on a 10× 10× 10 Cartesian grid. Fluid is drained from a
horizontal well perforated in cells with indices i = 2, j = 2, . . . , 9, and k = 5,
and operating at a constant bottom-hole pressure of 100 bar. Initially, the
reservoir has constant temperature of 300 K and is in hydrostatic equilibrium
with a datum pressure of 200 bar specified in the uppermost cell centroids.

In the same way as in the isothermal case, the open well will create a pres-
sure draw-down that propagates into the reservoir. As more fluid is produced
from the reservoir, the pressure will gradually decay towards a steady state
with pressure values between 101.2 and 104.7 bar. Figure 7.6 shows that the
simulation predicts a faster pressure draw-down, and hence a faster decay in
production rates, if thermal effects are taken into account.

The change in temperature of an expanding fluid will not only depend on
the initial and final pressure, but also on the type of process in which the
temperature is changed:

� In a free expansion, the internal energy is preserved and the fluid does no
work. That is, the process can be described by the following differential:

dEf
dp

∆p+
dEf
dT

∆T = 0. (7.26)

Page: 222 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.5 Thermal effects 223

0 100 200 300 400 500

100

110

120

130

140

150

160

170

180

190

200

210

 

 

min(p)

avg(p)

max(p)

100 200 300 400 500

10
−5

10
−4

10
−3

10
−2

 

 

Thermal

Isothermal

Fig. 7.6. To the left, time evolution for pressure for an isothermal simulation (solid
lines) and a thermal simulation with α = 5 ·10−3 (dashed lines). To the right, decay
in production rate at the surface.

When the fluid is an ideal gas, the temperature is constant, but other-
wise the temperature will either increase or decrease during the process
depending on the initial temperature and pressure.

� In a reversible process, the fluid is in thermodynamical equilibrium and
does positive work while the temperature decreases. The linearized func-
tion associated with this adiabatic expansion reads,

dE +
p

ρV
dV = dE + p d(

1

ρ
) = 0. (7.27)

� In a Joule–Thomson process, the enthalpy remains constant while the
fluid flows from higher to lower pressure under steady-state conditions
and without change in kinetic energy. That is,

dHf

dp
∆p+

dHf

dT
∆T = 0. (7.28)

Our case is a combination of these three processes and their interplay will vary
with the initial temperature and pressure as well as with the constants in the
fluid model for ρ(p, T ). To better understand a specific case, we can use (7.26)
to (7.28) to compute the temperature change that would take place for an ob-
served pressure draw-down if only one of the processes took place. Computing
such linearized responses for thermodynamical functions is particularly simple
using automatic differentiation. Assuming we know the reference state (pr, Tr)
at which the process starts and the pressure pe after the process has taken
place, we initialize the AD variables and compute the pressure difference:

[p,T] = initVariablesADI(p_r,T_r);
dp = p_e − p_r;

Then we can solve (7.26) or (7.28) for ∆T and use the result to compute
the temperature change resulting from a free expansion or a Joule–Thomson
expansion:

Page: 223 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



224 7 Single-Phase Flow and Rapid Prototyping

E = Ef(p,T);
dEdp = E.jac{1};
dEdT = E.jac{2};
Tfr = T_r − dEdp*dp/dEdT;

hf = Hf(p,T);
dHdp = hf.jac{1};
dHdT = hf.jac{2};
Tjt = T_r − dHdp*dp/dHdT;

The temperature change after a reversible (adiabatic) expansion is not de-
scribed by a total differential. In this case we have to specify that p should
be kept constant. This is done by replacing the AD variable p by an ordinary
variable double(p) in the code at the specific places where p appears in front
of a differential, see (7.27).

E = Ef(p,T) + double(p)./rho(p,T);
dEdp = hf.jac{1};
dEdT = hf.jac{2};
Tab = T_r − dEdp*dp/dEdT;

The same kind of manipulation can be used to study alternative linearizations
of systems of nonlinear equations and the influence of neglecting some of the
derivatives when forming Jacobians.

To illustrate how the interplay between the three processes can change
significantly and lead to quite different temperature behavior, we will compare
the predicted evolution of the temperature field for α = 5× 10−n, n = 3, 4, as
shown in Figures 7.7 and 7.8. The change in behavior between the two figures
is associated with the change in sign of ∂E/∂p,

dE =

(
cp −

αT

ρ

)
dT +

(
βT p− αT

ρ

)
dp, βT =

1

ρ

∂ρ

∂p

∣∣∣
T
. (7.29)

In the isothermal case and for α = 5× 10−4, we have that αT < βT p so that
∂E/∂p > 0. The expansion and flow of fluid will cause an instant heating near
the well-bore, which is what we see in the initial temperature increase for the
maximum value in Figure 7.7. The Joule–Thomson coefficient (αT − 1)/(cpρ)
is also negative, which means that the fluid gets heated if it flows from high
pressure to low pressure in a steady-state flow. This is seen by observing the
temperature in the well perforations. The fast pressure drop in these cells
causes an almost instant cooling effect, but soon after we see a transition
in which most of the cells with a well perforation start having the highest
temperature in the reservoir because of heating from the moving fluids. For
α = 5 × 10−3, we have that αT > βT p so that ∂E/∂p < 0 and likewise the
Joule–Thomson coefficient is positive. The moving fluids will induce a cooling
effect and hence the minimum temperature is observed at the well for a longer
time. The weak kink in the minimum temperature curve is the result of the

Page: 224 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.5 Thermal effects 225

P1
14 days

P1
35 days

P1
70 days

 

P1
562 days

 
299.7 299.75 299.8 299.85 299.9 299.95 300 300.05 300.1 300.15

0 100 200 300 400 500
299.5

299.6

299.7

299.8

299.9

300

300.1

300.2

300.3

 

 

Adiabatic expansion

Free expansion

min(T)

avg(T)

max(T)

wells

Fig. 7.7. Time evolution of temperature for a compressible, single-phase problem
with α = 5 · 10−4. The upper plots show four snapshots of the temperature field.
The lower plot shows minimum, average, maximum, and well-perforation values.

Page: 225 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



226 7 Single-Phase Flow and Rapid Prototyping

P1
14 days

P1
35 days

P1
70 days

 

P1
562 days

 
295.5 296 296.5 297 297.5 298 298.5 299 299.5 300

0 100 200 300 400 500
295

295.5

296

296.5

297

297.5

298

298.5

299

299.5

300

 

 

Joule−Tompson

Adiabatic expansion

Free expansion

min(T)

avg(T)

max(T)

wells

Fig. 7.8. Time evolution of temperature for a compressible, single-phase problem
with α = 5 · 10−3. The upper plots show four snapshots of the temperature field.
The lower plot shows minimum, average, maximum, and well-perforation values.

Page: 226 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



7.5 Thermal effects 227

point of minimum temperature moving from being at the bottom front side
to the far back of the reservoir. The cell with lowest temperature is where the
fluid has done most work, neglecting heat conduction. In the beginning this is
the cell near the well since the pressure drop is largest there. Later it will be
the cell furthest from the well since this is where the fluid can expand most.

Computational performance

The observant reader may have realized that the code presented above con-
tains a number of redundant function evaluations that may potentially add
significantly to the overall computational cost: In each nonlinear iteration we
keep re-valuating quantities that depend on p0 and T0 even though these stay
constant for each time step. This can easily be avoided by moving the def-
inition of the anonymous functions evaluating the residual equations inside
the outer time loop. The main contribution to potential computational over-
head, however, comes from repeated evaluations of fluid viscosity and density.
Because each residual equation is defined as an anonymous function, v(p,T)
appears three times for each residual evaluation, once in pEq and twice in hEq.
This, in turn, translates to three calls to mu(avg(p),avg(T)) and seven calls
to rho(p,T), and so on. In practice, the number of actual function evaluations
is smaller since the MATLAB interpreter most likely has some kind of built-in
intelligence to spot and reduce redundant function evaluations. Nonetheless,
to cure this problem, we can move the computations of residuals inside a func-
tion so that the constitutive relationships can be computed one by one and
stored in temporary variables. The disadvantage is that we increase the com-
plexity of the code and move one step away from the mathematical formulas
describing the method. This type of optimization should therefore only be in-
troduced after the code has been profiled and redundant function evaluations
have proved to have a significant computational cost.

Computer exercises:

50. Perform a more systematic investigation of how changes in α affect the
temperature and pressure behavior. To this end, you should change α sys-
tematically, e.g., from 0 to 10−2. What is the effect of changing β, the
parameters cµ and cT for the viscosity, or cp in the definition of enthalpy?

51. Use the MATLAB profiling tool to investigate to what extent the use of
nested anonymous functions causes redundant function evaluations or in-
troduces other types of computational overhead. Hint: to profile the CPU
usage, you can use the following call sequence

profile on, singlePhaseThermal; profile off; profile report

Try to modify the code as suggested above to reduce the CPU time. How
low can you get the ratio between the cost of constructing the linearized
system and the cost of solving it?

Page: 227 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 228 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Part III

Multiphase Flow

Page: 229 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 230 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8

Mathematical Models for Multiphase Flow

Up to now, we have only considered flow of a single fluid phase. For most
applications of reservoir simulation, however, one is interested in modelling
how one fluid phase displaces one or more other fluid phases. In petroleum
recovery, typical examples will be water or gas flooding in which injected wa-
ter or gas displaces the resident hydrocarbon phase(s). Likewise, in geological
carbon sequestration, the injected CO2 forms a supercritical fluid phase that
displaces the resident brine. In both cases, multiple phases will flow simul-
taneously throughout the porous medium when viewed from the scale of a
representative elementary volume, even if the fluids are immiscible and do
not mix on the microscale.

To model this flow, we will introduce three new physical properties of
multiphase models (saturation, relative permeability, and capillary pressure)
and discuss how one can use these to extend Darcy’s law to multiphase flow
and combine it with conservation of mass for each fluid phase to develop
a model that describes multiphase displacements. The resulting system of
partial differential equations is parabolic in the general case, but has a mixed
elliptic-hyperbolic mathematical character, in which fluid pressures tend to
behave as following a near elliptic equation, while the transport of fluid phases
has a strong hyperbolic character. It is therefore common to use a so-called
fractional flow formulation to write the flow equations as a coupled system
consisting of a pressure equation describing the evolution of one of the fluid
pressures and one or more saturation equations that describe the transport of
the fluid phases. The mixed elliptic-hyperbolic nature is particularly evident in
the case of immiscible, incompressible flow, in which case the pressure equation
simplifies to a Poisson equation on the same form as we have studied in the
previous chapters.

Fractional-flow formulations are very popular among mathematicians and
computer scientists who develop and analyze numerical methods since these
formulations reveal the mathematical character of different parts of the equa-
tion system explicitly. Fractional-flow formulations naturally lead to oper-
ator splitting methods in which the pressure and transport equations are

Page: 231 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



232 8 Mathematical Models for Multiphase Flow

solved in separate steps, potentially using specialized numerical methods
that are developed to utilize special characteristics of each sub-equation. Ex-
amples include the classical IMPES (implicit pressure, explicit saturation)
method as well as streamline simulation [61] and recent multiscale methods
[228, 159, 87, 161, 162]. In industry, on the other hand, the most widespread
approach is to use a compressible description (even for near-incompressible
flows) and solve the coupled flow equations using a fully-implicit discretiza-
tion. Nonetheless, also in this case the mixed elliptic-hyperbolic character of
the model equations plays a key role in developing efficient preconditioning
strategies for the linearized system.

In this chapter we will introduce new physical effects that appear in mul-
tiphase flow, discuss general multiphase models in some detail, derive the
fractional-flow formulation in the special case of immiscible flow, and analyze
the mathematical character of the system in various limiting cases. Chapter 9
introduces various methods for solving hyperbolic transport equation and re-
views some of the supporting theory. Then, in Chapter 10, we focus entirely on
the incompressible case and show how we can easily reuse the elliptic solvers
developed in the previous chapters and combine them with a set of simple
first-order transport solvers that are implemented in the incomp module of
MRST. To simplify the discussion, this and the next two chapters will mainly
focus on two-phase, immiscible systems, but the most crucial equations will
be stated and developed for the general multiphase case. Later in the book, we
return to the general case and discuss the compressible models and numerical
methods that are used in most contemporary commercial simulators.

8.1 New physical properties and phenomena

As we have seen previously, a Darcy-type continuum description of a reservoir
fluid system means that any physical quantity defined at a point ~x represents
an average over a representative elementary volume (REV). Let us consider
a system with two or more fluid phases that are immiscible so that no mass
transfer takes place between the different phases. This means that the fluid
phases will not mix and form a solution on the microscale but rather stay as
separate volumes or layers separated by a curved meniscus as illustrated in
Figure 8.1. However, when considering the flow averaged over an REV, the
fluid phases will generally not be separated by a sharp interface so that two or
more phases may occupy the same point in the continuum description. In this
section we will introduce the new fundamental concepts that are necessary to
understand multiphase flow and formulate continuum models that describe
the simultaneous flow of two or more fluid phases taking place at the same
point in a reservoir. Unless stated otherwise, the two fluids are assumed to be
oil and water when we discuss two-phase systems.

Page: 232 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.1 New physical properties and phenomena 233

Grain

Oil

Water

Fig. 8.1. Averaging of a multiphase flow over a representative elementary volume
(REV) to obtain a Darcy-scale continuum model.

8.1.1 Saturation

The saturation Sα is defined as the fraction of the pore volume occupied
by phase α. In the single-phase models discussed in previous chapters, we
assumed that the void space between the solid particles that make up the
porous medium was completely filled by fluid. Similarly, for multiphase models
we assume that the void space is completely filled with one or more fluid
phases, so that ∑

α

Sα = 1. (8.1)

In reservoir simulation, it is most common to consider three phases: an aque-
ous phase (w), an oleic phase (o), and a gaseous (g) phase. Each saturation
can vary from 0, which means that the phase is not present at all at this
point in space, to 1, which means that the phase fills the complete local pore
volume. In most practical cases, however, the range of variability is smaller.
Let us for instance consider a rock that was originally deposited in an aqueous
environment. During deposition, the pores between rock particles will be com-
pletely filled with water. Later, as hydrocarbons start to migrate into what is
to become our reservoir, the water will be displaced and the saturation grad-
ually reduced to some small value, typically 5–40%, at which the water can
no longer flow and exists as small drops trapped between mineral particles or
encapsulated by the invading hydrocarbon phases. The saturation at which
water goes from being mobile (funicular state) to being immobile (pendular
state) is called the irreducible water saturation and is usually denoted Swir
or Swr. The irreducible water saturation is determined by the topology of the
pore space and the water’s affinity to wet the mineral particles relative to that
of the invading hydrocarbons, which in turn is determined by the chemical
composition of the fluids and the mineral particles. In petroleum literature,
one also talks of the connate water saturation, usually denoted Swc, which is

Page: 233 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



234 8 Mathematical Models for Multiphase Flow

the water saturation that exists upon discovery of the reservoir. The quan-
tities Swir and Swc may or may not coincide, but should not be confused.
Sometimes, one also sees the notation Swi which may refer to any of the two.
In a similar way, if water is later injected to displace the oil, it is generally
not possible to flush out all the oil and part of the pore space will be occu-
pied with isolated oil droplets, as illustrated in Figure 8.1. The corresponding
residual oil saturation is denoted as Sor. In most systems, the water has a
larger affinity to wet the rock, which means that Sor is usually higher than
Swr and Swc: typically are in the range 10–50%.

In many models, each phase may also contain one or more components.
These may be unique hydrocarbon species like methane, ethane, propane,
etc, or other chemical species like polymers, salts, surfactants, tracers, etc.
Since the number of hydrocarbon components can be quite large, it is com-
mon to group components into pseudo-components. Due to the varying and
extreme conditions in a reservoir, the composition of the different phases may
change throughout a simulation (and may sometimes be difficult to determine
uniquely). To account for this, we therefore need to describe this composition.
There are several ways to do this. Herein, we will use the mass fraction of com-
ponent ` in phase α, denoted by c`α and defined as

c`α =
ρ`α
ρα

(8.2)

where ρalpha denotes the bulk density of phase α and ρ`α the effective density
of component ` in phase α. In each of phase, the mass fractions should add
up to unity, so that for M different components in a system consisting of an
aqueous, a gaseous, and an oleic phase, we have:

M∑
`=1

c`g =

M∑
`=1

c`o =

M∑
`=1

c`w = 1. (8.3)

We will return to models having three phases and more than one component
per phase later in the book. For now, however, we assume that our system
consists of two immiscible phases.

8.1.2 Wettability

At the microscale, which is significantly larger than the molecular scale, immis-
cible fluid phases will be separated by a well-defined, infinitely thin interface.
Because cohesion forces between molecules are different on opposite sides, this
interface has an associated surface tension (or surface energy), which measures
the forces the interface must overcome to change its shape. In the absence of
external forces, mimimization of surface energy will cause the interface of a
droplet of one phase contained within another phase to assume a spherical
shape. The interface tension will keep the fluids apart, irregardless of the size
of the droplet.

Page: 234 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.1 New physical properties and phenomena 235

θ

Water wet

σos σws σos

σow
Oil

Water

Solid

θ

Oil wet

Fig. 8.2. Contact angle θ and surface tension σ for two different oil-water systems.
In water-wet systems, 0 ≤ θ < 90◦, whereas 90◦ < 180◦ in oil-wet systems.

The microscale flow of our oil-water system will be strongly affected by
how the phases attach to the interface of the solid rock. The ability of a
liquid phase to maintain contact with a solid surface is called wettability and
is determined by intermolecular interactions when the liquid and solid are
brought together. Adhesive forces between different molecules in the liquid
phase and he solid rock will cause liquid droplets to spread across the mineral
surface. Likewise, cohesive forces between similar molecules within the liquid
phases will cause the droplets to avoid contact with the surface and ball up.
When two fluid phases are present in the same pore space, one phase will be
more attracted to the mineral particles than the other phase. The preferential
phase is referred to as the wetting phase, while the other is called the non-
wetting phase. The balance of the adhesive and cohesive forces determines the
contact angle θ shown in Figure 8.2, which is a measure of the wettability of
a system that can be related to the interface energies by Young’s equation:

σow cos θ = σos − σws (8.4)

where σow is the interface energy of the oil-water interface and σos and
σws are the energies of the oil-solid and water-solid interfaces, respectively.
Hydrophilic or water-wet porous media, in which the water shows a greater
affinity than oil to stick to the rock surface, are more widespread in nature
than hydrophobic or oil-wet media. This explains why Sor usually is larger
than Swr. In a perfectly water-wetting system, θ = 0 so that water spreads
evenly over the whole surface of the mineral grains. Likewise, in a perfectly
oil-wet system, θ = 180◦ so that water forms spherical droplets at the solid
surface.

8.1.3 Capillary pressure

Because of the surface tension, the equilibrium pressure in two phases sepa-
rated by a curved interface will generally be different. The difference in phase
pressures is called the capillary pressure:

pc = pn − pw, (8.5)

Page: 235 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



236 8 Mathematical Models for Multiphase Flow

r

h

θ

θ

Fig. 8.3. Capillary tubes in a wetting (left) and non-wetting (right) liquids.

which will always be positive because the pressure in the non-wetting fluid is
higher than the pressure in the wetting fluid. For a water-wet reservoir, the
capillary pressure is therefore defined as pcow = po − pw, whereas one usually
defines pcog = pg − po in a oil-gas system where oil is the wetting phase.

The action of capillary pressures can cause liquids to move in narrow
spaces, devoid of or in opposition to other external forces such as gravity.
To illustrate this, we consider a thin tube immersed in a wetting and a non-
wetting fluid as shown in Figure 8.3. For the wetting fluid, adhesive forces
between the solid tube and the liquid will form a concave meniscus and pull
the liquid upward against the gravity force. It is exactly the same effect that
causes water to be drawn up into a piece of cloth or paper that is dipped into
water. In the non-wetting case, the intermolecular cohesion forces within the
liquid exceed the adhesion forces between the liquid and the solid, so that a
convex meniscus is formed and drawn downwards relative to the liquid level
outside of the tube. At equilibrium inside the capillary tube, the upward and
the downward forces must balance each other. The force acting upward equals

2πr(σas − σls) = 2πr σ cos θ

where subscripts a and l refer to air and liquid, respectively. The capillary
pressure is defined as force per unit area, or in other words,

pc =
2πr σ cos θ

πr2
=

2σ cos θ

r
(8.6)

The force acting downward can be deducted from Archimedes’ principle as
πr2gh(ρl− ρa) and by equating this with the action of the capillary pressure,
we obtain

pc =
πr2 gh(ρl − ρa)

πr2
= ∆ρgh. (8.7)

The void space inside a reservoir will contain a large number of narrow
pore throats that can be thought of as a bundle of non-connecting capillary
tubes of different radius. As we can see from the formulas developed above,
the capillary pressure increases with decreasing tube radius for a fixed inter-
face energy difference between two immiscible fluids. Because the pore size is

Page: 236 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.1 New physical properties and phenomena 237

usually so small, the capillary pressure will play a major role in establishing
the fluid distribution inside the reservoir. To see this, consider a hydrocarbon
phase migrating upward by buoyancy forces into a porous rock filled with
water. If the hydrocarbon phase is to enter the void space in the rock, its
buoyancy force must exceed a certain minimum capillary pressure. The cap-
illary pressure that is required to force the first droplet of oil into the rock is
called the entry pressure. If we consider the rock as a complex assortment of
capillary tubes, the first droplet will enter the widest tube which according
to (8.6) has the lowest capillary pressure. As the pressure difference between
the buoyant oil and the resident water increases, the oil will be able to enter
increasingly smaller pore throats and hence reduce the water saturation. This
means that there will be a relation between saturation and capillary pressure,

pcnw = pn − pw = Pc(Sw) (8.8)

e.g., as illustrated in Figure 8.4. The slope of the curve is determined by the
variability of the pore sizes. If all pores are of similar size, they will all be
invaded quickly once we exceed the entry pressure and the curve will be rela-
tively flat so that saturation decays rapidly with increasing capillary pressure.
If the pores vary a lot in size, the decrease in saturation with increasing cap-
illary pressure will be more gradual. As for the vertical distribution of fluids,
we see that once the fluids have reached a hydrostatic equilibrium the differ-
ence in densities between water and oil dictates that the difference in phase
pressures and hence the oil saturation increase in the upward direction, which
is also illustrated in the figure.

The argument above was developed for the case that an invading non-
wetting fluid displaces a wetting fluid. This type of displacement is called
drainage to signify that the saturation of the wetting phase is decreasing in
this type of displacement. The opposite case, called imbibition, occurs when a
wetting fluid displaces a non-wetting fluid. As an example, let us assume that
we inject water to flush out the oil in pristine reservoir having connate water
equals the irreducible water saturation. During this displacement, the water
saturation will gradually increase as more water is injected. Hence, the oil
saturation decrease until we reach the residual oil saturation at which there
is only immobile oil left. The displacement will generally not follow the same
capillary curve as the primary drainage curve, as shown in the right plot in
Figure 8.4. Likewise, if another drainage displacement takes place starting
from Sor or a larger oil saturation, the process will generally not follow the
imbibition curve. The result is an example of what is called hysteresis, in which
the behavior of a system depends both on the current state and its previous
history. The hysteretic behavior can be explained by pore-scale trapping of oil
droplets, by variations in the wetting angle between advancing and receding
fluid at the solid interface and by the fact that whereas the drainage process
is controlled by the size of the widest non-invaded pore throat, the imbibition
process is controlled by the size of the narrowest non-invaded pore.

Page: 237 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



238 8 Mathematical Models for Multiphase Flow

pcow height

Sw

Swr

FWL
OWCpe

pcow

Sw

pe
Swr

primary drainage

primary
imbibition

Sor

Fig. 8.4. The left plot shows a capillary pressure curve giving the relation between
capillary pressure pcow and water saturation Sw. In addition we have included how
the capillary pressure and water saturation relate to the height above the free water
level (FWL) for a system in hydrostatic equilibrium. Notice that the entry pressure
pe occurs at the oil-water contact (OWC), which found above the free water level
for systems with nonzero entry pressures. The right plot shows hysteretic behavior
for repeated drainage and imbibition displacements.

As we can see from Figure 8.4, a relatively large fraction of the oil will
be left behind in an immobile state after waterflooding. Several methods for
enhanced oil recovery have been developed to mobilize this immobile oil, e.g.,
by injecting another fluid (e.g., CO2 or gas) that mixes with immobile oil
droplets so that a larger fraction of the oil can be washed out along with
the invading fluid. In chemical and microbial methods, one adds chemical
substances or small microorganisms to the injected fluids that alter the wetting
properties inside the pores. Simulating these processes, however, will require
more advanced models than what is considered in the current chapter.

To use the relation between capillary pressure and saturation in practical
modeling, it is convenient to express Pc(Sw) as an analytical or tabulated func-
tion. In the petroleum industry, this is typically done by using experiments
on core samples from the reservoir to develop an empirical model based on
observations of the relationship between average pc and Sw values inside the
core models. Each core sample will naturally generate a different capillary
curve because of differences in pore-size distribution, porosity, and permeabil-
ity. To normalize the measured data, it is common to use a so-called Leverett
J-function [135], which takes the following form

J(Sw) =
Pc

σ cos θ

√
K

φ
, (8.9)

where the surface tension σ and the contact angle θ are measured in the lab-
oratory and are specific to a particular rock and fluid system. The scaling

Page: 238 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.1 New physical properties and phenomena 239

factor
√
K/φ is proportional to the characteristic, effective pore-throat ra-

dius. The function J can now be obtained as a (tabulated) function of Sw by
fitting rescaled observed data (pc and sw) to a strictly monotone J-shaped
function. Then, the resulting function is used to extrapolate capillary pressure
data measured for a given rock to rocks that are similar, but have different
permeability, porosity, and wetting properties. One cannot expect to find a J
function that is generally applicable since the parameters that affect capillary
pressure have very large variations with rock type. Nevertheless, experience
has shown that the J-curves to correlate well for a given rock type and in
reservoir models it is therefore common to derive a J-curve for each specific
rock type (facies) that is represented in the underlying geological model.

To set up a multiphase flow simulation, one needs to know the initial
saturation distribution inside the reservoir. If we know the location of the
oil-water contact, we can estimate the saturation higher up in the formation
by combining (8.7) and (8.9)

Sw = J−1
( ∆ρgh
σ cos θ

√
K

φ

)
.

In other application areas than petroleum recovery, it is common to use
models that express the capillary pressure directly as an analytical function
of the normalized water saturation,

Ŝw =
Sw − Smin

w

Smax
w − Smin

w

(8.10)

where Smax
w and Smin

w are the maximum and minimum values the saturation
can attain during the displacement. For the primary drainage shown in the
left plot of Figure 8.4, is natural to set Smax

w = 1 and Smin
w = Swr, whereas

Smax
w = 1−Sor and Smin

w = Swr for all subsequent displacements. The follow-
ing model was proposed by Brooks and Corey [41] to model the relationship
between capillary pressure and water saturation in partially saturated media
(i.e., in the vadoze zone where the two-phase flow consists of water and air,
see Section 8.3.5):

Ŝw =

{
(pc/pe)

−nb , if pc > pe

1, pc ≤ pe,
(8.11)

where pe is the entry pressure of air and nb ∈ [0.2, 5] is a parameter related
to the pore-size distribution. Another classical model is the one proposed by
van Genuchten [223]:

Ŝw =
(

1 +
(
βgpc

)ng
)−mg

, (8.12)

where βg is a scaling parameter related to the average size of pores and the
exponents ng and mg are related to the pore-size distribution.

Page: 239 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



240 8 Mathematical Models for Multiphase Flow

8.1.4 Relative permeability

In our discussion of incompressible single-phase flow we have seen that the
only petrophysical parameter that affects how fast a fluid flows through a
porous medium is the absolution permeability K that measures the capacity
of the rock to transmit fluids, or alternatively the resistance the rock offers
to flow. As described in Chapters 2 and 4, absolute permeability is an intrin-
sic property of the rock and does not depend on the type of fluid that flows
through the rock. In reality, this is not true, mainly because of microscale
interactions between the rock fluid that may cause particles to move, pore
spaces to be plugged, clays to swell when brought in contact with water, etc.
Likewise, liquids and gases may not necessarily experience the same perme-
ability because gas does not adhere to the mineral surfaces in the same way
as liquids do. This means that while the flow of liquids is subject to no-slip
boundary conditions, gases may experience slippage which gives a pressure-
dependent apparent permeability that at low flow rates is higher than the
permeability experienced by liquids. This is called the Klinkenberg effect and
plays a substantial role for gas flows in low-permeable unconventional reser-
voirs such as such as coal seams, tight sands, and shale formations. Herein, we
will not consider reservoirs where these effects are pronounced and henceforth,
we assume, as for the incompressible, single-phase flow models in Chapter 4
that the absolute permeability K is an intrinsic quantity.

When more than one phase is present in the pore space, each phase α will
experience an effective permeability Keα that is less than the absolute perme-
ability K. Looking at the conceptual drawing Figure 8.1, it is easy to see why
this is so. The presence of another phase will effectively present additional
’obstacles’, whose interfacial tension offer resistance to flow. Because interfa-
cial tension exists between all immiscible phases, the sum of all the effective
phase permeabilities will generally be less than one, i.e.,∑

α

Keα < K.

To model this reduced permeability, we introduce a property called relative
permeability [167], which for an isotropic medium is defined as

krα = Ke
α/K. (8.13)

Because the effective permeability is always less or equal to the absolute per-
meability krα will take values in the interval between 0 and 1 and

∑
α krα ≤ 1.

For anisotropic media, the relationship between the effective and absolution
permeability may in principle be different for each component of the tensors.
However, it is still common to define the relative permeability as a scalar
quantity that is postulated to be in the following form

Keα = krαK. (8.14)

Page: 240 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.1 New physical properties and phenomena 241

The relative permeabilities will generally be functions of saturation, which
means that we for a two-phase system can write

krn = krn(Sn) and krw = krw(Sw).

It is important to note that the relative permeabilities generally are nonlinear
functions of the saturations, so that the sum of the relative permeabilities
at a specific location (with a specific composition) is not necessarily equal
to one. As for the relationship between saturation and capillary pressure,
the relative permeabilities are strongly dependent on the lithofacies and is
therefore common practice to associate an unique pair of curves with each
rock type represented in the geological model. The relative permeabilities
may depend on pore-size distribution, fluid viscosity, and temperature, but
these factors are usually ignored in models of conventional reservoirs.

In simplified models, it is common to assume that krα are monotone func-
tions that assume unique values in [0, 1] for all values Sα ∈ [0, 1], so that
krα = 1 corresponds to the case with fluid α occupying the entire pore space
and krα = 0 when Sα = 0; see the left plot in Figure 8.5. In practice, krα = 0
occurs when the fluid phase becomes immobilized for Sα ≤ Sαr, giving relative
permeability curves as shown in the right plot in Figure 8.5. The preferential
wettability can be deducted from the point where two curves cross. Here, the
curves cross for Sw > 0, which indicates that the system is water-wet.

Going back to our previous discussion of hysteresis, we will generally ex-
pect that the relative permeability curves are different during drainage and im-
bibition. In Figure 8.6 the drainage curve corresponds to the primary drainage
we discussed in connection with Figure 8.4 in which a non-wetting hydrocar-
bon phase migrates into a water-wetting porous medium that is completely
saturated by water. After the water has been drained to its irreducible satu-
ration, water is injected to flush out the oil. In this particular illustration, krw
exhibits no hysteretic behavior, whereas the imbibition and drainage curves
deviate significantly for kro.

Measuring relative permeability has traditionally been costly and involved.
Recently, the laboratory techniques have made great progress by using com-
puter tomography and nuclear magnetic resonance (NMR) to scan the test
cores where the actual phases are being displaced. However, although stan-
dard experimental procedures exist for measuring relative permeabilities in
two-phase systems, there is still a significant uncertainty concerning the rel-
evance of the experimental values found and it is difficult to come up with
reliable data to be used in a simulator. This is mainly due to boundary ef-
fects. Particularly for three-phase systems, no reliable experimental technique
exists. Thus, three-phase relative permeabilities are usually modelled using
two-phase measurements, for which several theoretical models have been pro-
posed. Most of them are based on Stone’s model [212], where sets of two-phase
relative permeabilities are combined to give three-phase data. We will come
back to these models in more detail later in the book when discussing multi-
phase compressible flow.

Page: 241 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



242 8 Mathematical Models for Multiphase Flow

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

krw kro

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

krw kro

Fig. 8.5. Illustration of relative permeabilities for a two-phase system. The left plot
shows an idealized system with no residual saturations, while the right plot shows
more realistic curves from a water-wet system.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

krw kro

Fig. 8.6. Illustration of relative permeability hysteresis, with drainage curves shown
as thin, dashed lines and imbibition curves shown as thick lines.

It is quite common to use simple analytic relationships to represent rela-
tive permeabilities. These are usually stated using the normalized or effective
saturation Ŝw from (8.10). The simplest model possible is a pure power-law
relationship, which is sometimes called a Corey model,

krw =
(
Ŝw
)nw

k0
w,

kro =
(
1− Ŝw

)no
k0
o ,

(8.15)

where the exponents nw > 1 and no > 1 and the constants k0
α used for end-

point scaling are fitting parameters. Another popular choice is the Brooks–
Corey functions

krw =
(
Ŝw
)n1+n2n3

,

kro =
(
1− Ŝw

)n1
[
1−

(
Ŝw
)n2
]n3

,
(8.16)

Page: 242 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.2 Flow equations for multiphase flow 243

where, in particular, n1 = 2, n2 = 1 + 2/nb and n4 = 1 for the Brooks–
Corey–Burdine model and n1 = η, n2 = 1 + 1/nb and n3 = 2 for the Brooks–
Corey–Mualem model. It is also possible to derive models that correspond
with the van Genuchten capillary functions in (8.12), which in the case that
mg = 1− 1/ng reads

krw = Ŝκw
[
1− (1− Ŝ1/mg

w )mg
]2
,

kro = (1− Ŝw)κ
[
1− Ŝ1/mg

w

]2mg
,

(8.17)

where the connectivity factor κ is a fitting parameter. This is called the van
Genuchten–Mualem model, whereas the closed-form expressions obtained for
mg = 1− 2/ng,

krw = Ŝ2
w

[
1− (1− Ŝ1/mg

w )mg
]
,

kro = (1− Ŝw)2
[
1− Ŝ1/mg

w

]mg
,

(8.18)

is called the van Genuchten–Burdine model.

8.2 Flow equations for multiphase flow

Having introduced the new physical parameters and key phenomena that char-
acterize multiphase flow of immiscible fluids, we are in a position to develop
mathematical models describing multiphase flow. To develop flow models, we
will follow more or less the same steps as we did for single-phase flow in
Section 4.2. Stating the generic equations that describe multiphase flow is
straightforward and will result in a system of partial differential equations
that contains more unknowns than equations and hence must be extended
with constitutive equations to relate the various physical quantities as well
as boundary conditions and source terms (see Sections 4.3.1 and 4.3.2) that
describe external forces driving the flow. However, as indicated in the intro-
duction of the chapter, the generic flow model has a complex mathematical
character and contains delicate balances of various physical forces whose char-
acteristics and individual strengths vary a lot across different flow regimes.
To reveal the mathematical character, but also to make models that are com-
putationally tractable in practical simulations, one will need to develop more
specific that apply under certain assumptions on the flow regimes.

8.2.1 Single-component phases

To develop a generic system of flow equations for multiphase flow, we use the
fundamental principle of mass conservation. For a system ofN immiscible fluid
phases that each consists of a single component, we write one conservation
equation for each phase,

∂

∂t

(
φραSα

)
+∇ ·

(
ρα~vα

)
= ραqα, (8.19)

Page: 243 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



244 8 Mathematical Models for Multiphase Flow

Here, each phase can contain multiple chemical species, but these can be
considered as a single component since there is no transfer between the phases
and the composition of each phase remains constant in time.

As for the flow of a single fluid, the primary constitutive relationship used
to form a closed model is Darcy’s law (4.2), which can be extended to multi-
phase flow by using the concept of relative permeabilities discussed above

~vα = −Kkrα
µα

(∇pα − gρα∇z). (8.20)

This extension of Darcy’s law to multiphase flow is often attributed to Muskat
and Wyckoff [167] and has only been rigorously derived from first principles
in the case of two fluid phases, and (8.20) must therefore generally be con-
sidered as being phenomenological. Darcy’s law is sometimes stated with the
opposite sign for the gravity term, but herein we use the convention that g
is positive constant. Likewise, it is common to introduce the phase mobilities
λα = Kkrα/µα or the relative phase mobilities λα = λαK to simplify the
notation slightly. From the discussion in the previous section, we also have
the additional closure relationship stating that the saturations sum to zero
(8.1) as well as relations of the form (8.8) that relate the pressures of the
different phases by specifying the capillary pressures as functions of the fluid
saturations.

Most commercial reservoir simulators compute approximate solutions by
inserting the multiphase Darcy equations (8.20) into (8.19) and discretizing
the resulting two equations directly. If we use the discrete derivative operators
from Section 4.4.2 combined with a backward discretization of the temporal
derivatives, the resulting system of discrete equations for the wetting phase
reads

(φSαρα)n+1 − (φSαρα)n

∆tn
+ div(ρv)n+1

α = qn+1
α , (8.21a)

vn+1
α = −Kkrα

µn+1
α

[
grad(pn+1

α )− gρn+1
α grad(z)

]
, (8.21b)

Here, φ,Sα,pα ∈ Rnc denote the vector with one porosity value, one satu-
ration, and one pressure value per cell, respectively, while vα is the vector of
fluxes of phase α per face, and so on. For properties that depend on pressure
and saturation we have for simplicity not introduced any notation to distin-
guish whether these are evaluated in cells or at cell interfaces. The superscript
refers to discrete times at which one wishes to compute the unknown reser-
voir states and ∆t denotes the distance between two such consecutive points
in time. The main advantage of using this direct discretization is that it will
generally give a reasonable approximation to the true solution as long as we
are able to solve the resulting nonlinear system at each time step. To do this,
we must pick two primary unknowns and perform some kind of linearization;
we will come back to more details on this linearization in later chapters. Here,

Page: 244 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.2 Flow equations for multiphase flow 245

we simply observe that there are many ways to perform the linearization: we
can choose the phase saturations as primary unknowns, the phase pressures,
the capillary pressures, or some combinations thereof. How difficult it will be
to solve for these unknowns will obviously depend on the coupling between the
two equations and nonlinearity within each equation. The main disadvantages
of discretizing (8.19) directly are that the general system conceals its mathe-
matical nature and that the resulting equations are not well-posed in the case
of an incompressible system. In Section 8.3, we will therefore go back to the
continuous equations and analyze the mathematical nature of the resulting
system for various choices of primary variables and simplifying assumptions.

8.2.2 Multicomponent phases

In many cases, each phase may consist of more than one chemical species
that are mixed at the molecular level and generally share the same velocity
(and temperature). This type of flow differs from the immiscible case since
dispersion and Brownian motion will cause the components to redistribute
if there are macroscale gradients in the mass fractions. The simplest way to
model this is through a linear Fickian diffusion,

~J`α = −ραSαD`α∇c`α, (8.22)

where c`α is the mass fraction of component ` in phase α, ρα is the density
of phase α, Sα is the saturation of phase α, and D`α is the diffusion tensor
for component ` in phase α. Likewise, the chemical species may interact and
undergo chemical reactions, but a description of this is beyond the scope of
this book.

For multicomponent, multiphase flow, we are, in principle, free to choose
whether we state the conservation of mass for components or for fluid phases.
However, if we choose the latter, we will have to include source terms in our
balance equations that account for the transfer of components between the
phases. This can be a complex undertaking and the standard approach is
therefore to develop balance equations for each component. For a system of
N fluid phases and M chemical species, the mass conservation for component
` = 1, . . . ,M reads

∂

∂t

(
φ
∑
α

c`αραSα

)
+∇ ·

(∑
α

c`αρα~vα + ~J`α

)
=
∑
α

c`αραqα, (8.23)

where ~vα is the superficial phase velocity and qα is the source term. The
system is closed in the same way as for single-component phases, except that
we now also have to use that the mass fractions sum to zero, (8.3).

The generic equation system (8.20)–(8.23) introduced above can be used to
describe miscible displacements in which the composition of the fluid phases
changes when the porous medium undergoes pressure and saturation changes
and one has to account for all, or a large majority, of the chemical species that

Page: 245 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



246 8 Mathematical Models for Multiphase Flow

are present in the flow system. For systems that are immiscible or partially
miscible, it is common to introduce simplifications by lumping multiple species
into pseudo-components or even disregard that a fluid phase may be composed
of different chemical species as we will see next.

8.2.3 Black-oil models

In the petroleum industry, the most common approach to simulate oil and
gas recovery is to use the so-called black-oil equations, which is a special case
of multicomponent, multiphase models with no diffusion among the compo-
nents. The name refers to the assumption that the various chemical species
can be lumped together to form two components at surface conditions, a
heavy hydrocarbon component called “oil” and a light hydrocarbon compo-
nent called “gas”. At reservoir conditions, the two components can be partially
or completely dissolved in each other depending on pressure and temperature,
forming either one or two phases, a liquid oleic phase and a gaseous phase. In
addition to the two hydrocarbon phases, the framework includes an aqueous
phase that in the simplest models of this class is assumed to consist of only
water. In more comprehensive models, the hydrocarbon components are also
allowed to dissolve in the aqueous phase and the water component may be
dissolved or vaporized in the two hydrocarbon phases. The hydrocarbon fluid
composition, however, remains constant for all times.

We will henceforth assume three phases and three components (oleic,
gaseous, and aqueous). By looking at our model (8.20)–(8.23), we see that
we so far have introduced twenty-seven unknown physical quantities: nine
mass fractions c`α and three of each of the following quantities ρα, Sα, ~vα,
pα, µα, and krα. In addition, the porosity will typically depend on pressure
as discussed in Section 2.4.1. To determine these twenty-seven unknowns, we
have the following equations: three continuity equations (8.23), an algebraic
relation for the saturations (8.1), three algebraic relations for the mass frac-
tions (8.3), and Darcy’s law (8.20) for each of the three phases. Altogether,
this constitutes only ten equations. Thus, we need to add seventeen extra
closure relations to make a complete model.

The first five of these can be obtained immediately from our discussion in
Sections 8.1.3 and 8.1.4, where we saw that the relative permeabilities krα are
functions of the phase saturations and that capillary pressures are functions
of saturation and can be used to relate phase pressures as follows

po − pw = Pcow(Sw, So), pg − po = Pcgo(So, Sg).

These required functional forms are normally obtained from a combination of
physical experiments, small-scale numerical simulations, and analytical mod-
elling based on bundle-of-tubes arguments, etc. The viscosities are either con-
stant or can be established as pressure-dependent functions through labora-
tory experiments, which gives us another three equations. The remaining nine

Page: 246 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.2 Flow equations for multiphase flow 247

closure relations are obtained from mixture rules and PVT models that are
generalizations of the equations-of-state discussed in Section 4.2.

By convention, the black-oil equations are formulated as conservation of
gas, oil, and water volumes at standard (surface) conditions rather than con-
servation of the corresponding component masses [221]. To this end, we will
employ a simple PVT model that uses pressure-dependent functions to relate
fluid volumes at reservoir and surface conditions. Specifically, we use the so-
called formation-volume factors B` = V`/V

s
` that relate the volumes V` and

V s` occupied by a bulk of component ` at reservoir and surface conditions, re-
spectively. The formation-volume factors, and their inverse b` = V s` /V` which
some prefer to use for notational convenience, are assumed to depend on phase
pressure. In dead-oil systems, the oil is at such a low pressure that it does not
contain any gas or has lost its volatile components (which presumably have
escaped from the reservoir). Neither of the components are therefore dissolved
in the other phases at reservoir conditions. In so-called live-oil systems, gas
is dissolved in oil. When underground, live oil is mostly in liquid phase, but
gaseous components are liberated when the oil is pumped to the surface. The
solubility of gas in oil is usually modelled through the pressure-dependent
solution gas-oil ratio, rso = V sg /V

s
o defined as the volume of gas, measured

at standard conditions, that at reservoir conditions is dissolved in a unit of
stock-tank oil. In condensate reservoirs, oil is vaporized in gas, so that when
underground, condensate oil is mostly a gas, but condenses into a liquid when
pumped to the surface. The solubility of oil in gas is modeled as the pressure-
dependent solution oil-gas ratio rsg defined as the amount of surface conden-
sate that can be vaporized in a surface gas at reservoir conditions. Using this
notation1, the black-oil equations for a live-oil system reads,

∂t
(
φboSo

)
+∇ ·

(
bo~vo

)
− boqo = 0,

∂t
(
φbwSw

)
+∇ ·

(
bw~vw

)
− bwqw = 0,

∂t
[
φ
(
bgSg + borsoSo

)]
+∇ ·

(
bg~vg + borso~vo

)
−
(
bgqg + borsoqo

)
= 0.

To model enhanced oil recovery, this system can be extended with additional
components to model chemical or microbial species that are added to the in-
jected fluids to mobilize immobile oil by altering wettability and/or to improve
sweep efficiency and hence the overall displacement of mobile oil. One may
also model species dissolved in the resident fluids. Likewise, the black-oil may
be expanded by an additional solid phase to account for salts and other miner-
als that precipitate during hydrocarbon recovery, and possibly also extended
to include an energy equation that accounts for temperature effects.

We will return to a more detailed discussion of the general case of three-
phase flow with components that may transfer between phases later in the
book. In the rest of the chapter, we continue to study the special case of two
fluid phases with no mass transfer between the phases.

1 The convention in the petroleum literature is to use Bα rather than bα and let
Rs and rs denote rso and rsg, respectively.

Page: 247 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



248 8 Mathematical Models for Multiphase Flow

8.3 Model reformulations for immiscible two-phase flow

In this section, we will look at various choices of primary variable for the
special case of two immiscible fluids, for which the general system of flow
equations (8.19) simplifies to

∂

∂t
(φSwρw) +∇ · (ρw~vw) = ρwqw,

∂

∂t
(φSnρn) +∇ · (ρn~vn) = ρnqn.

(8.24)

and discuss how the various choices affect the mathematical structure of the
resulting coupled system of nonlinear differential equations.

8.3.1 Pressure formulation

If we choose the phase pressures pn and pw as the primary unknowns, we need
to express the saturations Sn and Sw as functions of pressure. To this end, we
assume that the capillary pressure has a unique inverse function Ŝw = P−1

c (pc)
(see (8.8)) so that we can write

Sw = Ŝw(pn − pw), Sn = 1− Ŝw(pn − pw). (8.25)

Then, we can reformulate (8.24) as

∂

∂t
(φρwŜw) +∇ ·

(ρwKkrw(Ŝw)

µw

(
∇pw − ρwg∇z

))
= ρwqw,

∂

∂t
(φρn(1− Ŝw)) +∇ ·

(ρnKkrn(Ŝw)

µn

(
∇pn − ρng∇z

))
= ρnqn,

(8.26)

This system is unfortunately highly coupled and strongly nonlinear. The
strong coupling comes from the fact that the difference in our primary vari-
ables pn − pw enters the computation of Ŝw in the accumulation terms and
also in the composite functions krw(Ŝw(·)) and krn(1 − Ŝw(·)) used to eval-
uate the relative permeabilities. As an example of the resulting nonlinearity,
we can look at the van Genuchten model for capillary and relative permeabil-
ities, (8.12) and (8.17). Figure 8.7 shows the capillary pressure and relative
permeabilities as function of S as well as the inverse of the capillary pressure
and relative permeabilities as function of pn− pw. Whereas the accumulation
function is nonlinear, this nonlinearity is further accentuated when used in-
side the nonlinear relative permeability functions. The pressure formulation
was used in the simultaneous solution scheme originally proposed by Douglas,
Peaceman, and Rachford [65] in 1959, but has later been superseded by other
formulations that reduce the degree of coupling and improve the nonlinear
nature of the equation.

Page: 248 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.3 Model reformulations for immiscible two-phase flow 249

0.2 0.4 0.6 0.8 1

2

4

6

8

Pc(S)

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

krw

kro

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Ŝw

2 4 6 8 10
0

0.2

0.4

0.6

0.8

krw(Ŝw)

kro(Ŝw)

Fig. 8.7. Capillary pressure and relative permeabilities as function of S for the van
Genuchten model for βg = 1, mg = 2/3, and κ = 1/2. The lower row shows the
saturation and relative permeabilities as function of pc = pn − pw.

8.3.2 Fractional flow formulation in phase pressure

The strong coupling and much of the nonlinearity seen in the previous for-
mulation can be eliminated if we instead express the system in terms of one
phase pressure and one phase saturation. A common choice is to use pn and
Sw, which gives the following system

∂

∂t
(φSwρw) +∇ ·

(ρwKkrw
µw

(
∇pn −∇Pc(Sw)− ρwg∇z

))
= ρwqw,

∂

∂t
(φ(1− Sw)ρn) +∇

(ρnKkrn
µn

(
∇pn − ρng∇z

))
= ρnqn.

(8.27)

To further develop this system of equations, it is common to expand the
derivatives to introduce rock and fluid compressibilities, as discussed for the
single-phase flow equation in Section 4.2. First, however, we will look closer
at the special case of incompressible flow and develop the so-called fractional
flow formulation which will enable us to further expose the mathematical
structure of the system.

Page: 249 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



250 8 Mathematical Models for Multiphase Flow

Incompressible flow

For incompressible flow, the porosity φ is only a function of time and the
fluid densities ρα are constant. Using these assumptions, we can simplify the
mass-balance equations to be on the form

φ
∂Sα
∂t

+∇ · ~vα = qα. (8.28)

To derive the fractional flow formulation, we start by introducing the total
Darcy velocity, which we can express in terms of the pressure for the non-
wetting phase,

~v = ~vn + ~vw = −λn∇pn − λw∇pw + (λnρn + λwρw)g∇z
= −(λn + λw)∇p+ λw∇pc + (λnρn + λwρw)g∇z

(8.29)

and then add the two continuity equations and use the fact that Sn +Sw = 1
to derive a pressure equation

φ
∂

∂t
(Sn + Sw) +∇ · (~vn + ~vw) = ∇~v = qn + qw (8.30)

If we now define the total mobility λ = λn + λw = λK and total source
q = qn + qw, insert (8.29) into (8.30), and collect all terms that depend on
pressure on the left-hand side and all other terms on the right-hand side, we
obtain an elliptic Poisson-type equation

−∇ · (λK∇pn) = q −∇
[
λw∇pc + (λnρn + λwρw)g∇z

]
, (8.31)

which is essentially on the same form as the equation (4.10) that governs
single-phase, incompressible flow, except that both the variable coefficient and
the right-hand side now depend on saturation through the relative mobility
and capillary pressure functions.

To derive an equation for Sw, we multiply each phase velocity by the
relative mobility of the other phase, subtract the result, and use Darcy’s law
to obtain

λn~vw − λw~vn = λ~vw − λw~v
= −λnλwK(∇pw − ρwg∇z) + λwλnK(∇pn − ρng∇z)
= λwλnK

[
∇pc + (ρw − ρn)g∇z].

If we now solve for ~vw and insert into (8.28) for the wetting phase, we ob-
tain what is commonly referred to as the saturation equation (or transport
equation)

φ
∂Sw
∂t

+∇ ·
[
fw
(
~v + λn∆ρg∇z

)]
= qw −∇ ·

(
fwλnP

′
c∇Sw

)
(8.32)

Page: 250 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.3 Model reformulations for immiscible two-phase flow 251

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

µw = 5µn

µw = µn

5µw = µn

0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4
µw = 5µn

µw = µn

5µw = µn

Fig. 8.8. Fractional flow function fw (left) and gravity segregation function λnfw
for the van Genuchten–Mualem model (8.17) with mg = 2/3, κ = 1/2, and ∆ρ > 0.

where ∆ρ = ρw − ρn and we have introduced the fractional flow function
fw = λw/(λn + λw), which measures the fraction of the total flow that con-
sists of the wetting fluid. This is a parabolic equation that accounts for the
balance of three different forces, viscous advection fw~v, gravity segregation
(fwλn)(Sw), and capillary forces fwλnP

′
c∇Sw. The first two terms both in-

volve a first-order derivative and hence have a hyperbolic character, whereas
the capillary term contains a second-order derivative and hence has a parabolic
character. We also remark that the negative sign in front of the capillary term
is misleading; since P ′c < 0 the overall term is positive and hence the parabolic
term gives a well-posed problem. Moreover, since λn is zero at the end point,
the capillary term disappears at this point and hence the parabolic equation
degenerates to being hyperbolic. This, in turn, implies that a propagating
displacement front in which a wetting fluid displaces a non-wetting fluid, will
have finite speed of propagation, and not the infinite speed of propagation
that is typical for parabolic problems. Figure 8.8 shows the functional form of
the two hyperbolic terms for the van Genuchten–Mualem model (8.17). The
fractional flow function fw is monotonically increasing and has a character-
istic S-shape. If the flow is dominated by viscous terms so that gravity and
capillary forces are negligible, the flow will always be co-current because the
derivative of fw is positive. The gravity segregation function, on the other
hand, has a characteristic bell-shape and describes the upward movement of
the light phase and downward movement of the heavier phase. (As a conse-
quence, the function is turned upside down if ρw < ρn.) If the gravity term
is sufficiently strong, it may introduce counter-current flow. On a field scale,
capillary forces are typically small and hence the overall transport equation
will have a strong hyperbolic character, and neglecting the capillary term is
generally a good approximation. Later in the chapter, we will return to this
model and discuss a few examples in the special case of purely hyperbolic 1D
flow.

The coupling between the elliptic pressure equation and the parabolic satu-
ration equation is much weaker than the coupling between the two continuity

Page: 251 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



252 8 Mathematical Models for Multiphase Flow

equations in the two-pressure formulation (8.26). In the pressure equation
(8.31), the coupling to saturation appears explicitly in the effective mobil-
ity that makes up the variable coefficient in the Poisson problem and on the
right-hand side through the phase mobilities and the derivative of the capil-
lary function. In (8.32), on the other hand, the saturation is only indirectly
coupled to the pressure through the total Darcy velocity. In typical displace-
ment scenarios, the saturation variations will be relatively smooth in most of
the domain except at the interface between the invading and the displaced
fluids and hence the pressure distribution is only mildly affected the evolving
fluid saturations. In fact, the pressure and transport equations are completely
decoupled in the special case of linear relative permeabilities, no capillary
pressure, and equal fluid densities and viscosities. These weak couplings are
exploited in many efficient numerical methods that use various forms of oper-
ator splitting to solve pressure and fluid transport in separate steps. This is
also our method of choice for incompressible flow in MRST; more about this
later.

The reformulation discussed above can easily be extended to the case with
N immiscible phases, and will result in one pressure equation and a (coupled)
system of N − 1 saturation equations. Fractional flow formulations can also
be developed for multicomponent flow without mass exchange between the
phases.

Compressible flow

To develop a fractional flow formulation in the compressible case, we start by
expanding the accumulation term in (8.19) and then use fluid compressibilities
to rewrite the derivative of the phase densities

∂

∂t

(
φραSα

)
= ραSα

∂φ

∂t
+ φSα

∂ρα
∂t

+ φρα
∂Sα
∂t

= ραSα
∂φ

∂t
+ φSα

dρα
dpα

∂pα
∂t

+ φρα
∂Sα
∂t

= ραSα
∂φ

∂t
+ φραSαcα

∂pα
∂t

+ φρα
∂Sα
∂t

.

If we now insert this into (8.19), divide each equation by ρα, and sum the
equations, we obtain

∂φ

∂t
+ φcnSn

∂pn
∂t

+ φcwSw
∂pw
∂t

+
1

ρn
∇ ·
(
ρn~vn

)
+

1

ρw
∇ ·
(
ρw~vw

)
= qt, (8.33)

where qt = qn + qw. To explore the character of this equation, let us for the
moment assume that capillary forces are negligible so that pn = pw = p and
that the spatial density variations are so small that we can set ∇ρα = 0. If
we now introduce rock compressibility cr = d ln(φ)/dp, (8.33) simplifies to

φc
∂p

∂t
−∇ · (λK∇p) = q̂. (8.34)

Page: 252 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.3 Model reformulations for immiscible two-phase flow 253

Here, we have introduced the total compressibility c = (cr+cnSn+cwSw) and
a source function q̂ that accounts both for volumetric source terms and pres-
sure variations with depth. Equation (8.34) is clearly parabolic, but simplifies
to the elliptic Poisson equation (8.31) for incompressible flow (c = 0). Fluid
compressibilities tend to decrease with increasing pressure, and we should
therefore expect that the pressure equation has a strong elliptic character at
conditions usually found in conventional reservoirs during secondary and ter-
tiary production, in particular for weakly compressible systems. On the other
hand, the pressure evolution will usually have a more pronounced parabolic
character during primary depletion and in unconventional reservoirs, where K
may be in the range of one micro Darcy or less.

These observations remain true also when capillary forces and spatial den-
sity variations are included. However, including these effects makes the mathe-
matical structure of the equation more complicated. In particular, the pressure
equation becomes a nonlinear parabolic equation if the spatial variations in
density cannot be neglected. To see this, let us once again neglect capillary
forces and consider the second last term on the left-hand side of (8.33),

1

ρn
∇ · (ρn~v) = ∇ · ~vn + ~vn ·

1

ρn
∇ρn

= ∇ · ~vn + ~vn ·
(
cn∇pn

)
By using Darcy’s law, we can transform the inner product between the phase
flux and the pressure gradient to involve a quadratic term in ∇pn or ~vn,

~vn ·
(
cn∇pn

)
= −λn(∇pn − ρng∇z) · (cn∇pn)

= cn~vn · (−λ−1
n ~vn + ρng∇z).

The last term on the left-hand side of (8.33) has a similar form and hence
we will obtain a nonlinear equation if at least one of the fluid phases have
significant spatial density variations.

Going back to (8.33), we see that the equation contains both phase pres-
sures and hence cannot be used directly alongside with a saturation equation.
There are several ways to formulate a pressure equation that it only involves a
single unknown pressure. We can either pick one of the phase pressures as the
primary variable, or introduce an average pressure pa = (pn + pw)/2 as sug-
gested in [191]. With pn as the primary unknown, the full pressure equation
reads

φc
∂pn
∂t
−
[ 1

ρn
∇ ·
(
ρnλn∇pn

)
+

1

ρw
∇ ·
(
ρwλw∇pn

)]
=qn + qw −

1

ρw
∇ ·
(
ρwλw∇Pc

)
+ cwSw

∂Pc
∂t

− 1

ρn
∇ ·
(
ρ2
nλng∇z

)
− 1

ρw
∇ ·
(
ρ2
wλwg∇z

)
.

(8.35)

Page: 253 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



254 8 Mathematical Models for Multiphase Flow

Likewise, with pa as the primary unknown, we get

φc
∂pa
∂t
−
[ 1

ρn
∇ ·
(
ρnλn∇pa

)
+

1

ρw
∇ ·
(
ρwλw∇pa

)]
= qt +

1

2

[ 1

ρn
∇ ·
(
ρnλn

)
− 1

ρw
∇ ·
(
ρwλw

)]
∇Pc + 1

2cwSw
∂Pc
∂t

− 1
2cnSn

∂Pc
∂t
− 1

ρn
∇ ·
(
ρ2
nλng∇z

)
− 1

ρw
∇ ·
(
ρ2
wλwg∇z

)
.

(8.36)

The same type of pressure equation can be developed for cases with more
than two fluid phases. Also in this case we can define a total velocity and use
this to obtain N − 1 transport equations in fractional flow form.

The saturation equation for compressible flow is obtained exactly in the
same way as in the incompressible case,

∂

∂t

(
φρwSw

)
+∇ ·

[
ρwfw

(
~v+λn∆ρg∇z

)]
= ρwqw −∇ ·

(
ρwfwλnP

′
c∇Sw

)
.

(8.37)

However, whereas total velocity was the only quantity that coupled the satu-
ration equation to the fluid pressure in the incompressible case, we now have
coupling through the porosity and density, which may both depend on pres-
sure. This generally makes the compressible case more challenging than the
incompressible case.

8.3.3 Fractional flow formulation in global pressure

The formulation in phase pressure discussed above has a relatively strong
coupling between pressure and saturation in the presence of capillary forces.
The strong coupling is mainly caused by ∇pc term on the right-hand side if
(8.31). Let us therefore go back and see if we can eliminate this term by making
a different choice of primary variables. To this end, we start by looking at the
definition of the total velocity, which couples the pressure to the saturation
equation:

~v = −λn∇pn − λw∇pw +
(
ρnλn + ρwλw)g∇z

= −(λn + λw)∇pn + λw∇(pn − pw) +
(
ρnλn + ρwλw)g∇z

= −(λn + λw)
(
∇pn − fw∇pc) +

(
ρnλn + ρwλw)g∇z.

If we now introduce a new pressure variable p, called the global pressure [46],
defined so that ∇p = ∇pn − fw∇pc, we see that the total velocity can be
related to the global pressure through an equation that looks like Darcy’s law

~v = −λ
(
∇p− (ρwfw + ρnfn)g∇z

)
. (8.38)

By adding the continuity equations (8.28), and using (8.38), we obtain an
elliptic Poisson-type equation for the global pressure

Page: 254 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.3 Model reformulations for immiscible two-phase flow 255

−∇ ·
[
λK
(
∇p− (ρwfw + ρnfn)g∇z

)]
= qt. (8.39)

The advantages of this formulation is that it is very simple and highly efficient
in the incompressible case, where pressure often is treated as an immaterial
property and one is mostly interested in obtaining a velocity field for the sat-
uration equation. The disadvantages are that it is not obvious how one should
specify and interpret boundary conditions for the global pressure and that
the global pressure values cannot be used directly in well models (of Peace-
man type). The global pressure formulation can also be extended to variable
densities and to three-phase flow; the interested reader should consult [51, 49]
and references therein. The global formulation is often used by academic re-
searchers because of its simplicity, but is, to the best of my knowledge, hardly
used for practical simulations in the industry.

8.3.4 Fractional flow formulation in phase potential

The two fractional flow formulations discussed above are generally well suited
to study two-phase immiscible flow with small or negligible capillary forces.
Here, flow is mainly driven through high-permeable regions and flow paths
are to a large extent determined by the permeability distribution, the shape
of the relative permeability functions, and density differences that determine
the relative importance of gravity segregation. In other words, the flow is
mainly governed by viscous forces and gravity segregation, which constitute
the hyperbolic part of the transport equation, whereas capillary forces mostly
contribute to adjust the width of the interface between the invading and dis-
placed fluids. For highly heterogeneous media with strong contrasts in capil-
lary functions, on the other hand, the capillary forces may have pronounced
impact on the flow paths by enhancing cross-flow in stratified media or reduc-
ing the efficiency of gravity drainage. Likewise, because capillary pressure is
continuous across geological interfaces, differences in capillary functions be-
tween adjacent rocks of different type may introduce (strong) discontinuities
in the saturation distribution.

An alternative fractional flow formulation was proposed in [100] to study
heterogeneous media with strong contrasts in capillary functions. The formu-
lation is similar to the ones discussed above, except that we now work with
fluid potentials rather than fluid pressures. The fluid potential for phase α is
given by

Φα = pα − ραgz (8.40)

whereas the capillary potential is defined as

Φc = Φn − Φw = pc + (ρw − ρn)gz. (8.41)

By manipulating the expression for the total velocity, we can write it as a sum
of two new velocities, that are given by gradients of Φw and Φc:

Page: 255 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



256 8 Mathematical Models for Multiphase Flow

~v = −λn
(
∇pn − ρng∇z

)
− λw

(
∇pw − ρng∇z

)
= −λn

(
∇pw +∇pc − (ρn − ρw + ρw)g∇z

)
− λw

(
∇pw − ρng∇z

)
= −(λn + λw)

(
∇pw − ρwg∇z

)
− λn

(
∇pc + (ρw − ρn)g∇z

)
= −λ∇Φw − λn∇Φc = ~va + ~vc.

Here, we observe that

~vw = −λw∇Φw = −λw
λ
λK∇Φw = fw~va

which means that the velocity ~a represents the same phase differential as the
phase velocity of the wetting phase, except that it is multiplied by the total
mobility, which is smoother and less varying function than the mobility λw of
the water phase.

Proceeding analogously as above, we can derive the following coupled sys-
tem for two-phase, immiscible flow:

−∇ ·
(
λK∇Φw

)
= q +∇ ·

(
λnK∇Φc

)
(8.42)

φ
∂

∂t
+∇ ·

(
fw~va

)
= qw. (8.43)

Compared with the other two fractional flow formulations, this system is sim-
pler in the sense that capillary forces are only accounted for in the pressure
equation. Equally important, the saturation equation is purely hyperbolic and
only contains advective flow along ~va. This makes the saturation much sim-
pler to solve, since one does not have to resolve delicate balances involving
nonlinear functions for gravity segregation and capillary forces and can thus
easily employ simple upwind discretizations and highly efficient solvers that
have been developed for purely co-current flow, like streamline methods [61]
or methods based on optimal ordering [168, 141]. On the other hand, the
advective velocity ~va may vary significantly with time and hence represent a
strong coupling between the pressure and transport.

8.3.5 Richards’ equation

Another special case arises when modeling the vadose or unsaturated zone,
which extends from the ground surface to the groundwater table, i.e., from
the top of the Earth to the depth at which the hydrostatic pressure of the
groundwater equals one atmosphere. Soil and rock in the vadose zone will
generally contain both air and water in its pores, and the vadose zone is the
main factor that controls the movement of water from the ground surface to
aquifers, i.e., the saturated zone beneath the water table. In the vadose zone,
water is retained by a combination of adhesion and capillary forces, and in
fine-grained soil one can find pores that are fully saturated by water at a
pressure less than one atmosphere.

Page: 256 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.3 Model reformulations for immiscible two-phase flow 257

Because of the special conditions in the vadose zone, the general flow equa-
tions modeling two immiscible phases can be considerably simplified. First of
all, we can expect that any pressure differences in air will be equilibrated al-
most instantaneously relative to water since air typically is much less viscous
than water. (At a temperature of 20 ◦C, the air viscosity is approximately
55 times smaller than the water viscosity.) Secondly, air will in most cases
form a continuous phase so that all parts of the pore space in the vadose zone
is connected to the atmosphere. If we neglect variations in the atmospheric
pressure, the pore pressure of air can therefore be assumed to be constant.
For simplicity, we can set the atmospheric pressure to be zero, so that pa = 0
and pc = pa−pw = −pw. This, in turn, implies that the water saturation (and
the water relative permeability) can be defined as functions of the water pres-
sure using one of the models for capillary pressure presented in Section 8.1.3.
Inserting all of this into (8.24), we obtain

∂

∂t

(
φρwSw(pw)

)
+∇ ·

[
ρwλrw(pw)K

(
∇pw − ρwg∇z

)]
= 0.

If we further expand the accumulation term, neglect spatial gradients of the
water density, we can divide the above equation by ρw to obtain the so-called
generalized Richards’ equation

Cwp(pw)
∂pw
∂t

+∇ ·
[
λrw(pw)K∇(pw − ρgz)

]
= 0, (8.44)

where Cwp = cwθw + d(θw)/dpw is a storage coefficient and θw = φSw is the
water content. In hydrology, it is common to write the equation in terms of
the pressure head

Cwh(hw)
∂hw
∂t

+∇
[
κwkrw(hw)∇(hw − z)

]
= 0, (8.45)

where Cwh = ρwgCwp and κw is the hydraulic conductivity of water (see
Section 4.1 on page 115). If we further neglect water and rock compressibility,
we obtain the pressure form of the classical Richards’ equation [202]

Cch(hw)
∂hw
∂t

+∇
[
κwkrw(hw)∇(hw − z)

]
= 0, Cch =

dθw
dhw

. (8.46)

The corresponding equation for the water flux

~vw = −κskrw(hw)∇(hw − z) (8.47)

was suggested earlier by Buckingham [42] and is often called the Darcy–
Buckingham equation. Richards’ equation can also be expressed in two al-
ternative forms,

∂θw
∂t

+∇ ·
[
κwkrw(hw)∇(hw − z)

]
= 0,

∂θw
∂t

+∇
[
D(θw)∇θw

]
= κwkrw(θw)∇z,

Page: 257 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



258 8 Mathematical Models for Multiphase Flow

where D(θw) = dhw

dθw
κwkrw(θw) is the hydraulic diffusivity tensor. The latter,

called the water-content form, is generally easier to solve numerically than
the other forms, but becomes infinite for fully saturated conditions.

Various forms of Richards’ equation are widely used to simulate water flow
in the vadose zone. However, one should be aware that this class of models
has important limitations. First of all, since the air pressure is assumed to be
constant, these models cannot describe air flow, and also assume that the air
phase in the whole pore space is fully connected to the atmosphere. This may
not be the case if the porous medium contains heterogeneities blocking the air
flow, e.g., in the form of layers that are almost impermeable to air. Likewise,
the derivation of the equations assumed that the mobility of air is negligible
compared with water, which may not be the case if the relative permeability
of air is much smaller than that of water. If this is not the case, one should
expect significant discrepancies in simulation results obtained from Richards’
equations and the general two-phase flow equations.

We note in passing that the official release of MRST does not yet have any
implementation Richards’ equations.

8.4 The Buckley–Leverett theory of 1D displacements

To shed more light into the two-phase immiscible flow systems, we derive
analytical solutions in a few simple cases. As part of this, you will also get
a glimpse of the (wave) theory of hyperbolic conservation laws. This theory
plays a very important role in the mathematical and numerical analysis of
multiphase flow models, but is not described in great detail herein for brevity.
The reader is instead encouraged to consult one of the many excellent text-
books on the topic, e.g., [58, 97, 134, 219, 220].

8.4.1 Horizontal displacement

As our first example, we consider incompressible displacement in a 1D ho-
mogeneous and horizontal medium, x ∈ [0,∞), with inflow at x = 0. In the
absence of capillary forces, the two phase pressures are equal and coincides
with the global pressure p. The pressure equation simplifies to

v′(x) = q, v(x) = −λ(x)p′(x).

If we assume that there are no volumetric source terms, but a constant inflow
rate at x = 0, it follows by integration that v(x) is constant in the domain
[0,∞). Under these assumptions, the saturation equation (8.32) simplifies to,

∂S

∂t
+
v

φ

∂f(S)

∂x
= 0. (8.48)

Let us use this equation to study the propagation of a constant saturation
value. To this end, we consider the total differential of S(x, t),

Page: 258 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 259

0 = dS =
∂S

∂t
dt+

∂S

∂x
dx,

which we can use to eliminate ∂S/∂t from (8.48),

−∂S
∂x

(dx
dt

)∣∣∣
dS=0

+
v

φ

df

dS

∂S

∂x
= 0.

This gives us the following equation for the path of a value of constant satu-
ration (dx

dt

)∣∣∣
dS=0

=
df(S)

dS
. (8.49)

If we assume that f is a function of S only, it follows that states of constant
saturations will propagate along straight lines, i.e., along paths given by

x(t) = x0(t0) +
v

φ

df(S)

dS

(
t− t0).

For simplicity, we will henceforth set v = φ = 1 without lack of general-
ity, which is the same as introducing a new time t∗ = t v/φ to rescale the
saturation equation.

To make a well-posed problem, we must pose initial and boundary condi-
tions for the saturation equation (8.48) in the form S(x, 0) = Sx0,x(x) and
S(0, t) = S0,t(t). For the special case of a linear fractional flow function
f(S) = S, which corresponds to a displacement with linear relative perme-
abilities and equal velocities, the analytical solution is given on closed form
as

S(x, t) =

{
S0,x(x− at), x ≥ at,
S0,t(at− x), x < at,

which means that the saturation takes the initial data and the boundary
data and transport them unchanged along the x-axis with a unit speed (or a
speed equal f ′(S)v/φ in the general unscaled case). This way of constructing
a solution is called the method of characteristics. Notice, that to get a classical
solution, the initial and boundary data must be continuous and matching so
that S0,x(0) = S0,t(0).

The classical Buckley–Leverett profile, however, is associated with a initial-
boundary value problem of the form

∂S

∂t
+
∂f(S)

∂S
= 0, S(x, 0) = Si, S(0, t) = Sb, (8.50)

where Sb generally is different from Si. Here, we see that all changes in sat-
uration must originate from the jump in values from Si to Sb at the point
(x, t) = (0, 0) and that these changes, which we henceforth will refer to as
waves, will propagate along straight lines. In (8.49), we saw that a wave cor-
responding to a constant S-value will propagate with a speed that is propor-
tional to the derivative of the fractional flow function f . In most cases, f(S)

Page: 259 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



260 8 Mathematical Models for Multiphase Flow

Fig. 8.9. Construction of the self-similar Buckley–Leverett solution S(x/t). The left
plot shows f ′(S), whereas the right plot shows how the multivalued function given
by a naive application of the characteristic equation (8.49) plotted as a dashed line
is turned into a discontinuous solution plotted as a solid line by requiring that the
shaded areas are of equal size.

will have a characteristic S-shape with one inflection point, i.e., a point at
which f ′(S) has an isolated extremum. In essence, this means that saturation
values near the extremum should travel faster than saturation values further
away on both sides of the extremum. Thus, if we apply the characteristic
equation (8.49) naively, we end up with a multivalued solution as illustrated
in Figure 8.9, which is clearly not physical. Indeed, if several waves emanate
from the same location in space and time, the speeds of these waves have to
be nondecreasing in the direction of flow so that the faster waves move ahead
of the slower waves.

The unphysical behavior can be avoided if we simply replace the multival-
ued solution by a discontinuity, as shown in Figure 8.9. To ensure that mass
is conserved, the discontinuity can be constructed graphically so that the two
shaded areas are of equal size. This, however, means that the solution cannot
be interpreted in the classical sense, since derivatives are not guaranteed to
exist pointwise. Instead, the solution must be defined by multiplying the sat-
uration by a smooth function ϕ of compact support and integrating the result
over time and space ∫∫ [∂S

∂t
+
∂f(S)

∂x

]
φ(x, t) dxdt = 0.

We now integrate by parts and change the order of integration to transfer the
derivatives to ϕ, ∫∫ [

S
∂ϕ

∂t
+ f(S)

∂ϕ

∂x

]
dxdt = 0. (8.51)

A weak solution is then defined as any solution that satisfies (8.51) for all
smooth and compactly supported test functions ϕ.

In general, propagating discontinuities as shown in Figure 8.9 must satisfy
certain conditions. To see this, let xd(t) denote the path of a propagating
discontinuity, and pick two points x1 and x2 such that x1 < xd(t) < x2. We
first use the integral form of the saturation equation to write

Page: 260 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 261

f(S1)− f(S2) = −
∫ x2

x1

∂f(S)

∂x
dx =

d

dt

∫ x2

x1

S(x, t) dx (8.52)

and then decompose the last integral as follows∫ x2

x1

S(x, t) dx = lim
ε→0+

∫ xd(t)−ε

x1

S(x, t) dx+ lim
ε→0+

∫ x2

xd(t)+ε

S(x, t) dx.

Since the integrand is continuous in each of the integrals on the right-hand
side of the equation, we can use the Leibniz rule to write

d

dt

∫ xd(t)−ε

x1

S(x, t) dx =

∫ xd(t)−ε

x1

∂S

∂t
dx+ S(xd(t)− ε, t)

dxd(t)

dt
.

Here, the first term will vanish in the limit x1 → xd(t)−ε. By collecting terms,
substituting back into (8.52), and taking appropriate limits, we obtain what
is known as the Rankine–Hugoniot condition

σ(S+ − S−) = f(S+)− f(S−), (8.53)

where S± denote the saturation values immediately to the left and right of
the discontinuity and σ = dxd/dt. Equation (8.53) describes a necessary rela-
tion between states on opposite sides of a discontinuity, but does not provide
sufficient conditions to guarantee that the resulting discontinuity is physi-
cally admissible. To this end, one must use a so-called entropy condition to
pick out the physically correct solution. If the flux function is strictly convex
with f ′′(S) > 0, or strictly concave with f ′′(S) < 0, a sufficient condition is
provided by the Lax entropy condition,

f ′(S−) > σ > f ′(S+), (8.54)

which basically states that the discontinuity must be a self-sharpening wave
in the sense that saturation values in the interval between S− and S+ tend
to come closer together upon propagation. Such a wave is commonly referred
to as a shock, based on an analogy from gas dynamics. In the opposite case of
a spreading wave, commonly referred to as a rarefaction wave, nearby states
become more distant upon propagation, and for these continuous waves, the
characteristic speeds are increasing in the flow direction. In Figure 8.9 this
corresponds to the continuous part of the solution that decays towards the
shock. For cases with convex or concave flux function, waves arising from
discontinuous initial-boundary data will either be shocks or rarefactions, as
illustrated in Figure 8.10. If the flux function is linear, or has linear sections,
we can also have linearly degenerate waves for which the characteristic speeds
are equal on both sides of the wave.

For cases where the flux function is neither strictly convex nor concave, one
must use the more general Oleinik entropy condition to single out admissible
discontinuities. This condition states that

Page: 261 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



262 8 Mathematical Models for Multiphase Flow

Fig. 8.10. Illustration of self-sharpening (left) and spreading waves (right). The
upper plots show the characteristics, with the characteristics belonging to the Rie-
mann fan marked in blue. The lower plots show the initial solution (solid line) and
the solution after some time (dashed line).

f(S)− f(S−)

S − S−
> σ >

f(S)− f(S+)

S − S+
(8.55)

for all values S between S− and S+. For the classical displacement case in
which Si = 0 and Sb = 1, this condition implies that the correct saturation
S∗ at the shock front is given by

f(S∗)/S∗ = f ′(S∗), (8.56)

i.e., the point on the fractional flow curve at which the chord between the
points (0, 0) and (S∗, f(S∗)) coincides with the tangent at the latter point.

Any reader well acquainted with the theory of hyperbolic conservation
laws will probably immediately recognize (8.50) as an example of a Riemann-
type problem, i.e., a conservation law with a constant left and right state. Let
these states be denoted SL and SR. If SL > SR, the solution of the Riemann
problem is a self-similar function given by

S(x, t) =


SL, x/t < f ′c(SL),(
f ′c
)−1

(x/t), f ′c(SL) < x/t < f ′c(SR),

SL, x/t ≥ f ′c(SR),

(8.57)

which is often referred to as the Riemann fan. Here, fc(S) is the upper concave
envelope of f over the interval [SR, SL] and (f ′c)

−1 the inverse of its derivative.
Intuitively, the concave envelope is constructed by imagining a rubber band
attached at SR and SL and stretched above f in between. When released,
the rubber band assumes the shape of the concave envelope and ensures that
f ′′(S) < 0 for all S ∈ [SR, SL]. The case SL < SR is treated symmetrically
with fc denoting the lower convex envelope. Figure 8.10 shows examples of of
two such Riemann fans, i.e., a single shock in the left plot and a rarefaction
fan in the right plot.

Page: 262 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 263

M = 1

M = 5

M = .2

Fig. 8.11. Buckley–Leverett solutions for a pure imbibition case with Corey relative
permeabilities with exponent nw = n0 = 2 and mobility ratio µw/µo = M . The left
plot shows the upper concave envelopes of the flux functions, while the right plot
shows the self similar solution Sw(x/t) with x/t = 1 shown as a dotted line.

Example 8.1. Let us first consider the Buckley–Leverett solution for a pure
imbibition, for which the left and right states are SL = 1 and SR. From
the discussion above, we know that the self-similar solution of the associated
Riemann problem is found by computing the upper concave envelope of the
fraction flux function, which is linear in the interval [0, S∗] and then coincides
with f(S) in the interval [S∗, 1], where the saturation S∗ behind the shock
front is determined from (8.56). If we assume a simple case with relative
permeabilities given by the Corey model (8.15) on page 242 with nw = no = 2
and µw/µo = M , (8.56) reads

2M(1− SM )SM(
S2
M +M(1− SM )2

)2 =
SM

S2
M +M(1− SM )2

,

Here, we have used SM to denote the front saturation S∗ =
√
M/M + 1

to signify that it depends on the viscosity ratio M . Figure 8.11 shows the
Buckley–Leverett solution for three different viscosity ratio. In all three cases,
we see that the solution consists of a shock followed by a trailing continuous
rarefaction wave. When the water viscosity is five times higher than oil M = 5,
the mobility of pure oil is five time higher than the mobility of pure water.
Hence, we have a favorable displacement in which the water front acts like a
piston that displaces almost all the oil at once. In the opposite case with oil
viscosity five times higher than the water viscosity, we have an unfavorable
displacement because the water front is only able to displace a small fraction
of the oil. Here, the more mobile oil will tend to finger through the oil and
create viscous fingers for displacements in higher spatial dimensions. We will
come back to examples that illustrate this later in the book.

In the opposite case of a drainage process, it follows by symmetry that
the solution will consist of a shock from 1 to 1−SM followed by a rarefaction
wave from SM to 0.

If we now consider a case with an injector on the left and a producer at
the right, we see that since the saturation is constant ahead of the shock, the

Page: 263 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



264 8 Mathematical Models for Multiphase Flow

S∗ S̄

Fig. 8.12. Graphical determination of front saturation and average water saturation
at water breakthrough.

amount of produced oil will equal the amount of injected water until the first
water reaches the producer. This means that the cumulative oil production
has a linear slope until water breakthrough. After water has broken through,
the well will be producing a mixture of oil and water and the slope of the
cumulative oil decreases.

Let us try to determine the amount of produced oil at water breakthrough.
To this end, we can assume that water is injected at x = 0 and oil produced at
x = L. At water breakthrough, the saturation at the producer S(x = L) = S∗

and the amount of oil produced equals LS̄, where Sw is the average water
saturation defined as

S̄ =
1

L

∫ L

0

Sw dx =
1

L

[
xS
]x=L

x=0
− 1

L

∫ S∗

1

x dS

= S∗ − t

L

∫ S∗

1

(dF
dS

)
dS = S∗ − t

L

[
f∗ − 1

]
The second equality follows from the total differential d(xS) = xdS + Sdx,
while the third equality follows from the equation (8.49) that describes the
position x(t) of a constant saturation value at time t. Finally, the water break-
through occurs at time t = L/f ′(S∗) and hence we have that,

1− f(S∗)

S̄ − S∗
= f ′(S∗),

which can graphically interpreted as follows: Sw is the point at which the
straight line used to define the front saturation S∗ intersects the line f = 1
as shown in Figure 8.12.

8.4.2 Gravity segregation

As our second example of analytical solutions in 1D, we consider a pure gravity
displacement, for which the transport equation is on the form

Page: 264 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 265

0 0.2 0.4 0.6 0.8 1

Fig. 8.13. Fractional flow function for 1D gravity segregation for Corey relative
permeabilities (8.15) with nw = 3, n0 = 2, and mobility ratio µw = 5µo for the case
that ρw > ρn.

∂S

∂S
+

∂

∂z

( λnλw
λw + λn

)
= 0, (8.58)

where we without lack of generality have scaled away the constant g∆ρ. With a
slight abuse of notation, we will henceforth call the flux function for g(S). This
flux function will have a characteristic bell-shape, e.g., as shown in Figure 8.13,
where the points downward if ρw > ρn and upward in the opposite case. In the
following, we will assume that the wetting fluid is most dense. Let us consider
the flow problem with one fluid placed on top of the other so that the fluids
are separated by a sharp interface. In the case that the lightest fluid is on
top, we have that SL < SR and from the discussion of (8.57) on page 262
we recall that the Riemann solution is found by computing the lower convex
envelope of g(S). Here, gc(S) ≡ 0 and hence we have a stable situation. In
the opposite case, SL > SR and gc(S) will be a strictly concave function, for
which g′c(0)′ > 0 > g′c(1). This is an unstable situation, where the heavier
fluid will start to move downward (in the positive z-direction) and the lighter
fluid upward (in the negative z-direction) near the interface. Let us consider
the resulting wave patterns in more detail in a specific case:

Example 8.2. We consider a gravity column inside a homogeneous sand body
confined by a sealing medium at the top and the bottom. For simplicity,
we scale the domain to be [0, 1], assume that the initial fluid interface is at
z = 0.5 and use a Corey relative permeability model with nw = no = 2 and
equal mobilities.

This choice of parameters gives a symmetric flux function g(S) as shown
in the left plot of Figure 8.14. Our initial condition with a heavy fluid on
top of a lighter fluid is described by setting SL = 1 in the top half of the
domain and SR = 0 in the bottom half of the domain. As explained above,
the Riemann problem is solved by computing the upper concave hull of g(S).
The hull gc(S) is a linear function lying above g(S) between 0 and S∗R (where

Page: 265 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



266 8 Mathematical Models for Multiphase Flow

S∗R S∗L

Fig. 8.14. Buckley–Leverett solution for a gravity column with sealing top and
bottom before the moving fluids have contacted the top/bottom of the domain.
(Model: Corey relative permeabilities (8.15) with nw == n0 = 2, and mobility ratio
µw = µo and ρw > ρn).

S∗R is given by solution to g′(S∗R)S∗R = g(S∗R)), follows the graph of g(S) in the
interval S∗R to S∗L, and is a linear function lying above g(S) between S∗L and
1. At the boundaries x = 0, 1, we have g(SL) = g(SR) = 0, and hence no-flow
conditions as required. Initially, the solution thus consists of three different
regions:

� a single-phase region on top that only contains the heavier fluid (SL = 1)
which is bounded by above by the lines z = 0 and below by the position
of the shock 1→ S∗L;

� a two-phase transition region that consists of a mixture of heavier moving
downward and lighter fluid moving upward, this corresponds to a centered
rarefaction wave in which the saturation decays smoothly from S∗L to S∗R;
and

� a single-phase region at the bottom that only contains light fluid. This
region is bounded above by a shock S∗R → 0 and from below by the line
z = 1.

As time passes, the two shocks that limit the single-phase regions of heavy
and light fluids will move upward and downward, respectively, so that an
increasing portion of the fluid column is in a two-phase state, see the right
plot in Figure 8.14. Eventually, these shocks will reach the top and the bottom
of the domain. Because of the symmetry of the problem, it is sufficient for us
to only consider one end of the domain, say z = 0. Since we have assumed
no flow across the top of the domain, the shock 1 → S∗L cannot continue to
propagate upward. We thus get a Riemann problem defined by right state S∗L
and a left state SL that could by any value that satisfies g(SL) = 0. The left
state cannot be 1, since this would give back the same impermissible shock
1 → S∗L. If the left value is SL = 0 instead, i.e., a single-phase region with
only light fluid forming on the top, the Riemann solution will be given by
the concave envelope of g(S) over the interval [0, S∗L] and hence consist fully
of waves with positive speed that propagate downward again. The left plot
in Figure 8.15 shows the corresponding convex envelope, which we see gives

Page: 266 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 267

S∗R

S∗∗R

S∗L

S∗∗L

Fig. 8.15. Buckley–Leverett solution for a gravity column with sealing top and
bottom just after the light/heavy fluids started to accumulate at the top/bottom of
the domain. To ensure no-flow, the solution is S = 0 at z = 0 and S = 1 at z = 1.

a rarefaction wave 0 to S∗∗L and a shock S∗∗L → S∗L. As the leading shock
propagates downward, it will interact with the upward-moving part of the
initial rarefaction wave and form a shock, whose right state gradually decays
towards S = 0.5. The solution is the bottom of the domain is symmetric, with
accumulation of a single-phase region of heavy fluid.

8.4.3 Front tracking: semi-analytical solutions

While it was quite simple to find an analytical solution in closed form for
simple Riemann problems like the ones discussed above, it becomes much
more complicated to find analytical solutions for general initial data or when
different waves start to interact, as we observed on the previous page when the
two initial shocks reflected from the top and bottom of the gravity column.
Generally, one must therefore resort to numerical discretizations in the form of
a finite element, difference, or volume method. However, for one-dimensional
saturation equations there is a much more powerful alternative, which we will
introduce you to very briefly.

Front tracking, or wave front tracking, is a semi-analytical method in which
the key idea is to replace the functions describing initial and boundary values
by piecewise constant functions. This way, the solution for a small time interval
be given by piecing together solution of local Riemann problems and consist of
a set of constant states separated by shocks and rarefaction waves. As we saw
above, shocks correspond to the linear parts of the local convex/concave en-
velopes for each Riemann problem, while rarefaction waves correspond to the
nonlinear parts of envelopes. Now, if we further approximate the flux function
by a piecewise linear function, we ensure that the convex/concave envelopes
are always piecewise linear, so that the solution of Riemann problems will
consist only of shocks. In other words, the solution to the continuous, but
approximate PDE problem will consist entirely of constant states separated
by discontinuities that propagate with a constant speed given by the Rankine-
Hugoniot condition (8.53) on page 261. Each time two or more discontinuities
’collide’, we have a new Riemann problem that will give rise to a new set

Page: 267 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



268 8 Mathematical Models for Multiphase Flow

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

t=4.5

0

0.5

1

t=3.0

0

0.5

1

t=1.5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

 

 

t=0.0

Fig. 8.16. Solution for a gravity column with heavy fluid on top of a light fluid
computed by front tracking for a model with Corey relative permeabilities with
nw = no = 2 and equal viscosities. The left column shows the wave pattern in the
(z, t) plane, where each blue line corresponds to the propagation of a discontinuous
state. The right column shows the solution S(z, t) at four different times.

of discontinuities that emanate out of the collision point. Solving Riemann
problems by determining local convex/concave envelopes and keeping track
of propagating discontinuities can quite easily be formulated as numerical al-
gorithms, and we end up with a numerical method that is unconditionally
stable and formally first order accurate. In fact, one can prove that for any
finite spatial domain, there will be a finite number of shock collisions, and
hence an approximate solution up to infinite time can therefore be computed
in a finite number of steps. See [97] for more details.

In the following, we will use a front-tracking solver developed as part of
[112] to study a few simple 1D cases

Example 8.3. We revisit the case studied in Example 8.2: gravity segregation
of a heavy fluid placed on top of a lighter fluid inside a sand box with sealing
top and bottom. Figure 8.16 shows the approximate solution computed by
approximating the flux function with a piecewise linear function with 100
equally spaced segments. Initially, the solution contains two constant states

Page: 268 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 269

SL = 1 and SR = 0, separated by a composite wave that consists of an upward-
moving shock, a centered rarefaction wave, and a downward moving shock,
as explained earlier in Example 8.2. Notice that the approximate solution
at time t = 1.5 is of the same form as shown in Figure 8.14, except that
in the approximate front-tracking solution the continuous rarefaction wave is
replaced by a sequence of small discontinuities. The right plot in Figure 8.15
on page 267 illustrated the form of the exact solution just after the two initial
shocks have reflected at the top and bottom of the domain. In Figure 8.16
we show the solution after the reflected waves have propagated some time
upward/downward. Here, we clearly see that these waves consist of a fast
shock wave followed by a rarefaction wave. As the leading shock interacts with
the centered rarefaction wave originating from (z, t) = (0.5, 0), the difference
between left and right states will diminish, and the shock speed decay. Later,
the two shocks collide and form a stationary discontinuity that will eventually
become a stable steady state with the lighter fluid on top and the heavier fluid
beneath.

In general, the transport in an inclined reservoir section will be driven by
a combination of gravity segregation and viscous forces coming from pressure
differentials. In the next example we will study one such case.

Example 8.4 (CO2 storage). We consider two highly idealized models of CO2

storage in an inclined aquifer that either has a slow drift of brine in the
upslope or in the downslope direction. If the injection point lies deeper than
approximately 800 meters below the sea level, CO2 will appear in the aquifer
as a supercritical liquid phase that has much lower density than the resident
brine. The injected fluid, which is commonly referred to as the CO2 plume,
will therefore tend to migrate in the upslope direction. As our initial condition,
we assume (somewhat unrealistic) that the CO2 has been injected so that it
completely fills a small section of the aquifer x ∈ [ 1

4 ,
3
4 ]. To study the migration

after injection has ceased, we can now use a fractional flow function of the
form,

F (S) =
S2 ∓ 4S2(1− S)3

S2 + 1
5 (1− S)3

,

where the minus sign denotes upslope background drift and the plus sign
downslope drift. Figure 8.17 shows the flux functions along with the envelopes
corresponding to the two Riemann problems.

Let us first consider the case with upslope drift. At the tip of the plume
(x = 3

4 ), there will be a drainage process in which the more buoyant CO2

displaces the resident brine. This gives a composite wave that consists of a
shock S∗d → 1 that propagates upslope, followed by a centered rarefaction
wave from S∗d to S∗∗d having wave speeds both upslope and downslope, and
a trailing shock wave 0 → S∗∗d that propagates in the downslope direction.
Likewise, at the trailing edge of the plume, the resident brine will imbibe
into the CO2 giving a wave consisting of a shock S∗i → 0 followed by a

Page: 269 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



270 8 Mathematical Models for Multiphase Flow

Upslope background drift Downslope background drift

0 0.2 0.4 0.6 0.8 1

0

0.5

1
S∗
i

S∗∗
d

S∗
d

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

S∗
i

S∗∗
i

S∗∗
d

Fig. 8.17. Flux functions for the CO2 migration example. The dashed curves are
the flux function F (S), which accounts for a combination of gravity segregation and
viscous background drift. The blue lines show the concave envelopes corresponding to
imbibition at the left edge of the plume, while the red lines are the convex envelopes
corresponding to drainage at the right edge the plume.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

0 0.2 0.4 0.6 0.8 1

0 1 2 3

0

0.5

1

t=0.0

0

0.5

1

t=0.1

0

0.5

1

t=0.5

0

0.5

1

t=1.5

Fig. 8.18. Solution for a conceptual model of CO2 injected into an inclined 1D
aquifer with a background upslope drift. Upslope direction is to the right in the
figure.

Page: 270 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 271

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

1.25

1.5

 

 

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

t=0.1

0

0.5

1

t=0.2

0

0.5

1

t=0.35

0

0.5

1

t=0.8

Fig. 8.19. Solution for a conceptual model of CO2 injected into an inclined 1D
aquifer with a background downslope drift. Upslope direction is to the left in the
figure.

rarefaction wave, both propagating in the upslope direction. The two Riemann
fans can be seen clearly in Figure 8.18, and will stay separated until t ≈ 0.18,
when the shock from the imbibition process collides with the trailing drainage
shock. The result of this wave interaction is a new and slightly weaker shock
that propagates increasingly faster in the upslope direction, followed by a
continuous rarefaction wave, which is an extension of the initial imbibition
rarefaction. At time t ≈ 0.665, the new shock wave has overtaken the tip of
the plume, and the result of this interaction is that the upslope migration of
the plume gradually slows down.

If we remove the upslope drift from the model, the initial imbibition process
is no longer present, but the long-term behavior remains the same and consists
of a leading shock wave followed by a rarefaction that slowly eats up and slows
down the shock.

Figure 8.19 shows the solution in the opposite case, with a downslope
background drift. Here, the imbibition process at the left edge of the plume
gives a shock 0→ S∗∗i that propagates in the downslope direction (to the right

Page: 271 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



272 8 Mathematical Models for Multiphase Flow

0 1 2 3 4
0

5

10

15
Upslope drift

−3 −2 −1 0 1
0

5

10

15
Downlope drift

Fig. 8.20. Long-time solutions for the two conceptual models of CO2 storage.

in the figure), a centered rarefaction wave from S∗∗i to S∗i with waves that
propagate both in the downslope and upslope direction, followed by a shock
S∗i → 1 that propagates upslope. The drainage at the right edge gives a strong
shock S∗d → 1 that propagates downslope, followed by a weak rarefaction wave
from 0 to S∗d . At time t ≈= .25 downslope imbibition shock has overtaken
the both the rarefaction wave and the shock from the drainage process. The
resulting wave interaction first forms a stationary shock with left state S∗∗i .
However, as the positive part of the imbibition rarefaction wave continues to
propagate downslope, the left state gradually increases, and at some point the
left state passes the value S =

√
1/10 for which F (S) = 1. When this happens,

the stationary shock turns into a composite wave consisting of a shock and a
trailing rarefaction wave that both propagate in the upslope direction.

Figure 8.20 shows the two migration cases in a longer time perspective.
We clearly see that injecting CO2 so that it must migrate upward against a
downslope brine drift is advantageous since it will delay the upslope migration
of the gradually thinning plume.

The purpose of the previous example was to introduce you to the type
of wave patterns that arise in hyperbolic saturation equations, and show

Page: 272 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



8.4 The Buckley–Leverett theory of 1D displacements 273

that these can be relatively complicated even for simple initial configurations.
While front-tracking is probably the best method you can find to study wave
patterns in 1D hyperbolic saturation equations, it would not be the method of
choice to study multiphase flow models in multiple spatial dimensions. In the
next chapter, we will therefore continue to discuss finite-volume methods that
are more suitable for multidimensional reservoir simulation. In simulation of
real reservoirs, one cannot hope to resolve the dynamics to the level of detail
seen in the last example. To be able to compute shocks and other types of
discontinuities, finite-volume (and finite-element) methods contain a certain
amount of numerical dissipation that will tend to smear any discontinuity.
Likewise, strong heterogeneities and radial flow near wells can introduce or-
ders of magnitude variations in Darcy velocities which will necessitate the use
of small time steps or implicit temporal discretizations, which both will tend
to smear discontinuities and make it more difficult to resolve complex wave
interactions in full detail.

We end our discussion of analytical solutions with a few remarks about
the simulation of CO2 storage, since this was touched upon conceptually in
Example 8.4. In more realistic modelling of CO2 storage, one would need a
slightly more advanced model that accounts for the effect that the lighter CO2

plume will flow to the top of the formation and migrate upslope as a thin layer
under the sealing caprock that bounds the aquifer from above. This can be
done by either using a 3D or 2D cross-sectional saturation equation, possibly
coupled with a pressure equation. However, the most efficient approach to
study large-scale, long-term CO2 migration is to integrate the pertinent flow
equations in the vertical direction to form a vertically-averaged model that
accounts for the vertical fluid distribution in an averaged sense. MRST has a
large module, co2lab, that offers a wide variety of vertically-averaged models
and other types of reduced models suitable for modeling of large-scale CO2

storage. A discussion of such models is unfortunately beyond the scope of
this book; the interested reader should instead consult one of the papers that
describe the methods implemented in MRST-co2lab [175, 180, 177, 178, 179,
144, 17].

Page: 273 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10

Solvers for Incompressible Immiscible Flow

The previous chapter introduced you to the basic equations describing multi-
phase flow in porous media. Multiphase flow is generally governed by a number
of physical effects. For simple flows, fluids can be moved by pressure differen-
tials, by gravity segregation, capillary forces, or fluid and rock compressibility.
More advanced models also involve dissolution effects, hysteresis, and molec-
ular diffusion, to name a few. Multiphase flow equations can therefore give
rise to very different behavior depending upon what are the main physical
effects. During the formation of petroleum reservoirs, the dominant effects
are buoyancy and capillary forces, which govern how hydrocarbons migrate
upward and enter new layers of consolidated sediments. The same effects are
also thought to dominate the long-term behavior in geological carbon storage,
where the buoyant CO2 phase will tend to migrate upward in the formation
long after its injection has ceased. In the recovery of petroleum resources, on
the other hand, the predominant force is viscous advection caused by pressure
differential. Here, pressure disturbances will in most cases propagate much
faster through the porous medium than the material waves that transport
fluid phases and chemical components. This means that the mathematical
equations describing multiphase flow will have a mixed character: Whereas
the pressure part of the problem has a relatively strong elliptic nature, the
material waves will have a more hyperbolic character. This mixed nature is
one of the main reasons why solving multiphase flow equations turns out to
be relatively complicated. In addition, we have all the other difficulties that
we already have encountered for single-phase flow in Chapters 5 to 7. The
variable coefficients entering the flow equations typically are highly heteroge-
neous with orders of magnitude variation and complex correlations involving
a wide range of spatial correlation lengths. The grids used to describe real
geological media tend to be highly complex, having unstructured topologies,
irregular cell geometries, and orders of magnitude aspect ratios. The dominant
flow in injection and production wells takes place on a small scale relative to
the reservoir and hence needs to be modeled using approximate analytical
expressions, and so on.

Page: 305 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



306 10 Solvers for Incompressible Immiscible Flow

This chapter will teach you how to discretize and solve the multiphase
flow equations in the special case of incompressible rock and immiscible and
incompressible fluids. The system of PDEs can then be reformulated so that
it consists of an elliptic equation for fluid pressure and one or more trans-
port equations. These transport equations are generally parabolic, but have a
strong hyperbolic character (see Section 8.3). Since the pressure and satura-
tions equations have very different mathematical characteristics, it is natural
to solve them in consecutive substeps. Sequential solution procedures and in-
compressible flow models are popular in academia and for research purposes,
but are less used in industry. To the extent simulations are used for prac-
tical reservoir engineering, they are mainly based on compressible equations
and solution procedures in which flow and transport are solved as a coupled
system. Such approaches are very robust and particularly useful for problems
with large variations in time constants or strong coupling between different
types of flow mechanisms. We will return to compressible three-phase flow in
Chapter 11. In the following, we only consider two phases.

10.1 Fluid objects for multiphase flow

In Chapter 5, we discussed the basic data objects that enter a flow simulation.
When going from a single-phase to a multiphase flow model, the most promi-
nent changes take place in the fluid model. It is this model that generally will
tell your solver how many phases are present and how these phases affect each
other when flowing together in the same porous medium. We therefore start
by briefly outlining a few fluid objects that implement the basic fluid behavior
discussed in Chapter 8.

To describe an incompressible flow model, we need to know the viscosity
and the constant density of each fluid phase, as well as the relative permeabil-
ities of the fluid phases. If the fluid model includes capillary forces, we also
need one or more functions that specify the capillary pressure as function of
saturation. The most basic multiphase fluid model in MRST is the following,

fluid = initSimpleFluid('mu' , [ 1, 10]*centi*poise , ...
'rho' , [1014, 859]*kilogram/meterˆ3, ...
'n' , [ 2, 2]);

which implements a simplified version of the Corey model (8.15) in which the
residual saturations Swr and Snr are assumed to be zero and the end-points
are scaled to unity, so that krw =

(
Sw
)nw

and Srn =
(
1 − Sw

)nn
. To recap

from Chapter 5, the fluid object offers the following interface to evaluate the
petrophysical properties of the fluid:

mu = fluid.properties(); % gives mu w and mu n
[mu,rho] = fluid.properties(); % .... plus rho w and rho n

Page: 306 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.1 Fluid objects for multiphase flow 307

New to multiphase flow is the relperm function, which takes a single fluid sat-
uration or an array of fluid saturations as input and outputs the corresponding
values of the relative permeabilities. Plotting the relative permeability curves
of the fluid object can be achieved by the following code

s=linspace(0,1,20)';
kr = fluid.relperm(s);
plot(s,kr (:,1), '−s',s,kr (:,2), '−o');

The relperm function can also return the first and second derivatives of the
relative permeability curves when called with two or three output arguments.

The basic fluid model does not have any capillary pressure. To also include
this effect, one can use another fluid model,

fluid = initSimpleFluidPc('pc scale', 2*barsa);

which adds a capillary function that assumes a linear relationship Pc(S) =
C(1 − S). The resulting fluid object has an additional function pointer that
can be used to evaluate capillary pressure

fluid =

properties: @(varargin)properties(opt,varargin{:})

saturation: @(x,varargin)x.s

relperm: @(s,varargin)relperm(s,opt,varargin{:})

pc: @(state)pc_funct(state,opt)

The capillary pressure function pc is evaluated using a state object and not
a saturation. This simple function can be extended to include Leverett J-
function scaling (8.9) on page 238 by using the fluid object generated by
initSimpleFluidJfunc.

The incomp module also implements the general Corey model with end-
point scaling k0

α and nonzero residual saturations Swr and Snr.

fluid = initCoreyFluid('mu' , [ 1, 10]*centi*poise , ...
'rho' , [1014, 859]*kilogram/meterˆ3, ...
'n' , [ 3, 2.5] , ...
' sr ' , [ 0.2, .15] , ...
'kwm', [ 1, .85 ]);

Figure 10.1 shows the relative permeabilities and their first and second deriva-
tives for this particular model.

Computer exercises:

58. Modify the Corey model so that it also can output the residual saturations
and the end-point scaling values

59. Implement the Brooks–Corey (8.16) and the van Genuchten models (8.17)
and (8.18)

60. Extend the models to also include the capillary functions (8.11) and (8.12)

Page: 307 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



308 10 Solvers for Incompressible Immiscible Flow

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

Fig. 10.1. Corey relative permeabilities (left) and their first and second derivatives
(middle and right) constructed by the initCoreyFluid function.

10.2 Sequential solution procedures

To solve the two-phase, incompressible model we will in the following rely
entirely on the fractional-flow formulation developed in Section 8.3.2 on
page 249. As you may recall, this fractional flow model consists of an elliptic
pressure equation

∇ · ~v = q, ~v = −λ
(
∇pn − fw∇Pc − (ρwfw + ρnfn)g∇z

)
(10.1)

and a parabolic transport equation

φ
∂Sw
∂t

+∇ ·
[
fw
(
~v + λn(∆ρg∇z +∇Pc)

)]
= qw. (10.2)

Here, the capillary pressure pc = pw−pn is assumed to be a known function Pc
of the wetting saturation Sw, and the transport equation becomes hyperbolic
whenever P ′c is zero.

In the standard sequential solution procedure, the system (10.1)–(10.2) is
evolved in time using a set of discrete time steps ∆ti. Let us assume that p, ~v,
and Sw are all known at time t and that we want to evolve the solution to time
t+∆t. At the beginning of the time step, we first assume that the saturation
Sw is fixed. This means that the parameters λ, fw, and fn in (10.1) become
functions of the spatial variable ~x, and hence we can use this equation only
to update the pressure pn and the Darcy velocity ~v. Next, ~v and pn are held
fixed while (10.2) is evolved a time step ∆t to define an updated saturation
Sw(~x, t+∆t). This saturation is then held fixed when we update pn and ~v in
the next time step, and so on.

Some authors refer to this solution procedure as an operator splitting
method since the solution procedure effectively splits the overall solution oper-
ator of the flow model into two parts that are evolved in consecutive substeps.

Page: 308 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.2 Sequential solution procedures 309

Likewise, some authors refer to the sequential solution procedure as IMPES,
which is short-hand for implicit pressure, explicit saturation. Using the name
IMPES is strictly speaking only correct if the saturation evolution is approx-
imated by a single time step of an explicit transport solver. The size of the
splitting step∆t is then restricted by the CFL condition of the explicit scheme.
In many cases, the overall flow system does not have stability requirements
that necessitate such a restriction on ∆t. Indeed, by writing the flow model in
the fractional-flow formulation, we have isolated the parts of the system that
have stability restrictions to the hyperbolic saturation equation. The elliptic
pressure equation, on the other hand, describes smooth solutions resulting
from the instant redistribution of pressure in a system with infinite speed of
propagation. For this equation, we can therefore in principle use as large time
step as we want. In other words, as long as we ensure that the evolving dis-
continuities and sharp transitions are propagated in a stable manner in the
saturation equation, our only concern when choosing the size of the splitting
step should be to control or minimize the splitting error introduced by ac-
counting for pressure and transport in separate substeps. As pointed out in
Section 8.3.2, the fractional flow formulation underlying our operator splitting
has been developed so that it minimizes the coupling between saturation and
pressure. For incompressible flow models, the effect dynamic changes in the
saturation field have on the pressure is governed entirely by the total mobility
λ(S), which in many cases is a function that locally has small and relatively
smooth variation in time. For this reason, one can typically use splitting steps
that are significantly larger than the CFL restriction of the hyperbolic part
of the saturation equation and still accurately resolve the coupling between
pressure and saturation. In other words, for each pressure update, the satura-
tion can be updated by an explicit solver using multiple saturation substeps,
or by an implicit solver using either a single or multiple saturation substeps.
If necessary, one can also iterate on the splitting steps.

10.2.1 Pressure solvers

The pressure equation (10.1) for incompressible, multiphase flow is time de-
pendent. This time dependence comes as the result of three factors:

� K/µ being replaced by the total mobility λ(Sw), which depends on time
through the saturation Sw(~x, t),

� the constant density ρ being replaced by a saturation-dependent quantity
ρwfw(Sw) + ρnfn(Sw), and

� the source term q being replaced by a saturation-dependent source term
q −∇λw(Sw)∇Pc(Sw).

However, once Sw is held fixed in time, all three quantities become functions of
~x only, and we hence end up again with an elliptic Poisson-type equation hav-
ing the same spatial variation as in (4.10) on page 119. Hence, we can either
use the two-point scheme introduced in Section 4.4.1 or one of the consistent
discretization methods from Chapter 6, mutatis mutandis. The incompTPFA

Page: 309 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



310 10 Solvers for Incompressible Immiscible Flow

solver discussed in Chapter 5 and the incompMimetic and incompMPFA solvers
from Chapter 6 have been implemented so that they solve the pressure equa-
tion for a general system of m incompressible phases. Whether this system
has one or more phases is determined by the fluid object and the reservoir
state introduced in Section 5.1.2. We will therefore not discuss the pressure
solvers in more detail.

10.2.2 Saturation solvers

Apart from the time loop, which we have already encountered in Chapter 7,
the only remaining part we need is a solver for the transport equation (10.2)
that implements the discretizations we introduced in Section 9.6. Summarized,
this can be written on the following residual form for each cell Ωi

Fi(s, r) = si − ri +
∆t

φi|Ωi|
[
Hi(s)−max(qi, 0)−min(qi, 0)f(Si)

]
, (10.3)

where subscript s and r are cell-averaged quantities and subscript i refers to
the cell the average is evaluated in. The sum of the interface fluxes for cell i

Hi(s) =
∑
k

λuw(si, sk)

λuw(si, sk) + λun(si, sk)

[
vik + λun(si, sk)(gik + Pik)]. (10.4)

is computed using the single-point, upstream mobility-weighting scheme dis-
cussed on page 304, whereas the fractional flow function f in the source term
is evaluated from the cell average of S in cell Ωi. The explicit scheme is given
as Sn+1 = Sn−F(Sn, Sn) and the implicit scheme follows as a coupled system
of discrete nonlinear equations if we set F(Sn+1, Sn) = 0. In the following,
we will discuss the resulting solvers in a bit more detail.

Explicit solver

The incomp module offers the following explicit transport solver

state = explicitTransport(state, G, tf, rock, fluid, 'mech1', obj1, ...)

which evolves the saturation given in the state object a step tf forward
in time. The function requires a complete and compatible model description
consisting of a grid structure G, petrophysical properties rock, and a fluid
model fluid. For the solver to be functional, the state object must contain
the correct number of saturations per cell and an incompressible flux field that
is consistent with the global drive mechanisms given by the mech argument
(’src’, ’bc’, and/or ’wells’) using correctly specified objects obj, as discussed
in Sections 5.1.3–5.1.5. In practice, this means that the input value of state
must be the output value of a previous call to an incompressible solver like
incompTPFA, incompMPFA, or incompMimetic. In addition, the function takes
a number of optional parameters that determine whether the time steps are
prescribed by the user or to be automatically computed by the solver. The

Page: 310 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.2 Sequential solution procedures 311

solver can also ignore the Darcy flux and work as a pure gravity segregation
solver if the optional parameter onlygrav is set to true. Finally, the solver will
issue a warning if the updated saturation value is more than satwarn outside
the interval [0, 1] of physically meaningful values (default value: sqrt(eps)).

The implicit and the explicit solvers involve many of the same operations
and formulas used for the spatial discretizations. To avoid duplication of code
we have therefore introduced a private help function

[F,Jac] = twophaseJacobian(G, state, rock, fluid, 'pn1', pv1, ...)

that implements the residual form (10.3) and its Jacobian matrix J = dF and
returns these as two function handles F and Jac. Using this function, the key
lines of the explicit saturation solver read,

F = twophaseJacobian(G, state, rock, fluid, 'wells', opt.wells, ... );
s = state.s(:,1);
t = 0;
while t < tf,

dt = min(tf−t, getdt(state));
s (:) = s − F(state, state, dt);
t = t + dt;
s = correct_saturations(s, opt.satwarn);
state.s = [s, 1−s];

end

Here, the function getdt implements a CFL restriction on the time step by
estimating the maximum derivative of each function used to assemble interface
fluxes and source terms (the interested reader can find details in the code).
The function correct_saturations ensures that the computed saturations
stay inside the interval of physically valid states. If this function issues a
warning, it is highly likely that your time step exceeds the stability limit (or
something is wrong with your fluxes or setup of the model).

Implicit solver

The implicit solver has the same user interface and parameter requirement as
the explicit solver

state = implicitTransport(state, G, tf, rock, fluid, 'mech1', obj1, ...)

In addition, there are optional parameters that control the Newton–Raphson
method used to solve for Sn+1. To describe this method, we start by writing
the residual equations (10.3) for all cells in vector form

F (s) = s− S +
∆t

φ|Ω|
[
H(s)−Q+ −Q−f(s)

]
= 0. (10.5)

Here, s is the unknown state at time tf and S is the known state at the start
of the time step. As you may recall from Section 7.1, the Newton–Raphson
linearization of an equation like (10.5) can be written as,

Page: 311 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



312 10 Solvers for Incompressible Immiscible Flow

0 = F (s0 + δs) ≈ F (s0) +∇F (s0)δs,

which naturally suggests an iterative scheme in which the approximate solu-
tion s`+1 in the (`+ 1)-th iteration is obtained from

J(s`) δs`+1 = −F (s`), s`+1 ← s` + δs`+1. (10.6)

Here, δs`+1 is referred to as the Newton update and J is the Jacobian matrix.
The incomp module was implemented before automatic differentiation was
introduced in MRST and hence the Jacobian is computed analytically, using
the following expansion

J(s) =
dF

ds
(s) = 1 +

∆t

φ|Ω|

[dH
ds

(s)−Q− df
ds

(s)
]
,

dH

ds
=
dH

dλw

dλw
ds

+
dH

dλn

dλn
ds

+ fwλn
dP

ds
,

dH

dλw
=
fw
λ

[
v + λn(g + P )

]
,

dH

dλn
= −fw

λ

[
v − λw(g + P )

]
.

In general, we are not guaranteed that the resulting values in the vector s`+1

lie in the interval [0, 1]. To ensure physically meaningful saturation values, one
can introduce a line-search method, which uses the Newton update to define
a search direction p` = δs`+1 and tries to find the value α that minimizes
h(α) = F (s` + αp`). One may either solve h′(α) = 0 exactly, or use an
inexact line-search method that only asks for a sufficient decrease in h. In the
implicit solver discussed herein, we have chosen the latter approach and use
an unsophisticated method in which α is reduced in a geometric sequence.
The following code should give you the idea,

function [state, res, alph, fail] = linesearch(state, ds, target, F, ni)
capSat = @(sat) min(max(0, sat),0);
[alph,i,fail] = deal(0,0,true);
sn = state;
while fail && (i < ni),

sn.s(:,1) = capSat(state.s(:,1) + pow2(ds, alph));
res = F(sn);
alph = alph − 1; i = i + 1;
fail = ~(norm(res, inf) < target);

end
alph = pow2(alph + 1); state.s = sn.s;

Here, F is a function handle to the residual function F . The number of trials ni
in the line-search method is set through the optional parameter ’lstrails’, while
the target value is set as the parameter ’resred’ times the residual error upon
entry. Default values for ’lstrails’ and ’resred’ are 20 and 0.99, respectively.

While the implicit discretization is stable in the sense that there exists
a solution Sn+1 for an arbitrarily large time increment ∆t, there is unfor-
tunately no guarantee that we will be able to find this solution using the

Page: 312 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.2 Sequential solution procedures 313

above line-search method. If the time step is too large, the Newton method
may simply compute search directions that do not point us toward the cor-
rect solution. To compensate for this, we also need a mechanism that reduces
the time step if the iteration does not converge and then uses a sequence of
shorter time step to reach the prescribed time tf. First of all, we need to define
what we mean by convergence; this is defined by the optional ’nltol’ param-
eter, which sets the absolute tolerance ε (default value 10−6) on the residual
‖F(Sn+1, Sn)‖∞ ≤ ε. In addition, we use a parameter ’maxnewt’ that gives
the maximum number of iteration steps (default value 25) the method can
take to reach a converged solution. The following code gives the essence of the
overall algorithm of the iterative solver, as implemented in the helper function
newtonRaphson2ph

mints = pow2(tf, −opt.tsref);
[t, dt] = deal(0.0, tf);
while t < tf && dt >= mints,

dt = min(dt, tf − t);
redo_newton = true;
while redo_newton,

sn_0 = resSol; sn = resSol; sn.s(:) = min(1,sn.s+0.05);
res = F(sn, sn_0, dt);
err = norm(res(:), inf);
[nwtfail, linfail, it] = deal(err>opt.nltol,false,0);
while nwtfail && ~linfail && it < opt.maxnewt,

J = Jac(sn, sn_0, dt);
ds = −reshape(opt.LinSolve(J, reshape(res', [], 1)), ns, [])';
[sn, res, alph, linfail] = update(sn, sn_0, ds, dt, err);
it = it + 1;
err = norm(res(:), inf);
nwtfail = err > opt.nltol;

end
if nwtfail,

% Chop time step in two, or use previous successful dt
else

redo_newton = false;
t = t + dt;
% If five successful steps , increase dt by 50%

end
end
resSol = sn;

end

Here, we have used two optional parameters: ’tsref’ with default value 12 gives
the number of times we can halve the time step, while ’LinSolve’ is the linear
solver, which defaults to mldivide. More details about the solver can be found
by reading the code.

Page: 313 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



314 10 Solvers for Incompressible Immiscible Flow

10.3 Simulation examples

You have now been introduced to all the functionality you need to solve in-
compressible, multiphase flow problems. It is therefore time to start looking
into the qualitative behavior of such systems. In this section, we will discuss
examples that highlight many of the typical multiphase phenomena you may
encounter in practice. The examples are designed to highlight individual ef-
fects, or combinations of effects, and may not always be fully realistic in terms
of physical scales, magnitude of the parameters and effects involved, etc. We
will also briefly look at the structure of the discrete systems arising in the
implicit transport solver. The last section of the chapter discusses the numer-
ical errors that will result from specific choices of discretization and solution
strategy.

For single-phase, incompressible flow, we have already seen that there are
essentially three effects that determine the direction of the flow field. The first
is heterogeneity (i.e., spatial variations in permeability) that affects the local
magnitude and direction of the flow field. The second effect is introduced by
drive mechanisms such as wells and boundary conditions that determine where
fluids flow to and from. However, the further you are from the location of a
well or a boundary condition, the less effect it will have on the flow direction.
The last effect is gravity. Multiphase flow is more complicated since the fluid
dynamics now also is affected by the viscosity and density ratios of the fluids
present, as well as the relative permeability and capillary pressure. These ef-
fects will introduce several challenges. If the displacing fluid is more mobile
than the resident fluid, it will tend to move rapidly into this fluid, giving weak
shock fronts and long rarefaction waves. For a homogeneous reservoir, this will
result in early breakthrough of the displacing fluid and slow and incremental
recovery of the resident fluid. In a heterogeneous reservoir, one may also ob-
serve viscous fingering, which essentially means that the displacing fluid will
move unevenly into the resident fluid. This is a self-reinforcing effect that will
cause the fingers to move farther into the resident fluid. Gravity segregation,
on the other hand, will cause fluids having different density to segregate, and
lead to phenomena such as gravity override in which a lighter fluid moves
quickly on top of a denser fluid. This is a problem in many recovery meth-
ods that rely on gas injection and for geological storage of CO2. Finally, we
have capillary effects that will tend to spread out the interface between the
displacing and the resident fluid. When combined with heterogeneity, these
effects are generally difficult to predict without detailed simulations. Some-
times, they work in the same direction to aggravate sweep and displacement
efficiency, but the effects can also counteract each other to cancel undesired
behavior. Gravity and capillary forces, for instance, may both reduce viscous
fingering that would otherwise give undesired early breakthrough.

In this section, we will discuss most of the phenomena outlined above in
more detail. In most cases, we will only consider a single effect at the time.
Throughout the examples, you will also learn how to set up various types

Page: 314 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 315

of simulations using MRST. However, complete codes will as a rule not be
discussed for brevity, and when reading the material, you should therefore
take the time to also read the accompanying codes that can be found in the
in2ph directory of the book module. As in most of the chapters so far in the
book, you will gain much more insight if you run these codes and try to modify
them to study the effect of different parameters and algorithmic choices. I also
encourage you strongly to as many as possible of the computer exercises that
are given throughout the text.

10.3.1 Buckley–Leverett displacement

As a first example, let us revisit the 1D horizontal setup from Example 9.3 on
page 288, in which we compared the explicit and implicit solvers for the classic
Buckley–Leverett displacement profile arising when pure water is injected into
pure oil. The following code sets up a slightly rescaled version of the problem,
computes the pressure solution, and then uses the explicit transport solver to
evolve the saturations forward in time

G = computeGeometry(cartGrid([100,1]));
rock = makeRock(G, 100*milli*darcy, 0.2);
fluid = initSimpleFluid('mu' , [1, 1].*centi*poise, ...

'rho' , [1000, 1000].*kilogram/meterˆ3, 'n', [2,2]);
bc = fluxside([], G, 'Left ' , 1, ' sat ' , [1 0]);
bc = fluxside(bc, G, 'Right', −1, 'sat ' , [0 1]);
hT = computeTrans(G, rock);
rSol = initState(G, [], 0, [0 1]);
rSol = incompTPFA(rSol, G, hT, fluid, 'bc', bc);
rSole = explicitTransport(rSol, G, 10, rock, fluid, 'bc', bc, 'verbose' ,true);

The explicit solver uses 199 time steps to reach time 10. Let us try to see if
we can do this in one step with the implicit solver:

[rSoli, report] = ...
implicitTransport(rSol, G, 10, rock, fluid, 'bc', bc, 'Verbose', true);

This corresponds to running the solver with a CFL number of approximately
200, and from the output in Figure 10.2 we see that this is not a big success.
With an attempted time step of ∆t = 10, the solver only manages to reduce
the residual by a factor 2.5 within the allowed 25 iterations. Likewise, when
the time step is halved to ∆t = 5, the solver still only manages to reduce the
residual one order of magnitude within the 25 iterations. Then, when the time
step is halved once more, the solver converges in 20 iterations in the first step
and then in 9 iterations in the next three substeps. Altogether, more than half
of the iteration steps (50 out of 97) were wasted.

To overcome the problem with wasted iterations, we can subdivide the
pressure step into multiple saturation steps as is done internally in the explicit
solver and likewise in the implicit solver when time steps are chopped:

Page: 315 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



316 10 Solvers for Incompressible Immiscible Flow

--------------------------------------------------------------
Time interval (s) iter relax residual rate
--------------------------------------------------------------
[0.0e+00, 1.0e+01]: 1 1.00 7.82670e+00 NaN
[0.0e+00, 1.0e+01]: 2 0.12 6.81721e+00 0.07
: : : : : :

[0.0e+00, 1.0e+01]: 25 0.03 3.17993e+00 1.00
-------------------- Reducing step -------------------
[0.0e+00, 5.0e+00]: 1 1.00 7.03045e+00 NaN
: : : : : :

[0.0e+00, 5.0e+00]: 25 0.25 6.34074e-01 0.74
-------------------- Reducing step -------------------
[0.0e+00, 2.5e+00]: 1 1.00 5.64024e+00 NaN
: : : : : :

[0.0e+00, 2.5e+00]: 20 1.00 1.23535e-08 1.91
-------------------- Next substep -----------------------
[2.5e+00, 5.0e+00]: 1 0.25 3.59382e-01 NaN
: : : : : :

[2.5e+00, 5.0e+00]: 9 1.00 1.71654e-08 1.86
-------------------- Next substep -----------------------
[5.0e+00, 7.5e+00]: 1 0.25 2.67914e-01 NaN
: : : : : :

[5.0e+00, 7.5e+00]: 9 1.00 8.49299e-09 1.94
-------------------- Next substep -----------------------
[7.5e+00, 1.0e+01]: 1 0.25 2.57462e-01 NaN
: : : : : :

[7.5e+00, 1.0e+01]: 9 1.00 8.74041e-11 2.01

Iterations : 47 Wasted iterations : 50
Sub steps : 4 Failed steps : 2
Final residual : 8.74e-11 Convergence rate : 1.9

--------------------------------------------------------------
10

−10

10
−5

10
0

10

20

30

40

50

60

70

80

90

Fig. 10.2. Results from running the implicitTransport solver on a 1D Buckley–
Leverett displacement problem with CFL number 200. Left: screen output, where
several lines have been deleted for brevity. Right: convergence history for the resid-
ual, with cumulative iteration number increasing from top to bottom.

rSolt = rSol;
for i=1:n

rSolt = implicitTransport(rSolt, G, 10/n, rock, fluid, 'bc', bc);
end

Figure 10.3 reports the approximate solutions and the overall number of iter-
ations used by the implicit solver with n equally spaced substeps. The number
of iterations is not an exact multiple of the number of time steps, since the
solver typically needs more iterations during the initial time steps when the
displacement front is relatively sharp. As the simulation progresses, the shock
is smeared across multiple cells, which contributes to reduce the nonlinear-
ity of the discrete system. We also see that to get comparable accuracy as
the explicit transport solver, the implicit solver needs to use at least 40 time
steps, which amounts to more than 160 iterations. In this case, there is thus a
clear advantage of using the explicit transport solver if we want to maximize
accuracy versus computational cost.

Page: 316 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 317

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Expl: 199 steps

n=  4:  47 its

n= 10:  65 its

n= 20: 102 its

n= 40: 161 its

n=100: 301 its

n=200: 407 its

Fig. 10.3. Approximate solutions computed by the explicit transport solver and
the implicit transport solver with n time steps.

10.3.2 Inverted gravity column

In the next example, we will revisit the inverted gravity column from Exam-
ple 8.3 on page 268 with a light fluid at the bottom and a heavier fluid at the
top. We will change the example slightly so that the fluids are representative
for supercritical CO2 and brine found at conditions that would be plausible
when storing CO2 in a deep saline aquifer. The following is the essence of the
simulator (plotting commands are not included for brevity):

gravity reset on

G = computeGeometry(cartGrid([1, 1, 40], [1, 1, 10]));
rock = makeRock(G, 0.1*darcy, 1);
fluid = initCoreyFluid('mu' , [0.30860, 0.056641]*centi*poise, ...

'rho' , [975.86,686.54]*kilogram/meterˆ3, ...
'n' , [2,2], ' sr ' , [.1,.2 ], 'kwm',[.2142,.85]);

hT = computeTrans(G, rock);
xr = initResSol(G, 100.0*barsa, 1.0); xr.s(end/2+1:end) = 0.0;
xr = incompTPFA(xr, G, hT, fluid);
dt = 5*day; t=0;
for i=1:150

xr = explicitTransport(xr, G, dt, rock, fluid, 'onlygrav', true);
t = t+dt;
xr = incompTPFA(xr, G, hT, fluid);

end

In Example 8.3, the fluids had the same viscosity and hence moved equally
fast upward and downward. Here, the supercritical CO2 is much more mobile
than the brine and will move faster to the top of the column than the brine

Page: 317 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



318 10 Solvers for Incompressible Immiscible Flow

z

t

t = 0 days t = 125 days

t = 250 days t = 375 days

t = 500 days t = 750 days

Fig. 10.4. Simulation of an inverted gravity column where pure CO2 initially fills
the bottom half and brine the upper half of the volume.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8
x 10

4

Fig. 10.5. Pressure distribution at every 10th time step as function of depth from
the top of the gravity column, with blue color and marker ’·’ indicating initial time
and red colr and marker ’+’ indicating end of simulation.

Page: 318 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 319

moves downward. Hence, whereas the CO2 reaches the top of the column after
250 days, it takes more than 400 days before the first brine has sunk to the
bottom. After approximately two years, the fluids are clearly segregated and
separated by a sharp interface.

In the simulation, we used relatively small splitting steps (150 steps of 5
days each) to march our transient solution towards steady state. Looking at
Figure 10.5, which shows the vertical pressure distribution every fifty day, i.e.,
for every tenth time step, we see that the pressure behaves relatively smoothly
compared with the saturation distribution. It is therefore reasonable to expect
that we could get away with using a smaller number of splitting steps in this
particular case. How many splitting steps do you think we need?

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 199

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 78

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

nz = 118

Fig. 10.6. Sparsity pattern for the 1D Buckley–Leverett problem (left) and the
inverted gravity column after 125 days (middle) and 390 days (right)

Before leaving the problem, let us inspect the discrete nonlinear system
arising when using the implicit transport solver in some detail. Figure 10.6
contrasts the sparsity pattern at two instances in time to that of the 1D
horizontal Buckley–Leverett problem. From the discussion in Section 9.3.4, we
know that the latter only has a single nonzero band below the diagonal and
hence can be solved more robustly if we instead of using Newton’s method use
a nonlinear substitution method with a bracketing method for each single-cell
problem [168]. Since the lighter fluid moves upward and the heavier fluid moves
downward during gravity segregation, there will be nonzero elements above
and below the diagonal in the two-phase region and at the interface between
the two phases. In the figure, we also see how the sparsity pattern changes as
the two-phase region expands upward and downward from the initial interface.
Since the nonlinear system is no longer triangular, a substitution method
cannot be used, but each linearized system can be solved efficiently using the
Thomas algorithm, which is a special O(n) Gaussian elimination method for
tridiagonal systems. Knowing the sparsity pattern of the problem is a key to
efficient solvers. The \ or mldivide solver in MATLAB performs an analysis
of the linear system and picks efficient solvers for triangular, tridiagonal, and
other special systems (for more info, type doc mldivide).

Page: 319 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



320 10 Solvers for Incompressible Immiscible Flow

10.3.3 Homogeneous quarter five-spot

To gain more insight into the simulation of multiphase displacement processes
we consider the classical confined quarter five-spot test case discretized on a
128× 128 grid. As you may recall from Section 5.4.1, this test case consists of
one quarter of a symmetric pattern of four injectors surrounding a producer
(or vice versa), repeated to infinity in each direction. We assume a simplified
Corey model with exponent 2.0 and zero residual saturation, i.e., krw = S2

and kro = (1 − S)2. We start by setting the viscosity to 1 cP for both fluid
phases, giving a unit mobility ratio. We also neglect capillary and gravity
forces. The injector and producer operate at fixed bottom-hole pressure, giv-
ing a total pressure drop of 100 bar across the reservoir. Since we have assumed
incompressible flow, equal amounts of fluid must be produced from the reser-
voir so that injection and production rates sum to zero. The total time is set
such that 1.2 pore volumes of fluid would be injected if the initial injection
is maintained throughout the whole simulation. However, the actual injection
rate will depend on the total resistance to flow offered by the reservoir, and
hence vary with time when the total mobility varies throughout the reservoir
as a result of fluid movement. (Remember that the total mobility will be less
in all cells containing two fluid phases.) The simulation code follows the same
principles as outlined in the two examples above, details can be found in the
file quaterFiveSpot2D.m.

t=0.20 PVI t=0.40 PVI t=0.60 PVI t=0.80 PVI Sw

 

 

0.2

0.4

0.6

0.8

1

Fig. 10.7. Evolution of a two-phase displacement front for a homogeneous quarter
five-spot case with water injected into oil. The single line shown in each plot is a
contour at value t/(2

√
2 − 2) PVI for the time-of-flight field computed from the

corresponding single-phase problem (i.e., with λ ≡ 1).

Figure 10.7 shows how the displacement profile resulting from the injection
of water into a reservoir initially filled with oil will expand circularly near
the injector. As the displacement front propagates into the reservoir, it will
gradually elongate along the diagonal and form a finger that extends towards
the producer. As a result, water will break through in the producer long time
before the displacement front has managed to sweep the stagnant regions near
the northwest and southeast corners. The evolution of the saturation profile
is the result of two different multiphase effects. To better understand these
effects, it is instructive to transform our 3D transport equation into streamline

Page: 320 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 321

coordinates. Since the flow field is incompressible, we can use (4.43) to write
~v · ∇ = φ ∂

∂τ so that (10.2) transforms to a family of 1D transport equations,
one along each streamline,

∂S

∂t
+
∂fw(S)

∂τ
=
qw
φ
. (10.7)

Hence, the first flow effect is exactly the same Buckley–Leverett displacement
as we saw in Section 10.3.1, except that it not acts along streamlines rather
than along the axial directions. It is therefore tempting to suggest that to
get a good idea of how a multiphase displacement will evolve, we can solve a
single-phase pressure equation for the initial oil-filled reservoir, compute the
resulting time-of-flight field, and then map the 1D Buckley–Leverett profile
(8.57) computed from (8.50) onto time-of-flight. How accurate this approxima-
tion will be depends on the coupling between the saturation and the pressure
equation. With linear relative permeabilities and unit mobility ratio, there is
no coupling between pressure and transport, and mapping 1D solutions onto
time-of-flight will thus produce the correct solution. In other cases, changes
in total mobility will change the total Darcy velocity and hence the time-
of-flight. To illustrate this, let us compare the propagation of the leading
shock predicted by the full multiphase simulation and our simplified stream-
line analysis. For fluids with a viscosity ratio µw/µn = M , it follows by solving
f ′(S) = f(S)/S that the leading shock of the Buckley–Leverett displacement
profile would move at a speed M/(2

√
M + 1− 2) relative to the Darcy veloc-

ity, shown as a single black line for each snapshot in Figure 10.7. Compared
with our simplified streamline analysis, the movement of the injected water is
retarded by the reduced mobility in the two-phase region behind the leading
displacement front.

In most simulations, the primary interest is to predict well responses. To
extract these, we introduce the following function

function wellSol = getWellSol(W, x, fluid)
mu = fluid.properties();
wellSol(numel(W))=struct;
for i=1:numel(W)
out = min(x.wellSol(i).flux,0); iout = out<0; % find producers
in = max(x.wellSol(i).flux,0); iin = in>0; % find injectors
lamc = fluid.relperm(x.s(W(i).cells,:))./mu; % mob in completed cell
fc = lamc(:,1)./sum(lamc,2); %
lamw = fluid.relperm(W(i).compi)./mu; % mob inside wellbore
fw = lamw(:,1)./sum(lamw,2); %
wellSol(i).name = W(i).name;
wellSol(i).bhp = x.wellSol(i).pressure;
wellSol(i).wcut = iout.*fc + iin.*fw;
wellSol(i).Sw = iout.*x.s(W(i).cells,1) + iin.*W(i).compi(1);
wellSol(i).qWs = sum(out.*fc) + sum(in.*fw);
wellSol(i).qOs = sum(out.*(1−fc)) + sum(in.*(1−fw));

end

Page: 321 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



322 10 Solvers for Incompressible Immiscible Flow

Inside the simulation loop, this function is called as follows

wellSols = cell(N,1);
oip = zeros(N,1);
for n=1:N

x = incompTPFA(x, G, hT, fluid, 'wells ' , W);
x = explicitTransport(x, G, dT, rock, fluid, 'wells', W);

wellSols{n} = getWellSol(W, x, fluid);
oip(n) = sum(x.s(:,2).*pv);

end

The loop also computes the oil in place at each time step. Storing well re-
sponses in a cell array may seem unnecessary complicated and requires a
somewhat awkward construction to plot the result

t = cumsum(dT);
plot(t, cellfun(@(x) x(2).qOs, wellSols));

Here, the call to cellfun passes elements from the cell array wellSols to an
anonymous function that extracts the desired field containing the surface oil
rate of the second well (the producer). Each element represents an individual
time step. The reason for using cell arrays is to provide compatibility with the
infrastructure developed for compressible models of industry-standard com-
plexity. Here, use of cell array provides the flexibility needed to process much
more complicated well output. As a direct benefit, we can use the GUI devel-
oped for visualizing well responses:

mrstModule add ad−core
plotWellSols(wellSols,cumsum(dt))

This brings up a plotting window as shown in Figure 10.8, where we visualize
the surface water rate for injector and producer.

Fig. 10.8. Graphical user interface from the ad-core module for plotting computed
well responses.

Page: 322 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 323

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

x 10
5

initial oil in place

w
a
te
r
b
re
a
k
th

ro
u
g
h

in
iti
al
oi
l r
at
e

0 0.2 0.4 0.6 0.8 1 1.2

50

100

150

200

250

 

 

Oil rate [m
3
/day]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

 

 

Sw in completion

Water cut

Fig. 10.9. Well responses computed for the homogeneous quarter five-spot test.
The left plot shows the cumulative oil production computed from the well solution
shown as a thin line compared with the amount of extracted oil derived from a
mass-balance computation (initial oil in place minus current oil in place) shown as a
thick dashed line. The lower-right plot shows oil rate and the upper-right plot shows
water saturation and water cut (fractional flow) in the well perforation.

Let us look at the well responses shown in Figure 10.9 in more detail. We
see that the oil rate drops immediately as water enters the system in the first
time step and then decays slowly until water breaks through in the producer
around time t = 0.7. Since this well now produces a mixture of water and oil,
the oil rate decays rapidly as the smoothed displacement front enters the well,
and then decays more slowly when the inflow of water is determined by the
trailing rarefaction wave. The left plot shows the cumulative oil production
computed in two different ways: (i) using the oil rate from the well solution,
and (ii) measured as the difference between initial and present oil in place. Up
to water breakthrough, the two estimates coincide. After water breakthrough,
the production estimated from the well solution will be slightly off, since it
for each time step uses a simplified approximation that multiplies the size of
the time step with the total flow rate computed at the start of the time step
and the fractional flow in the completed cell at the end of the time step.

Computer exercises:

61. Repeat the experiment with wells controlled by rate instead of pressure.
Do you observe and differences and can you explain them?

62. Repeat the experiment with different mobility ratios and Corey exponents.
63. Can you correct the computation of oil/water rates?

Page: 323 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



324 10 Solvers for Incompressible Immiscible Flow

10.3.4 Heterogeneous quarter five-spot: viscous fingering

In the previous example we studied imbibition in a homogeneous medium,
which resulted in symmetric displacement profiles. However, when a displace-
ment front propagates through a porous medium, the combination of viscosity
differences and permeability heterogeneity may introduce viscous fingering ef-
fects. In general, the term viscous fingering refers to the onset and evolution of
instabilities at the interface between the displacing and displaced fluid phases.
Fingering can arise because of viscosity differences between to phases or as
a result of viscosity variations within a single phase that, for instance, con-
tains solutes. In the laboratory, viscous fingering is usually studied in so-called
Hele-Shaw cells, which consist of two flat plates separated by a tiny gap. The
plates can be completely parallel, or contain small-scale variations (rugosity)
to emulate a porous medium. When a viscous fluid confined in the space be-
tween the two plates is driven out by injecting a less viscous fluid (e.g., dyed
water injected into glycerin), beautiful and complex fingering patterns can be
observed. I highly recommend a search for “Hele-Shaw cell” on YouTube.

4 years

ra
ti
o

 1
:1

0

8 years 12 years 16 years 20 years

ra
ti
o

 1
:1

ra
ti
o

 1
0

:1

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 10.10. Quarter five-spot solutions on a subsample from the first layer of the
SPE 10 model for three different viscosity ratios µw : µn.

Figure 10.10 shows the simulation of a quarter five-spot on a square domain
represented on a uniform 60×120 grid with petrophysical properties sampled
from the topmost layer of the SPE 10 data set. The wells operate at fixed rate,
corresponding to the injection of one pore volume over a period of 20 years. To
reach a final time, we use 200 pressure steps and the implicit transport solver.

Page: 324 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 325

1000 2000 3000 4000 5000 6000 7000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time (days)

cumulative oil production

 

 

P (Ratio 1:10)

P (Ratio 1:1)

P (Ratio 10:1)

initial oil in place

1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

x 10
−5

Time (days)

Oil surface rate [m
3
/s]

 

 

P (Ratio 1:10)

P (Ratio 1:1)

P (Ratio 10:1)

1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Time (days)

wcut: Water fraction at reservoir conditions

 

 

P (Ratio 1:10)

P (Ratio 1:1)

P (Ratio 10:1)

Fig. 10.11. Well responses computed for the heterogeneous quarter five-spot with
different mobility ratios µw : µn.

As in the previous example, the fluid is assumed to obey a simple Corey fluid
model with quadratic relative permeabilities and no residual saturations. If
the viscosity of the injected fluid is (significantly) less than that of the resident
fluid, we get an unfavorable displacement in which the displacing phase forms
a weak shock front that will ’finger’ rapidly through the less mobile phase that
initially fills the medium. Once a finger develops, it will create a preferential
flow direction for the injected phase, which causes the finger to extend towards
the producer, following the path of highest permeability. In the opposite case
of a (significantly) more viscous fluid being injected into a less viscous fluid,
one obtains a strong front that acts almost like a piston and creates a very
favorable and stable displacement with a leading front that has much less
buckles than in the unfavorable case. Not only does this front have better local
displacement efficiency (i.e., the water front can push out more oil), but the
areal sweep is also better. The unit viscosity case is somewhere in between the
two, having a much better local displacement efficiency than the unfavorable
case, but almost the same areal sweep at the end of the simulation.

Figure 10.11 reports well responses for the three simulations. Since water
is injected at a fixed rate in all simulations, the oil rate will remain constant
until water breaks through in the producer. This happens after 1825 days in
the unfavorable case, after 4050 days for the case with equal viscosities, and
after 6300 days in the favorable case. As discussed in the previous example,
the decay in oil rate depends on the strength of the displacement front and
will hence be much more abrupt in the favorable mobility case, which has an
almost piston-like displacement. On the other hand, by the time the favorable
case breaks through, the unfavorable case has reached a water cut of 82%.
Water handling is generally expensive and in the worst case the unfavorable
case might have to shut down before reaching the end of the 20 year production
period. (Complete code for the example is found in viscousFingeringQ5.m.)

Page: 325 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



326 10 Solvers for Incompressible Immiscible Flow

Next, let us look at the sparsity structure of the discretized transport
equation. In the homogeneous case discussed in the previous section, all fluxes
point in the positive axial directions and hence the Jacobian matrix will be
lower triangular. With a heterogeneous permeability, or another well pattern,
this unidirectional flow property is no longer present and the Jacobi matrix
will have elements above and below the diagonal, as seen in Figure 10.12.
However, if we look at the transformation to streamline coordinates (10.7), it
is clear that we still have unidirectional flow along streamlines. This means
that the Jacobi matrix can be permuted to triangular form by performing a
topological sort on the flux graph derived from the total Darcy velocity. This
can be done as follows

[p,q] = dmperm(J); Js = J(p,q);

and the result is shown in the middle plot in Figure 10.12. This permutation
is similar to what is done inside MATLAB’s linear solver mldivide. Since
we can permute the Jacobi matrix to triangular form, we can also do the
same for the nonlinear system, and hence apply a highly efficient nonlinear
substitution method [168] as discussed for 1D Buckley–Leverett problems in
Section 9.3.4. The same applies also for 3D cases as long as long as capillary
forces are neglected and we have purely co-current flow. Countercurrent flow
can be introduced by gravity segregation, as we saw in Section 10.3.2 above,
or if the flow field is computed by one of the consistent discretization schemes
from Chapter 6, which are generally not monotone.

Fig. 10.12. The left plot shows the sparsity structure for the Jacobi matrix for the
heterogeneous quarter five-spot with viscosity ratio 1:10. The middle plot shows the
sparsity structure after a topological sort, whereas the right plot shows the sparsity
structure after potential ordering.

It is also possible to permute the discretized system to triangular form by
performing a potential ordering [128] as shown to the right in Figure 10.12.
This is done as follows

[~,i] = sort(x.pressure); Jp = J(i,i);

Page: 326 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 327

Implementing this type of nonlinear substitution methods is unfortunately
not very efficient in MATLAB and should be done using a compiled language.
In MRST, we therefore mainly rely on the intelligence built into mldivide to
give us the required computational performance.

A remark at the end: in a real case, injectivity would obviously be a decisive
factor, i.e., how high pressure is required to ensure a desired injection rate, or
vice versa, which rate one would obtain for a given injection pressure. This is
not accounted for in our discussion above; for illustration purposes we tacitly
assumed that desired injection rate could be maintained.

Computer exercises:

64. Repeat the experiments with wells controlled by pressure, fixed water vis-
cosity and varying oil viscosity. Can you explain the differences you observe?

65. Run a systematic study that repeats the simulation above from each of the
85 layers of the SPE10 model. Plot and compare the resulting production
curves. (The experiment can be run for a single mobility ratio to save
computational time).

66. Run the same type of study with 100 random permeability fields, e.g.,

as generated by the simplified gaussianField routine from Section 2.5.2.

Alternatively, you can use any kind of drawing
program to generate a bitmap and generate a
channelized permeability as follows

K = ones(G.cartDims)*darcy;

I = imread(’test.pbm’);

I = flipud(I(:,:,1))’;

K(I) = milli*darcy;

This can easily be combined with different random fields for the fore-
ground and background permeability.

10.3.5 Buoyant migration of CO2 in a sloping sandbox

In Section 10.3.2, we considered the buoyant migration of supercritical CO2

inside a vertical column. Here, we extend the problem to three spatial dimen-
sions and simulate the upward movement of CO2 inside a sloping sandbox with
sealing boundaries. The rectangular sandbox has dimensions 100×10×200 m3,
and we will consider two different petrophysical models: homogeneous prop-
erties or Gaussian porosity with isotropic permeability given from a Carman–
Kozeny transformation similar to (2.6). The sandbox is rotate around the
y-axis so that the top surface makes an angle of inclination θ with the hori-
zontal plane. Instead of rotating the grid so that it aligns with the geometry,
we will rotate the coordinate system by rotating the gravity vector an angle
θ around the y-axis, see Figure 10.13.
The rotation is introduced as follows,

Page: 327 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



328 10 Solvers for Incompressible Immiscible Flow

Fig. 10.13. Illustration of the sloping sandbox used for the buoyancy example and
how it is simulated by rotating the gravity vector. (Color: Gaussian porosity field).

R = makehgtform('yrotate',−pi*theta/180);
gravity reset on

gravity( R(1:3,1:3)*gravity().' );

MRST defines the gravity vector as a persistent, global variable which by
default equals ~0. The second line ensures that ~g is set to the standard value
(pointing downward in the vertical direction) before we perform the rotation.

To initialize the problem, we assume that CO2, which is lighter than the
resident brine, fills up the model from the bottom and to a prescribed height,

xr = initResSol(G, 1*barsa, 1);
d = gravity() ./ norm(gravity);
dc = G.cells.centroids * d.';
xr.s(dc>max(dc)−height) = 0;

For accuracy and stability, the time step is ramped up gradually as follows,

dT = [.5, .5, 1, 1, 1, 2, 2, 2, 5, 5, 10, 10, 15, 20, ...
repmat (25,[1,97])] .*day;

to reach a final simulation time of 2500 days. The remaining code is similar
to what was discussed above; details can be found in buoyancyExample.m.

Let us consider the homogeneous case first. Initially, the buoyant CO2

plume will form a cone shape as it migrates upward and gradually drains the
resident brine. After approximately 175 days, the migrating plume starts to
accumulate as a thin layer of pure CO2 under the sloping east face of the box.
This layer will migrate quickly up towards the topmost northeast corner of
the box, which is reached after approximately 400 days, This corner forms a
structural trap that will gradually be filled as more CO2 migrates upward.
The trapped CO2 forms a diffused and curved interface (see the plots at
500 and 1000 days), but as time passes, the interface becomes sharper and
flatter. During the same period, brine will imbibe into the trailing edge of
the CO2 plume and gradually formed a layer of pure brine at the bottom.

Page: 328 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 329

initial 20 days 100 days 250 days 500 days 1000 days 1500 days 2500 days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10.14. Buoyant migration of CO2 in a sandbox with sealing boundaries. The
upper plots show the case with homogeneous case and the lower plots the case with
Gaussian heterogeneity. In the plots, only cells containing some CO2 are colored.

After approximately 1000 days, the only CO2 left below the interface in the
northeast corner is found at small saturation values and will therefore migrate
very slowly upward.

The heterogeneous case follows much of the same pattern, except that the
leading drainage front will finger into high-permeable regions of the sandbox.
Low-permeable cells, on the other hand, will retard the plume migration.
Altogether, we see a significant delay in the gravity segregation compared
with the homogeneous case. Since the permeability is isotropic, the plume will
still mainly migrate upward. This should not be expected in general. Many
reservoirs will have significantly lower permeability in the vertical direction
or consist of strongly layered sandstones containing mud drapes or other thin
deposits that inhibit vertical movement between layers. For such cases, one
can expect a much larger degree of lateral movement.

Computer exercises:

67. To gain more insight into the flow physics of a buoyant phase, you should
experiment more with the script discussed above. A few examples:
� Try to set θ = 88 and the initial height to 10 meters for the heteroge-

neous case.
� Set θ = 60◦ and impose an anisotropic permeability with ratio 0.1 : 1 : 5

to mimic a case with strong layering.
� In the experiments above, we used an unrealistic fluid model without

residual saturations. Replace the fluid model by a more general Corey
model having residual saturations (typical values could be 0.1 or 0.2)
and possibly also end-point scaling. How does this affect the upward
plume migration? (Hint: in addition to the structural trapping at the
top of the formation, you will now have residual trapping.)

68. Rerun the experiment with capillary forces included, e.g., by using
initSimpleFluidJfunc with extra parameters set as in its documentation.

Page: 329 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



330 10 Solvers for Incompressible Immiscible Flow

69. Instead of using an initial layer of CO2 at the bottom of the reservoir, try to
introduce an injector that injects CO2 at constant rate before it is shut in.
For this, you should increase the spatial and temporal scales of the problem

70. In cases like this, gravity will introduce circular currents that destroy the
unidirectional flow property we discussed in some of the previous examples.
To investigate the sparsity of the discretized transport equations, you can
set a breakpoint inside the private function newtonRaphson2ph used by the
implicit transport solver and use the plotReorder script from the book

module to permute the Jacobi matrix to block-triangular form. Try to stop
the simulation in multiple time steps to investigate how the sparsity struc-
ture and degree of countercurrent flow change throughout the simulation.

10.3.6 Water coning and gravity override

Water coning is a production problem in which water (from a bottom drive)
is sucked up in a conical shape towards a producer. This is highly undesirable
since it reduces the hydrocarbon production. As an example, we consider a
production setup on a sector model consisting of a two different rock types
separated by a fully conductive, inclined fault as shown in Figure 10.15. A
vertical injector is placed the low-permeable stone (K=50 md and φ = 0.1)
to the east of the fault, whereas a horizontal producer is perforated along
the top of the more permeable rock (K=500 md and φ = 0.2) to the west
of the fault. The injector operates at a fixed bottom-hole pressure of 700 bar
and the producer operates at a fixed bottom-hole pressure of 100 bar. To
clearly illustrate the water coning, we consider oil with somewhat contrived
properties: density 100 kg/m3 and viscosity 10 cP. The injected water has
density 1000 kg/m3 and viscosity 1 cP. Both fluids have quadratic relative
permeabilities. The large density difference was chosen to ensure a bottom
water drive, while the high viscosity was chosen to enhance the coning effect.
Complete source code can be found in coningExample.m in the book module.

0

500

1000

1500 0

200

400

600

800

1000

2000

2050

2100

2150

2200

2250

I

P

Fig. 10.15. Sector model used to demonstrate water coning. Blue color indicates
low permeability and red color high permeability.

Page: 330 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 331

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

150 days 670 days

810 days 1020 days

1500 days 4500 days

Fig. 10.16. Evolution of the displacement profile for the water-coning case.

The idea of using a vertical injector is that the lower completions will set
up a bottom water drive in the good rock to the west of the fault, whereas the
upper completions will provide volumetric sweep of the low-quality rock to
the east of the fault. The water front from the lowest perforations penetrates
through to the better zone west of the fault after approximately 40 days and
then gradually builds up a water tongue that moves westward more rapidly
along the bottom of the reservoir as seen in the two plots in the upper row
of Figure 10.16. The advancing water front reaches the far west side of the
reservoir after approximately 670 days and forms a cone that extends up-
ward towards the horizontal producer. After 810 days, the water front breaks
through in the mid-section of the producer and after 1020 days, the whole
well is engulfed by water. If the well had been instrumented with intelligent
inflow control devices, the operator could have reduced the flow rate through
the mid-section of the well to try to delay water breakthrough. As the water
is sucked up to the producer, it gradually forms a highly conductive pathway

Page: 331 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



332 10 Solvers for Incompressible Immiscible Flow

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

Time (years)

Surface oil rate [m3/s]

 

 

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (years)

Surface water rate [m3/s]

 

 

P

I

500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5
x 10

7

Time (days)

Cumulative oil production [m
3
]

 

 

Initial oil in place

500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

x 10
7

Time (days)

Cumulative water injection/production [m
3
]

 

 

Initial oil in place

Fig. 10.17. Well responses for the simulation of water coning. The top plots show
rates in each perforation of the horizontal producer; the red lines indicate water
breakthrough. The middle plots show total surface rates, whereas the lower plots
show cumulative oil production and cumulative water injection and production.

from the injector to the producer as seen in the snapshot from time 1500 days
shown at the bottom-left of Figure 10.16. A significant fraction of the injected
water will therefore cycle through the water zone without contributing sig-
nificantly to sweep any unproduced oil, which will contribute to significantly
increase the energy consumption and the operational costs of the production
operation.

Page: 332 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 333

Looking at the well responses in Figure 10.17, we first of all observe that
the initial injection rate is very low because of the high viscosity of the resident
oil. Thus, we need a quite high injection pressure to push the first water into
the reservoir. Once this is done, the injectivity increases steadily as more water
contacts and displace a fraction of the oil. Since the reservoir rock and the two
fluids are incompressible, increased injection rates will given an equal increase
in oil production rates until water breaks through after approximately 800
days. Since there is no heterogeneity to create pockets of bypassed oil, and
residual saturations are zero, we will eventually be able to displace all oil
by continuing to flush the reservoir with water. However, the oil rate drops
rapidly after breakthrough and increasing amounts of water need to be cycled
through the reservoir to wash out the last parts of the remaining oil By 4500
days, the recovery factor is 73% and the total injected and produced water
amount to approximately 2.6 and 1.8 pore volumes, respectively.

Another related problem is that of gravity override in which a less dense
and more mobile fluid flows preferentially above a denser and less mobile fluid.
To illustrate this multiphase flow phenomenon, we consider a reservoir that
consist of two horizontal zones placed on top of each other. Light fluid of
high mobility is injected into the lower zone by a vertical well placed near
the east side. Fluids are produced from a well placed near the west side and
perforated in the lower zone only, see Figure 10.18. Densities of the injected
and resident fluids are assumed to be 700 kg/m3 and 1000 kg/m3, respectively.
To accentuate the phenomenon, we assume that both fluids have quadratic
relative permeabilities, zero residual saturations, and viscosities 0.1 cP and 1.0
cP, respectively. In the displacement scenario, 0.8 pore volumes of the light
fluid are injected at constant rate. For simplicity, we will refer to this fluid as
water and the resident fluid as oil.

Fig. 10.18. Setup for the case used to illustrate gravity override. Blue and red color
indicate different permeabilities. Perforated cells are colored green.

Page: 333 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



334 10 Solvers for Incompressible Immiscible Flow

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

High permeability on top Low permeability on top

120 days 120 days

360 days 360 days

1500 days 1500 days

Fig. 10.19. Evolution of the displacement profiles for the gravity-override setup.
The reservoir is viewed from a position below and to the southeast of the reservoir.
Cells containing only the resident fluid are not plotted.

We consider two different scenarios: one with high permeability in the
upper zone and low permeability in the lower zone, and one with low perme-
ability in the upper zone and high permeability in the lower zone. To simplify
the comparison, the injection rate is the same in both cases. Figure 10.19
compares the evolving displacement profiles for the two cases. In both cases,
buoyancy will quickly cause the lighter injected fluid to migrate into the upper
zone. With high permeability at the top, the injected fluid will accumulate
under the sealing top and flow fast towards the west boundary in the upper
layers, as seen in the upper-left plot of Figure 10.19. Looking at Figure 10.20,
you may observe that since the production well is pressure-controlled and per-
forated in the low-permeable zone, the perforation rates will increase towards
the top, i.e., the closer the perforation lies to the high-permeable zone above.
As the leading displacement front reaches the producer near the west bound-
ary, is sucked down towards the open perforations and engulfs them almost
instantly, as seen after 360 days in the middle-left plot of Figure 10.19 and the
red line in the lower-left plot of Figure 10.20. This causes a significant drop in
the oil fluid and a corresponding increase in water rates towards the top of the
well, which lies closer to the flooded high-permeable zone. The oil rate is also
reduced in the lowest perforations, but since these layers do not produce much
of the injected fluid, the drop in oil rate is an effect of the internal adjustment

Page: 334 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 335

Fig. 10.20. Perforation rates for the gravity-override case: oil (top), water (middle),
and total rate (bottom). For the oil rate, the red lines indicate peak production,
while they indicate water breakthrough in the plots of water and total rate. The left
column reports the case with a high-permeability upper zone and the right column
the opposite case.

of total perforation rates along the well since mobility is so much higher near
the top of the well. Indeed, some time after water breakthrough the oil rate
is higher in the lower than in the upper perforations.

Also in the case with a low-permeable zone on top, buoyancy will cause
the injected fluid to migrate relatively quickly into the upper zone. However,
since this case has better direct connection between the injector and producer
through the high-permeable lower zone, the displacement front will move rel-
atively uniformly through all layers of the top zone and the upper layer of the

Page: 335 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



336 10 Solvers for Incompressible Immiscible Flow

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

x 10
7

 

 
Cumulative oil production [m

3
]

Time [Days]

Low permeability on top

High permeability on top

200 400 600 800 1000 1200 1400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

Fig. 10.21. Cumulative oil production for the gravity-override case. The inset shows
surface oil rates.

lower zone. The leading part of the displacement front is therefore both higher
and wider than in the other case and has swept a larger part of the upper
zone by the time it breaks through in the producer. Unlike in the first case,
the displacing fluid will not engulf the whole well, but only breaks through in
the three topmost perforations. However, after breakthrough, the majority of
the production comes from the topmost perforation, and the total rate in the
three lowest perforations quickly drops below 20% of the rate in the topmost
perforation.

Finally, looking at cumulative oil production and the surface oil rates re-
ported in Figure 10.21, we see that having a low permeability on top not only
delays the water breakthrough, but also enables us to maintain a higher oil
rate for a longer period. This case is more economically beneficial than the
case with high permeability on the top. To increase the recovery of the lat-
ter case, one possibility would be to look for a substance to inject with the
displacing fluid to reduce its mobility in the upper zone.

10.3.7 The effect of capillary forces – capillary fringe

As you may recall from Section 8.1.3, the pressure in a non-wetting fluid is
always greater than the pressure in the wetting phase. In a reservoir simulation
model, the capillary pressure – defined as pc = pn− pw in a two-phase system
– has the macroscale effect of determining the local saturation distribution at
the interface between the wetting and non-wetting fluid, or in other words,
there is a relation pc = Pc(S) between capillary pressure and saturation. This
is seen in two ways: In a system that is initially in hydrostatic equilibrium,
capillary forces enforce a smooth, vertical transition in saturation upward
from a (horizontal) fluid contact. This transition is often referred to as the

Page: 336 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 337

p

z

zi

zn

pwpn

∆p = pc,i

∆p = pc,n

Pc

S

z

zi

zn

0 1

S

capillary
fringe

Fig. 10.22. Diagrams showing phase pressures and capillary pressure (left) and
saturation (right) as function of depth. Here, zi is the depth of the contact between
the non-wetting and the wetting fluid and zn is the depth of pure non-wetting fluid.

capillary fringe, and will be discussed in more detail in this section. The second
effect is that capillary forces will redistribute fluids slightly near a dynamic
displacement front so that this is not a pure discontinuity, as assumed in the
hyperbolic models discussed in Chapter 9, but rather a smooth wave. For
many field and sector models, the characteristic width of the transition zone
is small compared to the typical grid size and hence capillary forces can be
safely neglected. In other cases, capillary forces have a significant dampening
effect on the tendency for viscous fingering and is therefore crucial to include
in the simulation model.

Returning to the formation of a capillary fringe near a fluid interface, let
zi denote the depth of the contact between the wetting and non-wetting fluid,
and let pn,i and pw,i denote the phase pressures at this depth. The phase
pressures and the capillary pressure is then given by,

pw(z) = pw,i + gρw(z − zi), pn(z) = pn,i + gρn(z − zi)
pc(z) = pc,i + g∆ρ(z − zi)

(10.8)

where ∆ρ = ρn−ρw is the density difference and pn,i is the capillary pressure
at zi. This pressure is the capillary pressure that is necessary to initiate dis-
placement of the wetting fluid by the non-wetting fluid and is called the entry
pressure. It follows from (10.8), that the total height of the capillary fringe is
given by pc,n/g∆ρ. Figure 10.23 illustrates the concept of a capillary fringe
for a case with zero residual saturations.

If we know the phase contact zi, the saturation can be found directly by
first computing the capillary force as function of depth using (10.8) and then
using the capillary pressure function Pc(S) to invert for saturation. Alterna-
tively, if we only know the volume of the fluids, we can use the incompressible
solvers to determine the hydrostatic fluid distribution. To illustrate, we con-
sider a 100× 100 m2 vertical cross-section represented on a 20× 40 grid. We

Page: 337 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



338 10 Solvers for Incompressible Immiscible Flow

will assume a fluid system with CO2 and brine having the same basic prop-
erties as in Section 10.3.2. With a density difference of approximately 290
kg/m3, the capillary fringe corresponding to a capillary pressure of 1 bar has
height 35 m. To model that the relationship between saturation and capillary
pressure depends on permeability and porosity, we use the Leverett J-function
(8.9). The initSimpleFluidJfunc implements a simplified Corey-type fluid
in which J(S) = 1− S. This gives,

Pc(S) = σ

√
φ

K
(1− S).

The surface tension σ is usually specific to the fluid, but to illustrate the effect
of capillary raise, we choose a value such that median rock properties give a
capillary pressure of one bar,

fluid = initSimpleFluidJfunc('mu' , [0.30860, 0.056641]*centi*poise, ...
'rho' , [ 975.86, 686.54]*kilogram/meterˆ3, ...
'n' , [ 2, 2], ...
' surf tension ' ,1*barsa/sqrt(mean(rock.poro)/(mean(rock.perm))),...
'rock' ,rock);

We set initial data such that the rock is filled with half a pore volume of
wetting fluid at the bottom and half a pore volume of non-wetting fluid at
the top. We then simulate the system forward in time until steady-state is
reached. The time-loop is set up with a gradual ramp-up of the time step as
follows to increase the stability of the solution procedure (we will come back
to the choice of time step in Section 10.4.1),

dt = dT*[1 1 2 2 3 3 4 4 repmat(5,[1,m ])]*year;
dt = [dt(1).*sort(repmat(2.ˆ−[1:5 5],1,1)) dt(2:end)];
s = xr.s(:,1);
for k = 1 : numel(dt),

xr = incompTPFA(xr, G, hT, fluid);
xr = implicitTransport(xr, G, dt(k), rock, fluid);
t = t+dt(k);
if norm(xr.s(:,1)−s,inf)<1e−4, break, end;

end

We consider two different permeability setups. In the first case, the perme-
ability field varies linearly from 50 md in the west to 400 md in the east. The
porosity is assumed to be constant. When the system is released from the
artificial initial state with a sharp interface at z = 50, the non-wetting fluid
starts draining downward into the wetting phase whereas the wetting phase
starts imbibing upward into the non-wetting phase. After approximately 3.5
years, the system reaches the steady state shown in the middle plot in the
upper row of Figure 10.23. Here, we say that steady-state is reached when
the saturation difference between two consecutive time steps is less than 10−4

measured in the L∞ norm. Because the permeability is homogeneous in the

Page: 338 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 339

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Fig. 10.23. Capillary fringe for two different permeability fields: permeability in-
creasing linearly from west to east (top), and lognormal permeability (bottom).

vertical direction, the steady-state saturation decreases linearly upward from
pure wetting to pure non-wetting fluid. The height of the capillary fringe is
much higher in west where the permeability is low, since the capillary scales
as 1/

√
K, and lower in the east where the permeability is high. In the plot

of capillary pressure versus saturation to the upper-right in Figure 10.23, you
may also be able to identify the twenty different lines corresponding to the
twenty columns of homogeneous permeability in the grid.

The second case has random petrophysical parameters with a permeability
field that is related to a Gaussian porosity field through a Carman–Kozeny
relationship, see the lower-left plot in Figure 10.23. The permeability values
span three orders of magnitude, from 1 md to 1 darcy, which in turn gives a
wider span in time constants than in the previous case. Likewise, as in the pre-
vious case, the imbibing wetting phase will be sucked higher up and sideways
into regions of lower permeability. If you run the script capillaryColumn

yourself, you will see that the high-permeable regions surrounding the initial
sharp interface reach equilibrium within a few years, whereas the rise is much
slower in the low-permeable regions, in particular in the column next to the
east boundary, which is the last to reach steady state, after approximately
41 years. At steady state, the fringe extends above the top of the reservoir
section in the east-most column. Moreover, since the permeability is hetero-
geneous, the saturation at steady state is no longer monotone in the vertical
(and horizontal) direction.

Page: 339 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



340 10 Solvers for Incompressible Immiscible Flow

0 0.1 0.2 0.3 0.4 0.5 0.6

Multiplier: z

 0.1    1   10  100 1000

mD

Vertical perm

    1    10   100  1000 10000

mD

Horizontal perm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Net-to-gross

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Porosity

Fig. 10.24. The Norne test case with grid and petrophysical data from the simula-
tion model of the real field. The well pattern is artificial and has nothing to do with
the real model.

10.3.8 Norne: simplified simulation of a real-field model

Having worked with highly idealized models so far in this chapter, it is now
time to look at a more realistic model. For this, we will use the grid geome-
try and the petrophysical properties from a simulation of the Norne field from
the Norwegian Sea. More details about Norne and the reservoir geometry were
given in Section 3.3.1. Figure 10.24 shows the petrophysical properties as well
as a well-pattern that was chosen somewhat haphazardly for illustration pur-
poses. We notice that the permeability is anisotropic and heterogeneous, with
a clear layered structure. This layered structure is also reflected in the his-
tograms, which show several modes. (Such histograms are discussed in more
detail in Sections 2.5.3 and 2.5.5 for the SPE10 and SAIGUP models). The
lateral permeability has four orders of magnitude variations, while the verti-
cal permeability is up to two orders lower and has five orders of magnitude
variations. The histogram plot the histograms as discussed for the SPE10
and SAIGUP models in .) In addition, the vertical communication is further
reduced by a multiplier field (MULTZ keyword), which contains large regions
having values close to zero in the middle layers of the reservoir. The porosities
span the interval [0.094,0.347], but since the model has a net-to-gross field to
model that a portion of the cells may consist of impermeable shale, the effec-
tive porosity will be much smaller in some of the cells. For a model like this,
we thus cannot expect to be able to use the explicit transport solver and must
instead rely on the implicit solver.

Setting up the model proceeds in a similar fashion as discussed previously,
and the interested reader can consult the runNorneSimple script in the book

module (a similar example with synthetic petrophysical properties can be

Page: 340 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.3 Simulation examples 341

500 1000 1500 2000 2500 3000 3500 4000

1

2

3

4

5

6

x 10
4

Time [Days]

Oil rate [stb/day]

 

 

P1 P2 P3 P4 P5

500 1000 1500 2000 2500 3000 3500 4000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time [Days]

Water rate [stb/day]

 

 

P1 P2 P3 P4 P5

Fig. 10.25. Incompressible two-phase simulation for the Norne model. The upper
plots show snapshots of the solution (after 6 and 12 years, respectively) and the
lower plots show oil and water surface rates for all producers.

found in incompExampleNorne2ph from the incomp module). The only dif-
ferenc is how to account for the transmissibility multipliers. This is done as
follows,

hT = computeTrans(G, rock, 'Verbose', true);
tmult = computeTranMult(G, grdecl);
hT = hT.*tmult;

where grdecl is the Eclipse input structure that contains data for the MULTZ

keyword. The second call takes the MULTZ values, which are associated with
cells and assigns a corresponding reduction value between 0 and 1 to all half-
faces. We then multiply the half-transmissibilities hT by tmult to get the
reduced transmissibility. It is important that these multipliers are assigned
before computing the intercell transmissibilities. Altogether, approximately
6.5% of the half-faces have reduced transmissibility.

Figure 10.25 shows results of a simulation of a scenario in which water
is injected into oil. The oil has a five times higher viscosity and hence the
injected water will form an unstable displacement with a weak displacement
front similar to what has been discussed above. The main displacement takes
place in the region that involves injectors I1 to I5 and producers P1 to P3.

Page: 341 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



342 10 Solvers for Incompressible Immiscible Flow

The last two producers are located in regions that are poorly connected to
the rest of the reservoir where the injectors are placed and hence contribute
less to the overall production. This is particularly true for producer P4, which
most likely is completely misplaced. As we have seen in previous examples,
once water breaks through in a well (primarily in P1 and P2), the oil rate
decays significantly.

The main purpose of the example lies in the actual code and not in the
results it produces. Discussing the simulation results beyond this point is
therefore somewhat futile since the fluid system and the well pattern have
limited relevance for the real reservoir, which contains a three-phase oil–gas–
water system that is modelled using the compressible black-oil equations that
will be discussed in the next chapter. The main take-away message is that
solvers can be applied to models that have the geometrical and petrophysical
complexity seen in real reservoir models.

Computer exercises:

71. To get more acquainted with the multiphase incompressible solvers and see
their versatility, you should return to a few examples presented earlier in
the book and try to set them up as multiphase test cases:
� Consider the strange reservoir studied in Exercise 8 on page 66 and

place one injector to the south and two producers placed symmetrically
along the northern perimeter and simulate the injection of one pore
volume of water into an oil.

� Consider the test case with non-rectangular reservoir geometry in Fig-
ure 5.6 on page 164 and set up a simulation that injects one pore volume
from the flux boundary. How would you compute the flux out of the
pressure-controlled boundary?

� Pick any of the faulted grids generated by the simpleGrdecl routine
as shown in Figure 3.33 on page 102 and place an injector in one fault
block and a producer in the other and simulate the injection of half a
pore volume of water.

72. Consider a rectangular reservoir with two wells, e.g., as shown in Figure 3.39
and compare solutions computed with three different grids: a uniform coarse
grid, a uniform fine grid, and a coarse grid with radial well refinement.

73. Try to study the Norne model in more detail.
� Are the multipliers important for the simulation result?
� Is gravity important or can it be neglected?
� Can you come up with a better recovery strategy, i.e., improved place-

ment and control strategy for wells?
� Do you get very different solutions if you use a consistent solver? (Hint:

Although multipliers can be incorporated into these solvers as described
in [176], this is not part of the public implementation and for this
comparison you should therefore neglect the MULTZ keyword).

Page: 342 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 343

10.4 Numerical errors

There are several errors involved in the computations above. First of all, we
have the obvious numerical discretization errors that arise when approximat-
ing a continuous differential equation by a set of discrete finite-volume equa-
tions. For single-phase, incompressible flow, these errors were purely spatial
errors. These errors will decrease with decreasing size of the grid as long
as the spatial discretization is consistent. However, as we saw in Chapter 6,
the standard two-point scheme is not consistent unless the grid is strictly K-
orthogonal, and the incompTPFA pressure solver can in general be expected
to produce errors for anisotropic permeabilities and skewed grids. When us-
ing a sequential method to solve multiphase flow equations, there will also
be temporal errors arising from three different factors: discretization errors
arising when approximating temporal derivatives in the transport equations
by discrete differences, amplifications of spatial errors with time, and errors
introduced by the operator splitting underlying the sequential solution proce-
dure. In this section, we will briefly discuss the two last error types in some
more detail.

10.4.1 Splitting errors

When using a sequential solution procedure, the total velocity is computed
from the fluid distribution at the start of each time step. This means that the
effect of mobility on the flow paths is ’frozen’ in time, and for each time step
appears as if we solved a single-phase flow problem with reduced permeability
in all parts of the domain that contain more than one fluid phase. Within a
single splitting step the transport solver will thus only resolve the dynamic
effect of mobility along each flow path, but will not account for the fact that
mobility changes reduce the effective permeability along each flow path or
move the flow paths themselves. This introduces a ’time lag’ in the simulation,
which may lead to significant errors in the propagation of displacement fronts
if the splitting steps are chosen too large.

Homogeneous quarter five-spot

To illustrate this, we can revisit the homogeneous quarter five-spot from
Section 10.3.3 and study the self-convergence of approximate solutions de-
fined on a fixed grid as the number of splitting steps increases. Figure 10.26
shows approximate solutions at time t = 0.6 PVI computed with 4` steps for
` = 0, . . . , 3. With a single pressure step, the displacement front coincides with
the time line from the single-phase flow field since the pressure computation
only sees the initial oil saturation. The only exception is a certain smearing
introduced by the spatial and temporal discretization of the explicit scheme
used to compute the transport step, The retardation effect that oil has on
the invading water is better accounted for as the number of splitting steps

Page: 343 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



344 10 Solvers for Incompressible Immiscible Flow

1 steps 4 steps 16 steps 64 steps

Fig. 10.26. Quarter five-spot solution at time 0.6 PVI computed on a uniform
128 × 128 grid with the explicit transport solver and different number of splitting
steps. The solid lines are time lines at t = 0.6a for a single-phase displacement.

Table 10.1. Self-convergence for the homogeneous quarter five-spot computed on a
128× 128 grid with n splitting steps relative to a reference solution computed with
256 time steps after 0.6 PVI. The errors are reported in relative norms.

saturation pressure
n L1-error rate L2-error rate

1 5.574e-02 — 4.950e-03 —
2 4.368e-02 0.35 5.140e-04 3.27
4 2.778e-02 0.65 1.554e-04 1.73
8 1.445e-02 0.94 4.524e-05 1.78
16 6.389e-03 1.18 1.226e-05 1.88
32 2.394e-03 1.42 2.998e-06 2.03
64 7.869e-04 1.61 5.990e-07 2.32

increases, and hence the splitting solution gradually approaches the correct
solution. Table 10.1 reports the self-convergence towards a reference solution
computed on the same grid with 256 splitting steps. The convergence rate is
computed based on an assumption that the error scales like O(∆tr). If the
solution having error E2 is computing using twice as many time steps as the
solution having error E1, the corresponding convergence rate is

r = log(E1/E2)/ log(2).

Pressure is smooth and will therefore converge faster that saturation, which
is a discontinuous quantity and hence will have much larger errors. The
convergence for high n values is exaggerated since we are measuring self-
convergence towards a solution computed with the same method, but with a
larger number of steps. The code necessary to run this experiment is found in
splittingErrorQ5hom.m in the in2p directory of the book module.

Heterogeneous quarter five-spot

As pointed out earlier, the coupling between the pressure and transport equa-
tion depends on the variation in total mobility λ(S) throughout the simula-
tion. If the variations are small and smooth, the two equations will remain

Page: 344 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 345

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

1:10

1:1

10:1

Fig. 10.27. Total mobility for three fluid models with different viscosity ratios.

256 steps2 steps 4 steps 8 steps 16 steps 32 steps 64 steps

Fig. 10.28. Self convergence with an increasing number of equally-spaced splitting
steps to reach time 0.5 PVI for a quarter five-spot setup on a subsample from the
first layer of the SPE 10 model for three different viscosity ratios M = µw/µn (top:
M=1/10, middle: M=1, bottom: M=10). Saturation profiles are shown at a time
scaled by ν(1)/ν(M), where ν(M) is the characteristic wave speed of the displace-
ment front with viscosity ratio M .

loosely coupled, and relatively large time steps can be allowed without seri-
ously decaying solution accuracy. (For the special case of linear mobilities and
equal viscosity ratios, the two equations are even completely decoupled.) On
the other hand, when λ has large variations over the interval [0, 1], the pres-
sure and transport equation are more tightly coupled and we cannot expect
to be able to use large splitting steps. To illustrate this, we will revisit the
setup with three different fluid models used to study viscous fingering in Sec-
tion 10.3.4. From the plot of the total mobilities in Figure 10.27 it is obvious
that both the unfavorable (1:10) and the favorable (10:1) mobility cases will
have stronger coupling between saturation and pressure than the case with
equal viscosities.

Figure 10.28 shows the self convergence of the saturation profiles with re-
spect to the number of equally-spaced time steps used to reach time 0.5 PVI.
To isolate the effect of splitting errors and avoid introducing excessive numeri-
cal smearing in the solutions with few splitting steps, the transport steps have

Page: 345 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



346 10 Solvers for Incompressible Immiscible Flow

been subdivided into substeps so that the implicit solver uses the same step
length and hence introduces the same magnitude of numerical smearing in all
simulations. From the figure it is clear that even with very few splitting steps,
the sequential solution method manages to capture the qualitatively correct
behavior for all viscosity ratios. As expected, the discrepancies in solutions
with few and many time steps are larger for the favorable and unfavorable
case than for the case with unit viscosity.

To investigate how the size of the splitting steps affects the quantitative
behavior of the approximate solutions, we rerun the experiments above up
to 1.5 PVI. Figure 10.29 reports water cut in the producer for all three fluid
models. Starting with the unfavorable case, we see that the water cut has a
dent. This is a result of the secondary finger that initially extends along the
western edge making contact with the main finger and hence contributing to a
more rapid incline in water production. All curves, except the one using only
three time steps, follow the same basic trend. The main reason is that small
variations in the saturation profile will not have a large effect on the water
cut since the displacement front is so weak. With three splitting steps only,
the main dent is a result of the second pressure update. For unit viscosity
ratios, the production curves are still close, but here we notice a significant
incline in the curve computed with 12 steps after the pressure update at 0.75
PVI. The 12-step and 48-step curves also show non-monotone behavior at
0.625 PVI and 0.69 PVI, respectively. Similar behavior can be seen for the
favorable case, but since this case has an almost piston-like displacement front,
the lack of monotonicity is significantly magnified. For comparison, we have
also included a simulation with 96 splitting steps, in which the first two first
steps have been replaced by ten smaller splitting steps that gradually ramp
up to the constant time step. These profiles, and similar profiles run with
48 steps, are monotone, which suggests that the inaccuracies in the evolving
saturation profiles are introduced early in the simulation when the profile
is rapidly expanded by high fluid velocities in the near-well region. In our
experience, using such a ramp-up is generally advisable to get more well-
behaved saturation profiles. The code necessary to run this experiment is
found in splittingErrorQ5het.m in the in2p directory of the book module.

Capillary-dominated flow

The sequential solution procedure discussed in this chapter is as a general rule
reasonably well-behaved for two-phase scenarios where the fluid displacement
is dominated by the hyperbolic parts of the transport equation, i.e., by viscous
forces (pressure gradients) and/or gravity segregation. If the parabolic part
of the solution dominates, on the other hand, a sequential solution procedure
will struggle more, in particular when computing fluid equilibrium govern by
a delicate balance between gravity and capillary forces. To illustrate this, we
revisit the computation of capillary fringe from Section 10.3.7. If you look
carefully in the accompanying code, you will see that the two cases are com-
puted with a time step that is ten times larger for the Gaussian case than

Page: 346 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 347

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Water cut for M=0.1

 

 

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Water cut for M=1.0

 

 

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Water cut for M=10.0

 

 

P (3)

P (12)

P (48)

P (192)

P (768)

P (rampup)

Fig. 10.29. Water cut in the producer for various number of splitting steps for the
heterogeneous quarter five-spot setup from Figure 10.28.

for the case with linear permeability. The time steps (and initial the ramp-up
sequence) were chosen by trial and error and are close to what appears to be
the stability limit. If one, for instance, increases the final time steps by 150%
for the case with linear permeability, the simulation will not converge but in-
stead ends up predicting an oscillatory interface, as illustrated in Figure 10.30.
Similar problems may arise e.g., when simulating structural trapping of CO2

using vertical equilibrium models in which gravity gives rise to a parabolic,
see e.g., [177].

Page: 347 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



348 10 Solvers for Incompressible Immiscible Flow

0 1 2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

∆ t = 36.50 days

∆ t = 54.75 days

Fig. 10.30. Unstable solution computed by a sequential solution with a too large
splitting step. The lower plot shows difference in L∞ norm between consecutive time
steps, which is used as convergence criterion by the solver, for a convergent solution
with ∆t = 36.5 days and for a divergent solution with ∆t = 54.75 days. The upper
plot shows three consecutive time steps for the divergent solution.

10.4.2 Grid-orientation errors

As you may recall from the discussion on page 304, the saturation-dependent
mobility at the interface between two grid blocks is usually approximated
by single-point, upstream mobility weighting. Like the TPFA method, the
resulting scheme only accounts for information on opposite sides of a cell
interface and does not take any transverse transport effects into account. It
is therefore well known that this method also suffers from grid-orientation
errors, especially when applied to unfavorable displacements, as we will see in
the following example. In passing, we also note that to evaluate gravity and
capillary-pressure terms, the transport solvers use two-point approximations
similar to what is used in the TPFA method. This may introduce additional
errors, but these will not be discussed in detail herein.

Homogeneous quarter five-spot

When the single-point transport solver is combined with the classical TPFA
pressure solver, numerically computed displacement fronts tend to preferen-
tially move along the axial directions of the grid, i.e., in the direction of
the normal vectors of the cell faces. This will lead to grid-orientation ef-
fects like those discussed earlier in Chapter 6 even if the resulting grids are
K-orthogonal. To illustrate this, we compare and contrast solutions of the
standard quarter five-spot setup with a rotated setup in which the grid is

Page: 348 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 349

aligned with the directions between injectors and producers as illustrated in
Figure 10.31. This test problem was first suggested by Todd et al. [216] and
has later been used by many other authors to study grid-orientation errors
in miscible displacements [235, 197, 211], which are particularly susceptible
to this type of truncation error. (See runQ5DiagParal for complete setup of
the two cases.) To avoid introducing too much diffusion when using few time
steps, we use the explicit transport solver.

For the standard setup, the combination of a single-point transport solver
and two-point pressure solver overestimates the movement into the stagnant
regions along the x and y axes and underestimates the diagonal movement
in the high-flow direction between injector and producer along the diagonal.
In the rotated setup, the grid axes follow the directions between the wells
and the solvers will hence tend to overestimate the flow in the high-flow zone
and underestimate the flow toward the stagnant zones. The upper row in Fig-
ure 10.32 shows that this effect is pronounced for the unfavorable displacement
(M = 0.1), evident with equal viscosities (M = 1), and hardly discernible for
the favorable displacement (M = 10). For the equal viscosity case, the dif-
ference between the two grids can be almost eliminated by increasing the
number of splitting steps for a fixed ∆x and/or by increasing the grid reso-
lution provided a certain number of time steps are used. For the unfavorable
displacement, the plots in the middle row of Figure 10.32 show that increasing
the number of time steps changes both solutions in the same direction, but
does not necessarily reduce their difference. However, since both the original
and the rotated grid are regular, the grid-orientation effect introduced by the
axial orientation of the grid relative to the main flow direction is reduced by
increasing the grid resolution.

A possible remedy to the behavior observed above is to replace the single-
point scheme by a multidimensional upwind scheme, see e.g., [115], or a mod-
ern high-resolution scheme like the ones discussed in Section 9.5. Unfortu-
nately, such methods have not yet been implemented for general grids in
MRST.

Computer exercises:

74. Repeat the experiments discussed above using one of the consistent solvers
from Chapter 6 to compute the pressure. Do you see any differences?

Symmetric well pattern on a skew grid

We have already seen several times that since the TPFA scheme cannot ap-
proximate transverse fluxes that are parallel to grid interfaces, the incompTPFA
solver will introduce grid-orientation errors for anisotropic permeabilities and
grids that are not K-orthogonal. For single-phase flow such errors can be
greatly reduced by applying the consistent solvers discussed in Chapter 6, but

Page: 349 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



350 10 Solvers for Incompressible Immiscible Flow

Producer

Injector

Quarter five-spot

Rotated ’five-spot’

Fig. 10.31. Well setup for the quarter five-spot comparison. Displacement fronts
have preferential movement parallel to the axial directions and hence the rotated
setup will predict earlier breakthrough than the original setup.

Mobility ratio 1:10. Time: 0.3 PVI Mobility ratio 1:1. Time: 0.6 PVI Mobility ratio 10:1. Time: 0.7 PVI

Grid: 32 x 32. Steps: 1 Grid: 32 x 32. Steps: 8 Grid: 32 x 32. Steps: 64

Grid: 16 x 16. Steps: 16 Grid: 32 x 32. Steps: 16 Grid: 64 x 64. Steps: 16

Fig. 10.32. Quarter five-spot solutions computed on the rotated (colors) and orig-
inal (solid lines) geometry. The upper plots show solutions computed on a 16 × 16
grid with 2, 8, and 32 time steps. The lower plots show solutions computed with 16
splitting steps on a sequence of refined grids..

Page: 350 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 351

0 100 200 300 400
0

50

100
TPFA: 250 days

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100
Mimetic: 250 days

 

 

0 100 200 300 400
0

50

100

 

 

100

150

200

0

0.5

1

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [Days]

Water cut

 

 

P1 (TPFA)

P2 (TPFA)

P1 (MFD)

P2 (MFD)

200 400 600 800 1000 1200
0

500

1000

1500

2000

Time [Days]

Cumulative oil production [m
3
]

 

 

P1 (TPFA)

P2 (TPFA)

P1 (MFD)

P2 (MFD)

Fig. 10.33. Simulation of a symmetric flow problem in a horizontal, homogeneous
domain represented on a skew grid.

will generally not be completely eliminated. In this example, we will revisit a
case discussed in Chapter 6. The computational setup consists of a horizontal
400 × 200 m2 sector from a reservoir. Water is injected from one well at the
midpoint of the northern perimeter and fluids are produced from two wells
along the southern perimeter, located 50 m from the southeast and southwest
corners, respectively. Since the well pattern is symmetric within a confined
domain and the petrophysical parameters are homogeneous and isotropic, the
true displacement profile will also be symmetric. The grid, however, is skewed
and compressed towards the southeast corner, and this will induce a prefer-
ential flow direction towards the southeast producer. Since grid-orientation
effects are more pronounced for unstable displacements, we use the same con-
figuration as in the previous example with a viscosity ratio M = 10, which
gives a very mobile, weak displacement front that will tend to finger rapidly
into the resident oil. Figure 10.33 shows a snapshot of the pressure and sat-
uration profiles after 250 days along with water cuts and cumulative oil pro-
duction over the whole 1200-day simulation period. The flow field computed
using the incompTPFA pressure solver exhibits the same lack of symmetry as
seen in Figure 6.5 on page 188. The result is a premature breakthrough in
the southeast producer and delayed breakthrough in the southwest producer.
With a mimetic finite difference (MFD) pressure solver, the water-cut curves
are much closer and less affected by grid-orientation errors. Moreover, since

Page: 351 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



352 10 Solvers for Incompressible Immiscible Flow

0 100 200 300 400
0

50

100
TPFA: 500 days

0 100 200 300 400
0

50

100

0 100 200 300 400
0

50

100
Mimetic: 500 days

 

 

0 100 200 300 400
0

50

100

 

 

100

150

200

0

0.5

1

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [Days]

Water cut

 

 

P (TPFA)

P (MFD)

200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Time [Days]

Cumulative oil production [m
3
]

 

 

P (TPFA)

P (MFD)

Fig. 10.34. Simulation of a symmetric flow problem in a vertical, homogeneous
domain represented on a skew grid with two horizontal injectors at the bottom and
a horizontal producer at the top.

all wells operate under pressure control, we see that the total oil production
predicted by the TPFA scheme is significantly less than for the MFD scheme.

As a second example, we will use the same grid to describe a vertical
cross-section, in which water is injected from two horizontal injectors at the
bottom of the reservoir and fluids produced from a horizontal producer at the
top of the reservoir. Producers and injectors operate under the same pressure-
control as for the horizontal reservoir section. Figure 10.34 shows simulation
results from with the TPFA and the mimetic pressure solvers. The injected
and the resident fluids have a density difference of 150 kg/m3, and hence
gravity will tend to oppose the imbibing water front in a way that accentuates
the grid-orientation effects for both solvers. For comparison, Figure 10.35
reports the simulations performed on a regular Cartesian grid. Both schemes
produce symmetric, but slightly different displacement profiles and the match
in production profiles is largely improved compared with the skew grid.

Altogether, the two examples presented in this section hopefully show you
that you not only need to take care when designing your grid, but should
also be skeptic to simulations performed by a single method or a single choice
of time steps. A good advice is to conduct simulations with more than one
scheme, different grid types, and different time-step selection to get an idea
of how numerical errors influence your results.

Page: 352 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



10.4 Numerical errors 353

0 100 200 300 400
0

50

100
TPFA: 500 days

0 100 200 300 400
0

50

100
Mimetic: 500 days

 

 

0

0.5

1

200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [Days]

Water cut

 

 

P (TPFA)

P (MFD)

200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Time [Days]

Cumulative oil production [m
3
]

 

 

P (TPFA)

P (MFD)

Fig. 10.35. Simulation of a symmetric flow problem in a vertical, homogeneous
domain computed on a regular Cartesian grid.

Computer exercises:

To further investigate grid-orientation effects, consider any of the following test
cases. Do you see any difference between using TPFA and a consistent pressure
solver (mimetic or MPFA-O)?

75. Set up a flow problem to compare solutions computed on the extruded
Delaunay or Voronoi grids shown in Figure 3.34 on page 102.

76. Set up a quarter five-spot test using the grids shown in Figure 3.42 on
page 110.

77. The CaseB4 test case shown in Figure 3.20 on page 84 is represented in two
different ways, using either a deviated pillar grid or a stair-stepped grid, and
sampled at two different resolutions. Set up a flow problem with four wells,
two injectors and two producers, one in each corner of the reservoir. Run
simulations on all four grids and compare production curves. You can either
use homogeneous permeability or a layered permeability with homogeneous
properties within each layer.

78. Pick any of the models in the bedModels1 or bedModel2 data sets and run
two-phase simulations injecting one pore volume from south to north and
from west to east.

Page: 353 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 356 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Part IV

Reservoir Engineering Workflows

Page: 357 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



Page: 358 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12

Flow Diagnostics

Even for single-phase flow it is seldom sufficient to only study well responses
and pressure distribution to understand the flow paths and communication
patterns in a complex reservoir model. To gain a better qualitative picture
of the flow taking place in the reservoir, you will typically want to know the
answer to questions such as: From what region does a given producer drain? To
what region does a given injector provide pressure support? Which injection
and production wells are in communication? What part of the reservoir affects
this communication? How much does each injector contribute to support the
recovery from a given producer? Do any of the wells have back-flow? What is
the sweep and displacement efficiency within a given drainage, sweep, or well-
pair region? Which regions are likely to remain unswept? Likewise, you will
typically also want to perform what-if and sensitivity analyzes to understand
how different parameters in the reservoir model and their inherent sensitivity
affect reservoir responses.

As we have seen earlier in the book, performing a single simulation of a full
reservoir model containing a comprehensive description of geology, reservoir
fluids, flow physics, well controls, and coupling to surface facilities is a compu-
tationally demanding task that may require hours or even days to complete.
This means that your ability to study parameter variations is limited. This
is particularly at odds with modern reservoir characterization techniques, in
which hundreds of equiprobable realizations may be generated to quantify un-
certainty in the characterization. In this chapter, we will therefore introduce
a set of simple techniques referred to as flow diagnostics that can be used
to develop basic understanding of how the fluid flow is affected by reservoir
geology and how the flow patterns in the reservoir respond to engineering
controls. In their basic setup, these techniques only rely on the solution of
single-phase, incompressible flow problems as discussed in Chapters 4 and 5.
(However, in parts of the presentation, we will use some simple concepts from
multiphase flow that are introduced later in the book, but which are hopefully
still understandable if you have not yet read about multiphase flow).

Page: 359 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



360 12 Flow Diagnostics

In general, flow diagnostics can be defined as simple and controlled nu-
merical flow experiments that are run to probe a reservoir model, establish
connections and basic volume estimates, and quickly provide a qualitative pic-
ture of the flow patterns in the reservoir. Flow diagnostics can also be used to
compute quantitative information about the recovery process in settings some-
what simpler than what would be encountered in an actual field, and using
these techniques, you can rapidly and iteratively perturb simulation input and
evaluate the resulting changes in volumetric connections and communications
to build an understanding of cause and effects in your model.

Ideas similar to what will be presented in the following have previously
been used within streamline simulation [61] for ranking and upscaling [102, 20,
208], identifying reservoir compartmentalization [92], rate optimization [214,
189, 104], and flood surveillance [24]. Our presentation, however, is inspired by
Shahvali et al. [206] and [166], who developed the concept of flow diagnostics
based on standard finite-volume discretizations.

Because of their low computational cost, flow diagnostics methods can
easily be incorporated into interactive graphical tools that offer rapid and in-
teractive screening and preprocessing capabilities. This, however, is not easy to
present in book form, and if you want to see these tools in practice, you should
try out some of the examples that follow MRST study the exercises presented
throughout this chapter. Flow diagnostics techniques can also be utilized to
post-process more comprehensive simulation methods and to perform what-if
and sensitivity analyzes in parameter regions surrounding preexisting simula-
tions. As such, flow diagnostics offers a computationally inexpensive comple-
ment and/or alternative to the use of full-featured multiphase simulations to
provide flow information in various reservoir management workflows. .

12.1 Flow patterns and volumetric connections

You have already been introduced to the basic quantities that lie at the core of
flow diagnostics in Chapters 4 and 5: As you probably recall from Section 4.3.3,
we can derive time lines that show how heterogeneity affects flow patterns for
an instantaneous velocity field ~v by computing

� the forward time-of-flight, defined by

~v · ∇τf = φ, τf |inflow = 0, (12.1)

which measures time it takes a neutral particle to travel to a given point
in the reservoir from the nearest fluid source or inflow boundary; and

� the backward time-of-flight, defined by

− ~v · ∇τb = φ, τb|outflow = 0, (12.2)

which measures the time it takes a neutral particle to travel from any point
in the reservoir to the nearest fluid sink or outflow boundary.

Page: 360 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.1 Flow patterns and volumetric connections 361

The sum of the forward and backward time-of-flight at a given point in the
reservoir gives the total residence time of an imaginary particle as it travels
from the nearest fluid source or inflow boundary to the nearest fluid sink or
outflow boundary. Studying iso-contours of time-of-flight will give an indica-
tion of how more complex multiphase displacements may evolve under fixed
well and boundary conditions, and will reveal more information about the flow
field than pressure and velocities alone. This was illustrated already in Chap-
ter 5, where Figure 5.3 on page 160 showed time lines for a quarter five-spot
flow pattern and the total residence time was used to distinguish high-flow
regions from stagnant regions. Likewise, in Figure 5.11 on page 173 we used
time-of-flight to identify non-targeted regions for a complex field model, that
is, regions with high τf values that were likely to remain unswept and hence
were obvious targets to investigate for placement of additional wells. Time-of-
flight can also be used to derive various measures of dynamic heterogeneity, as
we will see in the next section, or to compute proxies of economical measures
such as net-present value for models that contain multiphase fluid information,
see [166].

In similar manner, we can determine the points in the reservoir that are
affected by a given fluid source or inflow boundary by solving the following
injector (or inflow) tracer equation,

~v · ∇cki = 0, cki |inflow = 1. (12.3)

To understand what this equation does, let us think of an imaginary painting
experiment in which we inject a mass-less, non-diffusive ink of a unique color
at each fluid source or point on the inflow boundary we want to trace the
influence from. The ink will start flowing through the reservoir and paint
every point it gets in contact with. Eventually, the fraction of different inks
that flow past each point in the reservoir will reach a steady state, and by
measuring these fractions, we can determine the extent to which each different
ink influences a specific point. Likewise, to determine how much each point in
the reservoir is influenced by a fluid sink or point on the outflow boundary, we
can reverse the flow field and solve similar equations for producer (or outflow)
tracers,

− ~v · ∇ckp = 0, cki |outflow = 1. (12.4)

To summarize, the basic computation underlying flow diagnostics consists
of three parts: (i) solution of a pressure equation to determine the bulk fluid
movement; (ii) solution of a set of numerical tracer equations to partition the
model into volumetric flow regions; and (iii) solution of time-of-flight equations
to give time lines that describe the flow within each region. In the following,
we will describe in more detail how these basic quantities can be combined
and processed to provide more insight into flow patterns and volumetric con-
nections in the reservoir.

Page: 361 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



362 12 Flow Diagnostics

12.1.1 Volumetric partitions

If all parts of the inflow (or outflow) are assigned a unique tracer value, the
resulting tracer distribution should in principle produce a partition of unity for
all parts of the reservoir that are in communication with the inflow (or outflow)
boundary. In practice, one may not be able to obtain an exact partition of
unity because of numerical errors. Based on the inflow and outflow tracers,
we can further define

� drainage regions – each such region represents the reservoir volume that
eventually will be drained by a given producer (or outflow boundary) given
that the current flow field ~v prevails until infinity;

� sweep regions – each such region represents the reservoir volume that even-
tually will be swept by a given injector (or inflow boundary) if the current
flow conditions remain forever;

� well pairs – pairs of injectors and producers that are in communication
with each other;

� well-pair regions – regions of the reservoir in which the flow between a
given injector and producer takes place.

Drainage and sweep regions are typically determined by a majority vote over
all tracers, while well pairs are determined by finding all injectors whose con-
centration is positive in one of the well completions of a given producer (or
vice versa). Well-pair regions can be found by intersecting drainage and sweep
regions, or alternatively by intersecting injector and producer tracers. Well-
allocation factors will be discussed in more detail in Section 12.1.3 and in
Chapter 14 in conjunction with single-phase upscaling.

Our default choice would be to assign a unique tracer to each injector and
producer, but you can also subdivide some of the wells into multiple segments
and trace the influence of each segment separately. This can, for instance, be
used to determine if a (horizontal) well has cross-flow, so that fluid injected
in one part of the well is drawn back into the wellbore in another part of the
well, or fluids produced in one completion is pushed out again in another.

We have already encountered the function computeTimeOfFlight for com-
puting time-of-flight in Section 5.3. The diagnostics module offers an addi-
tional utility function

D = computeTOFandTracer(state, G, rock, 'wells', W, ... )

that computes forward and backward time-of-flight, injector and producer
tracers, as well as sweep and drainage regions in one go for models with flow
driven by wells. These quantities are represented as fields in the structure D:

� inj and prod give the indices for the injection and production wells in the
well structure W;

� tof is a 2× n vector with τf in its first and τb in its second column;
� itracer and ptracer contains the tracers for the injectors and producers;
� ipart and ppart hold the partitions resulting from a majority vote.

Page: 362 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.1 Flow patterns and volumetric connections 363

forward time-of-flight tracer concentration for I1

backward time-of-flight tracer concentration for P2

residence time well-pair regions (I1↔P1) and (I2↔P3)

sweep regions drainage regions

Fig. 12.1. Time-of-flight, tracer distributions, and various types of volumetric de-
lineations for a simple case with two injectors and three producers. The source code
necessary to generate the plots is given in the showDiagnostBasic tutorial in the
book module.

Similar quantities can be associated with boundary conditions and/or source
terms, but support for this has not yet been implemented in MRST. Well
pairs can be identified by

WP = computeWellPairs(G, rock, W, D)

which also computes the pore volume of the region of the reservoir associated
with each pair.

Figure 12.1 shows time-of-flight, tracer concentrations, tracer partitions
and a few combinations thereof for a simple flow problem with two injectors

Page: 363 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



364 12 Flow Diagnostics

and three production wells. There are many other ways these basic quantities
can be combined and plotted to reveal volumetric connection and provide
enhanced insight into flow patterns. One can, for instance, combine sweep
regions with time-of-flight to provide a simple forecasts of contacted volumes
or to visualize how displacement fronts move through the reservoir. To this
end, one would typically also include estimates of characteristic wave-speeds
from multiphase displacement theory.

12.1.2 Time-of-flight per tracer region: improved accuracy

It is important to understand that the time-of-flight values computed by
a finite-volume method like the one discussed in Section 4.4.3 are volume-
average values, which cannot be compared directly with the point values
one obtains by tracing streamlines as described in Section 4.3.3. Since time-
of-flight is a quantity defined from a global line integral (see (4.38)), the
point-wise variations can be large inside a single grid cell, in particular near
flow divides and in the near-well regions, where both high-flow and low-flow
streamlines converge. To improve the accuracy of the time-of-flight within
each well-pair region, one can use the tracer concentrations to recompute the
time-of-flight values for each tracer region,

~v · ∇
(
cki τ

k
f

)
= cki φ. (12.5)

In MRST, this is done by passing the option computeWellTOFs to the time-
of-flight solver, using a call that looks something like

T = computeTimeOfFlight(state, G, rock, 'wells', W, ...
' tracer ' ,{W(inj).cells},'computeWellTOFs', true);

which will then append one extra column for each tracer at the end of the
return parameter T.

12.1.3 Well-allocation factors

Apart from a volumetric partition of the reservoir, one is often interested in
knowing how much of the inflow to a given producer can be attributed to
each of the injectors, or conversely, how the ’push’ from a given injector is
distributed to the different producers. We will refer to this as well-allocation
factors, which can be further refined so that they also describe the cumulative
flow from the toe to the heel of a well. By computing the cumulative flux
from the toe to the heel of the well and plotting this flux as a function of the
distance from the toe (with the flux on the x-axis and distance on the y-axis)
we get a plot that is reminiscent of the plot from a production-logging tool.

To formally define the well-allocation factors, we use the notation from
Section 4.4.2 on page 135, so that x[c] denotes the value of vector x in cell
c. Next, we let cin denote the injector tracer concentration associated with

Page: 364 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.2 Measures of dynamic heterogeneity 365

well (or well segment) number n, let cpm denote the producer concentration
associated with well number m, q the vector of well fluxes, and {wnk}k the
cells in which well number n is completed. Then, the cumulative factors are
defined as

ainm[wn` ] =
∑̀
k=1

q[wnk ]cpm[wnk ],

apmn[wm` ] =
∑̀
k=1

q[wmk ]cin[wmk ].

(12.6)

The total well-allocation factor equals the cumulative factor evaluated at
the heel of the well. Well-allocation factors are computed using the func-
tion computeWellPair and are found as two arrays of structs, WP.inj and
WP.prod, that give the allocation factors for all the injection and production
wells (or segments) accounted for in the flow diagnostics. In each struct, the
array alloc gives the anm factors, whereas the influx or outflux that cannot
be attributed to another well or segment is represented in the array ralloc.

12.2 Measures of dynamic heterogeneity

Whereas primary recovery can be reasonably approximated using averaged
petrophysical properties, secondary and tertiary recovery is strongly governed
by the intrinsic variability in rock properties and geological characteristics.
This variability, which essentially can be observed at all scales in the porous
medium, is commonly referred to as ’heterogeneity’. As we have seen in pre-
vious chapters, both the rock’s ability to store and to transmit fluids are het-
erogeneous. However, it is the heterogeneity in permeability that has the most
pronounced effect on flow patterns and volumetric connections in the reser-
voir. The importance of heterogeneity has been recognized from the earliest
days of petroleum production, and over the years a number of static measures
have been proposed to characterize heterogeneity, such as flow and storage
capacity, Lorenz coefficient, Koval factor, and Dykstra–Parson’s permeability
variation coefficient, to name a few; see e.g., [129] for a more comprehensive
overview.

In this section, we will show how some of the static heterogeneity measures
from classical sweep theory can be reinterpreted in a dynamic setting if we cal-
culate them from the time-of-flight (and tracer partitions) associated with an
instantaneous flow field [208]. Static measures describe the spatial distribution
of permeability and porosity, and large static heterogeneity means that there
are large (local) variations in the rock’s ability to store and transmit fluids.
Dynamic heterogeneity measures, on the other hand, describe the distribution
of flow-path lengths and connection structure, and large heterogeneity values
show that there are large variations in travel and residence times, which again

Page: 365 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



366 12 Flow Diagnostics

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10

Fig. 12.2. Streamtube analogue used to define dynamic flow and storage capacity.
Colors illustrate different average porosities.

tend to manifest itself in early breakthrough of injected fluids. Experience has
shown that these measures, and particularly the dynamic Lorenz coefficient,
correlates very well with forecasts of hydrocarbon recovery predicted by more
comprehensive flow simulations and hence can be used as effective flow proxies
in various reservoir management workflows, see [208, 206, 166]

12.2.1 Flow and storage capacity

A computation of forward and backward time-of-flight is the starting point
for defining dynamic heterogeneity measures. We start by defining dynamic
flow and storage capacity. To this end, we can think of the reservoir as a set
of N streamtubes (non-communicating volumetric flow paths) that each has
a volume Vi, a flow rate qi, and a residence time τi = Vi/qi. The streamtubes
are sorted so that their residence times are ascending, τ1 ≤ τ2 ≤ · · · ≤ τN , see
Figure 12.2. Inside each streamtube, we assume a piston type displacement;
think of a blue fluid pushing a red fluid from the left to the right in the figure.
We then define the normalized flow capacity Fi and storage capacity Φi by,

Φi =

i∑
j=1

Vj

/ N∑
j=1

Vj , Fi =

i∑
j=1

qj

/ N∑
j=1

qj . (12.7)

Here, Φi is the volume fraction of all streamtubes that have ’broken through’
at time τi and Fi represent the corresponding fractional flow, i.e., the fraction
of the injected fluid to the total fluid being produced. These two quantities
can be plotted in a diagram as shown in Figure 12.3. From this diagram,
we can also define the fractional recovery curve defined as the ratio of inplace
fluid produced to the total fluid being produced; that is (1−F ) plotted versus
dimensionless time tD = dΦ/dF measured in units of pore volumes injected.

To see how the F -Φ diagram can be seen as a measure of dynamic hetero-
geneity, we first consider the case of a completely homogeneous displacement,
for which all streamtubes will break through at the same time τ . This means
that, (Φi − Φi−1)/(Fi − Fi−1) ∝ Vi/qi is constant, which implies that F = Φ,
since both F and Φ are normalized quantities. Next, we consider a heteroge-
neous displacement in which all the streamtubes have the same flow rate q.

Page: 366 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.2 Measures of dynamic heterogeneity 367

Vi

qi

normalize

Φ

F

Fig. 12.3. Construction of the F -Φ diagram. The plot to the left shows flow rates
qi plotted as function of streamtube volumes Vi for a homogeneous displacement
(green) and for a heterogeneous displacement (blue). The right plot shows the cor-
responding F -Φ diagrams, where the flow rates and the streamtube volumes have
been normalized.

Since the residence times τi form a monotonically increasing sequence, we have
that {Vi} will also be monotonically increasing. In general, F (Φ) is a concave
function, where the steep initial slope corresponds to high-flow regions giving
early breakthrough, whereas the flat trailing tail corresponds to low-flow and
stagnant regions.

In the continuous case, we can (with a slight abuse of notation) define the
storage capacity as

Φ(τ) =

∫ τ

0

φ(~x(s)) ds (12.8)

where ~x(τ) represents all streamlines whose total travel time equals τ . By
assuming incompressible flow, we have that pore volume equals the flow rate
times the residence time, φ = qτ , and hence we can define the flow capacity
as

F (τ) =

∫ τ

0

q(~x(s) ds =

∫ τ

0

φ(~x(s))

s
ds. (12.9)

From this, we can define normalized, dynamic flow and storage capacities by

Φ̂(τ) =
Φ(τ)

Φ(∞)
, F̂ (τ) =

F (τ)

F (∞)
.

Henceforth, we will only discuss the normalized quantities and for simplicity
we will also drop the hat symbol. To compute these quantities in practice, one
would then have to first compute a representative set of streamlines, associate
a flow rate, a pore volume, and a total travel time to each streamline, and
then compute the cumulative sums as in (12.7).

Next, we consider how these concepts carry over to our grid setting where
time-of-flight is computed by a finite-volume method and not by tracing
streamlines. Let pv be an n × 1 array containing the pore volume of the
n cells in the grid and tof be an n×2 array containing the forward and back-
ward time-of-flights. We can now compute the cumulative, normalized storage
capacity Phi as follows:

Page: 367 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



368 12 Flow Diagnostics

t = sum(tof,2); % total travel time
[ts,ind] = sort(t); % sort cells based on travel time
v = pv(ind); % put pore volumes in correct order
Phi = cumsum(v); % cumulative sum
vt = full(Phi(end)); % total volume of region
Phi = [0; Phi/vt]; % normalize to units of pore volumes

In our finite-volume formulation, we do not have direct access to the flow
rate for each cell, but this can easily be computed as the ratio between pore
volume and residence time if we assume incompressible flow. With this, it is
straightforward to compute the cumulative, normalized flow capacity F

q = v./ts; % back out flux based on incompressible flow
ff = cumsum(q); % cumulative sum
ft = full(ff(end)); % total flux computed
F = [0; ff/ft]; % normalize and store flux

This is essentially what is implemented in the utility function computeFandPhi

in the diagnostics module.
The result of the above calculation is that we have two sequences Φi and

Fi that are both given in terms of the residence time τi. If we sort the points
(Φi, Fi) according to ascending values of τi, we obtain a sequence of discrete
points that describe a parametrized curve in 2D space. The first end-point of
this curve is at the origin: If no fluids have entered the domain, the cumulative
flow capacity is obviously zero. Likewise, full flow capacity is reached when
the domain is completely filled, and since we normalize both Φ and F by their
value at the maximum value of τ , this corresponds to the point (1,1). Given
that both F and Φ increase with increasing values of τ , we can use linear
interpolation to define a continuous, monotonic, increasing function F (Φ).

12.2.2 Lorenz coefficient and sweep efficiency

The Lorenz coefficient is a popular measure of heterogeneity, and is defined as
the difference in flow capacity from that of an ideal piston-like displacement:

Lc = 2

∫ 1

0

(
F (Φ)− Φ

)
dΦ, (12.10)

In other words, the Lorenz coefficient is equal twice the area under the F (Φ)
curve and above the line F = Φ, and has values between zero for homoge-
neous displacement and unity for an infinitely heterogeneous displacement,
see Figure 12.4. Assuming that the flow and storage capacity are given as
two vectors F and Phi, the Lorenz coefficient can be computed by applying a
simple trapezoid rule

v = diff(Phi,1);
Lc = 2*(sum((F(1:end−1)+F(2:end))/2.*v) − .5);

Page: 368 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.2 Measures of dynamic heterogeneity 369

Φ

F

Fig. 12.4. The definition of the Lorenz coefficient from the F -Φ diagram. The green
line represents a completely homogeneous displacement in which all flow paths have
equal residence times, where the blue line is a heterogeneous displacement in which
there is variation in the residence times. The Lorenz coefficient is defined as two
times the gray area.

which is implemented in the computeLorenz function in the diagnostics

module.
The F -Φ diagram can also be used to compute the volumetric sweep ef-

ficiency Ev, which measures how efficient injected fluids are used. Here, Ev
is defined as the volume fraction of inplace fluid that has been displaced by
injected fluid, or equivalently, as the ratio between the volume contacted by
the displacing fluid at time t and the volume contacted at time t =∞. In our
streamtube analogue, only streamtubes that have not yet broken through will
contribute to sweep the reservoir. Normalizing by total volume, we thus have

Ev(t) =
q

V

∫ t

0

[
1− F

(
Φ(τ)

)]
dτ

=
qt

V
− q

V

∫ t

0

F (τ) dτ =
qt

V
− q

V

[
F (t)t−

∫ F

0

τdF
]

=
t

τ̄

(
1− F (t)

)
+

1

τ̄

∫ Φ

0

τ̄ dΦ = Φ+ (1− F )
dΦ

dF
= Φ+ (1− F )tD

The third equality follows from integration by parts, and the fourth equality
since τ̄ = V/q and τdF = τ̄ dΦ. Here, the quantity dΦ/dF takes the role as
dimensionless time. Prior to breakthrough, Ev = tD. After breakthrough, Φ
is the volume of fully swept flow paths, whereas (1 − F )tD is the volume of
flow paths being swept.

The implementation in MRST is quite simple and can be found in the
utility function computeSweep. Starting from the two arrays F and Phi, we
first remove any flat segments in F to avoid division by zero

inz = true(size(F));
inz(2:end) = F(1:end−1)~=F(2:end);
F = F(inz);
Phi = Phi(inz);

Page: 369 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



370 12 Flow Diagnostics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Fig. 12.5. F -Φ and sweep diagram for the simple case with two injectors and three
producers, which has a Lorenz coefficient of 0.2475.

Then, dimensionless time and sweep efficiency can be computed as follows

tD = [0; diff(Phi)./diff(F)];
Ev = Phi + (1−F).*tD;

Figure 12.5 shows the F -Φ and the sweep diagram for the simple example
with two injectors and three producers from Figure 12.1. For this particular
setup, the Lorenz coefficient was approximately 0.25, which indicates that we
can expect a mildly heterogeneous displacement with some flow paths that
break through early and relatively small stagnant regions. From the diagram
of the sweep efficiency, we see that 70% of the fluids in-place can be produced
by injecting one pore volume and by injecting two additional pore volumes
almost all the in-place fluid can be produced.

12.2.3 Summary of diagnostic curves and measures

Altogether, we have defined three different curves that can be derived from the
residence/travel time. The curves shown in Figure 12.6 are visually intuitive
and emphasize different characteristics of the displacement:

� The F -Φ curve is useful for assessing the overall level of displacement
heterogeneity. The closer this curve is to a straight line, the better is the
displacement.

� The fractional recovery curve emphasizes early-time breakthrough behav-
ior and can have utility as a proxy for fractional recovery of the fluid
in-place.

� The sweep efficiency highlights the behavior after breakthrough and has
utility as a proxy for recovery factor.

The curves can be defined for the field as a total, or be associated with sector
models, individual swept volumes, well-pair regions, and so on.

Page: 370 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.2 Measures of dynamic heterogeneity 371

Φ

F

td

1− F

td

Ev

Fig. 12.6. The three basic flow diagnostics curves: F -Φ diagram, fractional recovery
curve, and sweep efficiency. All quantities Φ, F , Ev, and tD are dimensionless; tD is
given in terms of pore volumes injected (PVI).

Whereas visually intuitive information is useful in many workflows, others
need measures defined in terms of real numbers. In our work, we have primarily
used the Lorenz coefficient. However, dynamic analogues of other classical
heterogeneity measures can be defined in a similar fashion. For instance, the
dynamic Dykstra–Parsons’ coefficient is defined as

VDP =
(F ′)Φ=0.5 − (F ′)Φ=0.841

(F ′)Φ=0.5
, (12.11)

where Φ = 0.5 corresponds to the mean storage capacity, while Φ = 0.841
is the mean value plus one standard deviation. Likewise, we can define the
dynamic flow heterogeneity index,

FHI = F (Φ∗)/Φ∗, F ′(Φ∗) = 1, (12.12)

Here, one can show that (dFdΦ )i = τ̄
τi

, where τ̄ = V/q =
∑
Vi/
∑
qi is the

average residence time for all the streamtubes. These heterogeneity measures
have not yet been implemented in the diagnostics module.

Computer exercises:

79. Implement Dykstra–Parsons’ coefficient (12.11) and the flow heterogeneity
index (12.12).

80. Use time-of-flight values defined per tracer region as discussed in Sec-
tion 12.1.2 on page 364 to implement refined versions of the dynamic het-
erogeneity measures.

81. Compute heterogeneity measures for each well pair in the model with two
injectors and three producers. (Original source code: showDiagnostBasics)
Are there differences between the different regions?

82. Try to make the displacement shown in Figures 12.1 and 12.5 less hetero-
geneous by moving the wells and/or by changing the relative magnitude of
the injection/production rates.

Page: 371 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



372 12 Flow Diagnostics

12.3 Case studies

The use of flow diagnostics is best explained through examples. In this section
we therefore go through several cases and demonstrate various ways in which
flow diagnostics can be used to enhance our understanding of flow patterns
and volumetric connections, tell us how to change operational parameters such
as well placement and well rates to improve recovery, etc.

12.3.1 Tarbert formation: volumetric connections

As our first example, we consider a subset of the SPE10 data set consisting of
the top twenty layers of the Tarbert formation, see Section 2.5.3. We modify
the original inverted five-spot well pattern by replacing the central injector
by two injectors that are moved a short distance from the model center (see
Figure 12.7), assume single-phase incompressible flow, and solve the corre-
sponding flow problem. A complete description of the setup can be found in
showWellPairsSPE10.m in the book module.

Given the geological model represented in terms of the structures G and
rock, the wells represented by W, and the reservoir state by rS, we first com-
pute the time-of-flight and tracer partitions:

D = computeTOFandTracer(rS, G, rock, 'wells', W);

This gives us the information we need to partition the volume into different
drainage and sweep volumes. The simplest way to do this for the purpose of
visualization is to use a majority vote over the injector and producer tracer
partitions to determine the well that influences each cell the most as shown
in Figure 12.8. The result of this majority vote is collected in D.ppart and
D.ipart, respectively, and the essential commands to produce the two upper
plots in Figure 12.8 are:

plotCellData(G,D.ipart, ...);
plotCellData(G,D.ppart,D.ppart>1, ...);

Since there are two injectors, we would expect to see two different sweep
regions. However, in the figure there is also a small blue volume inside the tri-
angular section bounded by I1, P1, and P2, which corresponds to an almost
impermeable part of the reservoir that will not be swept by any of the injec-
tors. The well pattern is symmetric and for a homogeneous medium we would
therefore expect that the two pressure-controlled injectors would sweep sym-
metric volumes of equal size. For the highly heterogeneous Tarbert formation,
however, the sweep regions are quite irregular and clearly not symmetric. Be-
cause of the two wells are completed in cells with very different permeability,
the injection rate of I2 is approximately six times that of I1, and hence I2 will
sweep a much larger region than I1. In particular, we see that I2 is the injec-
tor that contributes most to flooding the lower parts of the region near P3,

Page: 372 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.3 Case studies 373

Fig. 12.7. Porosity and well positions for a model consisting of subset of the Tarbert
formation in Model 2 from the 10th SPE Comparative Solution Project

even though I1 is located closer. Looking at the drainage and sweep regions
in conjunction, it does not seem likely that I1 will contribute significantly to
support the production from wells P1 and P2 unless we increase its rate.

When using a majority vote to determine drainage and sweep regions, we
disregard the fact that there are regions that are influenced by more than one
well. To visualize such regions of the reservoir, we can blend in a gray color
in all cells in which more than one tracer has nonzero concentration as shown
in the bottom plot of Figure 12.8. The plot is generated by the following call:

plotTracerBlend(G, D.ppart, max(D.ptracer, [], 2), ... );

Having established the injection and tracer partitions, we can identify well
pairs and compute the pore volumes of the region associated with each pair:

WP = computeWellPairs(rS, G, rock, W, D);
pie(WP.vols, ones(size(WP.vols)));
legend(WP.pairs,'location', 'Best' );

To visualize the volumetric regions, we compute the tensor product of the
injector and producer partitions and then compress the result to get a con-
tiguous partition vector with a zero value signifying unswept regions:

p = compressPartition(D.ipart + D.ppart*max(D.ipart))−1;
plotCellData(G,p,p>0,'EdgeColor','k','EdgeAlpha',.05);

The result is shown in Figure 12.9, and confirms our previous observations
of the relative importance of I1 and I2. Altogether, I1 contributes to sweep
approximately 16% of the total pore volume, shown as the light red and the
yellow regions in the 3D plot.

Page: 373 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



374 12 Flow Diagnostics

Fig. 12.8. Sweep (top) and drainage regions (middle) determined by a majority vote
over injector and producer tracer partitions, respectively, for the Tarbert model. The
bottom plot shows a refined tracer partition in which gray color signifies regions that
are affected by multiple tracers.

< 1%

20%

< 1%

23%

13%

18%

3%

22%

 

 

I1, P1

I2, P1

I1, P2

I2, P2

I1, P3

I2, P3

I1, P4

I2, P4

Fig. 12.9. Well-pair regions and associated fraction of the total pore volume for
the upper twenty layers of the Tarbert formation.

Page: 374 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.3 Case studies 375

It is also interesting to see how these volumetric connections affect the
fluxes in and out of wells. To this end, we should look at the cumulative well-
allocation factors, which are defined as the cumulative flux in/out of a well
from bottom to top perforation of a vertical well, and from toe to heel for
a deviated well. We start by computing the flux allocation manually for the
two injectors (outflow fractions are given from well head and downward and
hence need to be flipped):

for i=1:numel(D.inj)
subplot(1,numel(D.inj),i); title(W(D.inj(i)).name);
alloc = cumsum(flipud(WP.inj(i)).alloc,1);
barh(flipud(WP.inj(i).z), alloc,'stacked'); axis tight

lh = legend(W(D.prod).name,4);
set(gca,'YDir',' reverse ' );

end

Figure 12.10 shows the resulting bar plots of the cumulative allocation fac-
tors. These plots confirm and extend the understanding we have developed
by studying volumetric connections: I1 will primarily push fluids towards P3.
Some fluids are also pushed towards P4, and we also observe that there is al-
most no outflow in the top three perforations where the rock has low quality.
Injection from I2, on the other hand, contributes to uphold the flux into all
four producers. We also see that the overall flux is not well balanced. Pro-
ducer P1 has significantly lower inflow than the P2 to P4. Alternatively, we
can use the library functions plotWellAllocationPanel(D, WP) from the
diagnostics module to compute and visualize the well-allocation factors for
all the wells in the model, as shown in Figure 12.11.

Finally, to look more closely at the performance of the different comple-
tions along the well path, we can divide the completion intervals into bins
and assign a corresponding set of pseudo-wells for which we recompute flow
diagnostics. As an example, we split the completions of I1 into three bins and
the completions of I2 into four bins.

[rSp,Wp] = expandWellCompletions(rS,W,[5, 3; 6, 4]);
Dp = computeTOFandTracer(rSp, G, rock, 'wells', Wp);

Figure 12.12 shows the majority-voted sweep regions for the four segments of
I2; to better see the various sweep regions, the 3D plot is rotated 180 degrees
compared with the other 3D plots of this model. To obtain the figure, we used
the following key statements

plotCellData(G, Dp.ipart,(Dp.ipart>3) & (Dp.ipart<8),...);
WPp = computeWellPairs(rSp, G, rock, Wp, Dp);
avols = accumarray(WPp.pairIx(:,1),WPp.vols);
pie(avols(4:end));

Notice, in particular, that fluids injected in the lowest segment is the major
contributor in almost half of the well’s total sweep region.

Page: 375 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



376 12 Flow Diagnostics

0 1 2 3 4 5 6 7 8 9

x 10
−3

2

4

6

8

10

12

I1

 

 

P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9

x 10
−3

2

4

6

8

10

12

I2

 

 

P1

P2

P3

P4

Fig. 12.10. Well-allocation factors for the two injectors of the Tarbert model.

I1

P3

P1

I2

P4

P2

 

 

P1

 

 

P2

 

 

P3

 

 

P4

 

 

I1

 

 

I2

Fig. 12.11. Normalized well-allocation factors for all wells of the Tarbert model.

12.3.2 Layers of SPE10: heterogeneity and sweep improvement

In this example, we first compute the Lorenz coefficient for all layers of the
SPE10 model subject to an inverted five-spot well pattern. We then pick one
of the layers and show how we can balance the well allocation and improve the
Lorenz coefficient and the areal sweep by moving some of the wells to regions
with better sand quality.

Page: 376 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.3 Case studies 377

27%

18%

7%

48%

Fig. 12.12. Majority-voted sweep regions for I2 of the Tarbert case divided into
four segments that each are completed in five layers of the model. (Notice that the
view angle is rotate 180 degrees compared with Figure 12.8.) The pie chart shows
the fraction of the total sweep region that can attributed to each segment of the
well.

To compute Lorenz coefficient for all layers in the SPE10 model, we first
define a suitable 60×220×1 grid covering a rectangular area of 1200×2200×2
ft3. Then, we loop over all the 85 layers using the following essential lines:

for n=1:85
rock = getSPE10rock(1:cartDims(1),1:cartDims(2),n);
rock.perm = convertFrom(rock.perm, milli*darcy);
rock.poro = max(rock.poro, 1e−4);

W = [];
for w = 1:numel(wtype),

W = verticalWell(..);
end

T = computeTrans(G, rock);
rS = incompTPFA(initState(G, W, 0), G, T, fluid, 'wells ' , W);

D = computeTOFandTracer(rS, G, rock, 'wells', W, 'maxTOF', inf);
[F,Phi] = computeFandPhi(poreVolume(G,rock), D.tof);
Lc(n) = computeLorenz(F,Phi);

end

Because the permeability changes for each layer, we need to recompute the
transmissibility. Likewise, we regenerate the well objects to ensure correct well
indices when updating the petrophysical data. Complete source code can be
found in the script computeLorenzSPE10 in the book module.

Figure 12.13 reports the Lorenz coefficients for all layers for a setup in
which both the injector and the four producers are controlled by bottom-hole
pressure. We relatively large dynamic heterogeneity and the variation among

Page: 377 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



378 12 Flow Diagnostics

10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

Fig. 12.13. Lorenz coefficient for each of the 85 horizontal layers of the SPE10 model
subject to an inverted five-spot pattern with injector and producers controlled by
bottom-hole pressure. The dashed line shows the border between the Tarbert and
the Upper Ness layers.

individual layers within the same formation is a result of our choice of well
controls. The actual injection and production rates achieved with pressure-
controlled wells are very sensitive to each well being perforated in a region of
good sand quality. Good sand quality is difficult to ensure when using fixed
well positions, and hence pressure-controlled wells will generally accentuate
heterogeneity effects. To see this, you should modify the script and rerun the
case with equal rates in all the four producers.

Our somewhat haphazard placement of the wells is not what a good reser-
voir engineer would recommend, but serves well to illustrate our next point.
Since the Lorenz coefficient generally is quite large, most of the cases would
have suffered from early breakthrough if we were to use this initial well place-
ment for multiphase fluid displacement. Let us therefore pick one of the layers
and see if we can try to improve the Lorenz coefficient and hence also the
sweep efficiency. Figure 12.14 shows the well allocation and the sand quality
near the production wells for Layer 61, which is the layer giving the worst
Lorenz coefficient. The flux allocation shows that we have a very unbalanced
displacement pattern where producer P4 draws 94.5% of the flux from the
injector and producers P1 and P2 together draw only 1.2%. This can be ex-
plained if by looking at the sand quality in our reservoir. Producer P1 is
completed in a low-quality sand and will therefore achieve a low rate if all
producers operate at the same bottom-hole pressure. Producers P2 and P3
are perforated in cells with better sand, but are both completely encapsulated
in regions of low sand quality. On the other hand, producer P4 is connected
to the injector through a relatively contiguous region of high-permeable sand.
Likewise, the largely concave F -Φ diagram shown to the left in Figure 12.15
testifies that the displacement is strongly heterogeneous and hence be char-
acterized by large differences in the residence time of different flow paths, or
in other words, suffer from early breakthrough of the displacing fluid). Hence,
we would need to large amounts of the displacing fluid to recover the hydro-
carbons from the low-quality sand; this can be seen from the weakly concave
sweep diagram to the right in Figure 12.15. Altogether, we should expect a
very unfavorable volumetric sweep from this well placement.

Page: 378 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.3 Case studies 379

Fig. 12.14. Well configuration and flux allocation for the four well pairs with initial
well configuration for Layer 61. (Red colors are good sands, while blue colors signify
sands of low permeability and porosity.)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Lorenz

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Sweep

Fig. 12.15. F -Φ and sweep diagrams before (blue line) and after (green line) pro-
ducers P1 to P3 have been been moved to regions with better sand quality. Moving
well reduces the Lorenz coefficient from 0.78 to 0.47.

Fig. 12.16. Well configuration and flux allocation for the four well pairs after the
producers P1 to P3 have been moved to regions with better sand quality.

Page: 379 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



380 12 Flow Diagnostics

Table 12.1. Volumetric flow rates in units 10−5 m3/s for each of the wells in Layer
61 of the SPE10 model.

Placement P1 P2 P3 P4 I

Initial -0.0007 -0.0020 -0.0102 -0.2219 0.2348
Improved -0.0719 -0.0660 -0.0604 -0.0398 0.2381

To improve the displacement, we can try to move each of the producers
to a better location; that is, we should look for cells in the vicinity of each
well that have better sand quality (higher porosity and permeability) and are
connected to the injector by more contiguous paths of good quality sands.
Figure 12.16 shows the well allocation after we have made such a move of
producers P1, P2, and P3. Producer P4 was already in a good location, so we
do not move it. Compared with our previous setup, the well allocation is now
much more balanced and which is also confirmed by the well rates reported in
Table 12.1. (Notice also that the overall reservoir rate has increased slightly).
In Figure 12.15, we see that the F -Φ diagram has become significantly less
concave and, likewise, that the sweep diagram has become much more concave.
This testifies that the variation in residence times associated with different
flow paths is much smaller and we should expect a more efficient and less
heterogeneous volumetric sweep.

These types of dynamic heterogeneity measures are generally easy to use
as a guide when searching for optimal or improved well placement. Because of
their low computational cost, the measures can be used as part of a manual,
interactive search or combined with more rigorous mathematical optimization
techniques. In the diagnostics module you can find examples that use flow
diagnostics in combination with adjoint methods to determine optimal well
locations and set optimal injection and production rates as discussed in more
detail in [166].

Computer exercises:

83. Repeat the experiment using fixed rates for the producers (and possibly
also for the injector). Can you explain the differences that you observe?

84. Use the interactive diagnostic tool introduced in the next section to manu-
ally adjust the bottom-hole pressures (or alternatively the production rates)
to see if you can improve the sweep even further.

85. Can you devise an automated strategy that uses flow diagnostics to search
for optimal five-spot patterns?

86. Cell-averaged time-of-flight values computed by a finite-volume scheme can
be quite inaccurate when interpreted pointwise, particularly for highly het-
erogeneous media. To investigate this, pick one of the fluvial layers from
SPE 10 and use the pollock routine from the streamline module to com-
pute time-of-flight values on a 10×10 subsample inside a few selected cells.
Alternatively, you can use the finite-volume method on a refined grid.

Page: 380 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 381

12.4 Interactive flow diagnostics tools

The examples you have encountered so far in the book have mostly been self
contained in the sense that we have either discussed the code lines necessary
for the example, or given reference to complete MRST scripts that can be run
in batch or cell mode to produce the figures and numerical results discussed in
the text. In this section, we will deviate slightly from this rule. While the ideas
behind most flow diagnostics techniques are relatively simple to describe and
their computation is straightforward to implement, the real strength of these
techniques lies in their visual appeal and the ability for rapid user interaction.
Together, MATLAB and MRST provide a wide variety of powerful visualiza-
tion routines that can be used to visualize input parameters and simulation
results. As you saw in the previous section, the diagnostics module supplies
additional tools for enhanced visualization. However, using a script-based ap-
proach to visualization means that you each time need to write extra code
lines to manually set color map and view angle or display various additional
information such as legends, colorbars, wells, and figure titles, etc. These extra
code lines have mostly been omitted in our discussion in the previous section,
but if you go in and examine the accompanying scripts, you will see that a
large fraction of the code lines focus on improving the visual appearance of
plots. This code is repetitive and should ideally not be exposed to the user
of flow diagnostics. More important, however, a script-based approach gives
a static view of the data and offers limited capabilities for user interaction
apart from zooming, rotating, and moving the displayed data sets. Likewise,
a new script must be written and executed each time we want to look a new
plot that combines various types of diagnostic data, e.g., to visualize time-of-
flight or petrophysical values within a given tracer region, use time-of-flight
to threshold the tracer regions, etc.

To simplify the user interface to flow diagnostics, we have integrates most
of the flow-diagnostics capabilities into a graphical tool that enables you to
interact more directly with your data set

interactiveDiagnostics(G, rock, W);

The script uses the standard two-point incompressible flow solver for a single-
phase fluid with density 1000 kg/m3 and viscosity 1 cP to compute a repre-
sentative flow field, which is then fed to the function computeTOFandTracer()

to compute the basic flow diagnostics quantities discussed above. Once the
computation of basic flow diagnostic quantities is complete, the graphical
user interface is launched, see Figure 12.17: This consists of a plotting window
showing the reservoir model and a control window that contains a set workflow
tabs and menus that enable you to use flow diagnostics to explore volumet-
ric connections, flow paths, and dynamic heterogeneity measures. The control
window has three different tabs. The ’region selection’ tab is devoted to dis-
playing the various kinds of volumetric regions discussed in Section 12.1.1. The
’plots’ tab lets you compute F -Φ diagram, Lorenz coefficient, and the well-

Page: 381 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



382 12 Flow Diagnostics

Select injectors

Select producers

Different control tabs

How to combine tracers

Select quantity to display

Threshold on time-of-flight

Play time-of-flight movie

Fig. 12.17. The graphical user interface to flow diagnostics. The plotting window
shows forward time-of-flight, which is the default value displayed upon startup. In
the control window, we show the ’region selection’ tab that lets you select which
quantity to show in the plotting window, select which wells to include in the plot,
specify how to combine tracer partitions to select volumetric regions, and as well as
set maximum and minimum time-of-flight values to crop the volumetric regions.

reservoir
C−3H

F−1H

C−2H

C−1H

C−4H

F−2H

Well allocation factors

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

TOF distance in years

1

2

3

4

5

6

7

8

9

10
0 2000 4000 6000 8000

C
o

n
n

e
c
ti
o

n
 #

Accumulated flux [m
3
/day]

Allocation by connection

2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3
x 10

7 E−1H: Injector distribution for Oil

 

 

reservoir

C−3H

F−1H

C−2H

C−1H

C−4H

F−2H

0

5

10

15

20

25

30

35

B
o

tt
o

m
 h

o
le

 p
re

s
s
u

re
 [

M
P

a
]

 

 

BHP

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Time [year]

R
a

te
s
 [

m
3
/d

a
y
] 

(l
iq

u
id

),
  

[1
0

0
0

m
3
/d

a
y
] 

(g
a

s
)

Production data for E−1H

 

 

Water

Oil

Gas

Volumetrics for drainage zone of E-1H Simulated production for E-1H

Injectors and fluid expansion
contributing to oil production

Notice: prediction of
water breakthrough

Fig. 12.18. Flow diagnostics used to post-process a three-phase, black-oil flow
simulation of the Norne field.

Page: 382 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 383

allocation panels shown in Figure 12.11. From this tab, you can also bring up a
dialog box that enables you to edit the well settings and recompute a new flow
field and the resulting flow diagnostics (unless the parameter 'computeFlux' is
set to false). In the ’advanced’ tab, you can control the appearance of the 3D
plot by selecting whether to display grid lines, well-pair information, and well
paths, set 3D lighting and transparency value, etc. This tab also allows you
to export the current volumetric subset as a set of boolean cell indicators.

The regions to be displayed in the plotting window are specified by se-
lecting a set of active wells and by choosing how the corresponding tracer
partitions should be combined. That is, for a given set of ’active’ wells, you
can either display all cells that have nonzero injector or producer tracer, only
those cells that have nonzero injector and producer tracer, only cells with
nonzero producer tracer, or only cells with nonzero injector tracers. The se-
lect a set of active wells, you can either use the list of injectors and producers
in the control window, or you can select an individual well by left-clicking
on the well in the plotting window. In the latter case, the set of active wells
will consist of the well you selected plus all other wells that this well is in
communication with. Clicking on a well will also bring up a new window that
displays a pie chart of the well allocation factors and a graph that displays
cumulative allocation factors per connection. Figure 12.18 shows this type of
visualization for a model where we also have access to the various time steps
of a full multiphase simulation. In this case, we invoke the GUI by calling

interactiveDiagnostics(G, rock, W, 'state', state, 'computeFlux', false);

so that the fluxes used to compute time-of-flight and tracer partitions are
extracted from the given reservoir state given in state. Left-click on producer
E-1H, brings up a plot of the well allocation as well as a plot of the fluid
distribution displayed as function of the backward time-of-flight from the well.
To further investigate the flow mechanism, we can click on each fluid and get a
plot of how the various injectors and fluid expansion in the reservoir contribute
to push the given fluid toward the producer. In Figure 12.18 we have expanded
the GUI by another function that enables us to plot the simulated well history
of each well. The GUI also offers functionality to load additional cell-based
data sets that can be displayed in the 3D plot:

interactiveDiagnostics(G, rock, W, celldata);
interactiveDiagnostics(G, rock, W, celldata, 'state', state);

The GUI also has more functionality for post-processing simulations with
multiple time steps, but this is beyond the scope of the current presentation.

In the following we will use the interactive GUI to study a few reservoir
models. This means, in particular, that the scripts that accompany the case
studies in this section do not reproduce all figures directly as was the case for
the script-based approach presented in the previous section. Instead, you will
have to perform several manual actions specified in the scripts to reproduce
some of the figures.

Page: 383 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



384 12 Flow Diagnostics

Fig. 12.19. A simple 2D reservoir with two injectors and three producers. The left
plot shows porosity and the right plot the corresponding producer tracer partition.

12.4.1 Simple 2D example

As our first example, we will use a slightly modified version of the setup
used from Figure 12.1, in which we have introduced two low-permeable zones
that will play the role of sealing faults, moved the two injectors slightly to
the south, and switched all wells from rate to pressure control. The resulting
reservoir model is shown in Figure 12.19, whereas specific values for the well
controls are found in Table 12.2 under the label ’base case’. In our previous
setup, we had a relatively symmetric well pattern in which producers P1 and
P3 were supported by injectors I1 and I2, respectively, while producer P2
was supported by both injectors. This symmetry is broken by the two sealing
faults, and now injector I1 also provides a significant support for producer P3.
This can be inferred from the plot of the producer tracer partition: the gray
area between the magenta (P2) and red (P3) regions signifies a parts of the
reservoir that are drained by both producers. Since there is a relatively large
gray area southeast of I1, this injector will support both P2 and P3. There is
also a gray area southwest of injector I2, but since this is less pronounced, we
should expect that only a small portion of the inflow of P2 can be attributed
to I2. To confirm this, you can load the model in the interactive viewer (see
the script interactiveSimple), and click on the names for each individual
producer to bring up a pie chart reporting the corresponding flux allocation.

Next, we let us try to figure out to what extent this is a good well pattern
or not. We can start by looking at how a displacement front would propagate
if the present flow field remains constant. If the displacement front travels
with a unit speed relatively to the Darcy velocity given by the flux field, the
region swept by the front at time t consists of all those cell for which τf ≤ t.
Using the interactive GUI as shown in Figure 12.17, you can either show
swept regions by specifying threshold values manually, or use the ’Play TOF’
button to play a ’movie’ of how the displacement front advances through the

Page: 384 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 385

Fig. 12.20. Evolution of an imaginary displacement front illustrated by thresholding
time-of-flight iniside the sweep regions for the base case.

reservoir. Figure 12.20 shows four snapshots of such an advancing front. We
notice, in particular, how the sealing fault to the northwest of the reservoir
impedes the northbound propagation of the I1 displacement front and leads
to early breakthrough in P2. We also see that there is a relatively large region
that is still unswept after the two displacement fronts have broken through in
all three producers.

As a more direct alternative to studying snapshots of an imaginary dis-
placement front, we can plot the residence time, i.e., the sum of the forward
and backward time-of-flight, as shown in the upper-left plot in Figure 12.21.
Here, we have used a nonlinear gray-map to more clearly distinguish high-flow
zones (dark gray) from stagnant regions (white) and other regions of low flow
(light gray). In the figure, we see that wells I1 and P2 are connected by a
high-flow region, which explains the early breakthrough we observed in Fig-
ure 12.20. The existence of high-flow regions can also be seen from the F -Φ
diagram and the Lorenz coefficient of 0.273.

The interactive diagnostic tool has functionality that lets you modify the
well controls and if needed, add new wells or remove existing ones. We will
now use this functionality to try to improve the volumetric sweep of the reser-
voir, much in the same way as we did manually for a layer of SPE 10 in
Section 12.3.2. We start by reducing the high flow rate in the region influ-
enced by I1 and P2. That is, we increase the pressure in P2 to, say, 130 bar
to decrease the inter-well pressure drop. The resulting setup is referred to

Page: 385 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



386 12 Flow Diagnostics

Base case Case 1

Case 2 Case 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

 

 

Base case

Case 1

Case 2

Case 3

Fig. 12.21. In Cases 1 and 2, well controls have been manually adjusted from that
of the base case (see Table 12.2) to equilibrate total travel time throughout the
reservoir. Case 3 includes infill drilling of an additional injector. The bottom plot
shows the corresponding F -Φ curves.

Table 12.2. Well controls given in terms of bottom-hole pressure [bar] for a simple
2D reservoir with five initial wells (I1, I2, P1, P2, P3) and one infill well (I3).

I1 I2 I3 P1 P2 P3 Lorenz

Base case 200 200 — 100 100 100 0.2730
Case 1 200 200 — 100 130 80 0.2234
Case 2 200 200 — 100 130 80 0.1934
Case 3 200 220 140 100 130 80 0.1887

Page: 386 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 387

Fig. 12.22. Evolution of an imaginary displacement front illustrated by thresholding
time-of-flight iniside the sweep regions for Case 3.

as ’Case 1’, and gives more equilibrated flow paths, as can be seen from the
Lorenz coefficient and the upper-right plot in Figure 12.21. In Case 2, we
have decreased the pressure in P3 to 80 bar to increase the flow in the I2–P3
region. As a result of these two adjustments to the well pressures, we have
reduced the stagnant region north of P2 and also diminished the clear flow-
divide that extended from the south of the reservoir to the region between P2
and P3. To also sweep the large unswept region east of P3, we can use infill
drilling to introduce a new well in the southeast of this region, just north of
the sealing fault. Since the new well is quite close to the existing producer,
we should assign a relatively low pressure to avoid introducing too high flow
rates. In Case 3, we have chosen to let the well operate at 140 bar and at
the same time we have increased the pressure in I2 to 220 bar. Figure 12.22
shows snapshots of the advancing front at the same instances in time as was
used in Figure 12.20 for the base case. Altogether, the well configuration of
Case 3 gives a significant increase in the swept areas and reduces the Lorenz
coefficient to 0.189. It is therefore reasonable to expect that this configuration
would give a better displacement if the setups were rerun with a multiphase
simulator.

A more detailed description of how you should use the interactive GUI to
perform the above experiments can be found in the interactiveSimple.m

script of the book module. I encourage you to use the script to familiarize

Page: 387 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



388 12 Flow Diagnostics

yourself with interactive flow diagnostics. Are you able to make further im-
provements?

12.4.2 SAIGUP: flow patterns and volumetric connections

The previous example was highly simplified and chosen mainly to illustrate the
possibilities that lie in the interactive use of flow diagnostics. In this example,
we revisit the SAIGUP case study from Section 5.4.4 on page 172 and take
a closer look at the volumetric connection in this shallow-marine reservoir.
We start by re-running this case study to set up the simulation model and
compute a flow field:

saigupWithWells; close all

clearvars −except G rock W state

Henceforth, we only need the geological model, the description of the wells,
and the reservoir state and have hence cleared all other variables and closed all
plots produced by the script. With this, we are ready to launch the interactive
flow diagnostics session. Since we already have computed a reservoir state, we
can pass this on to the interactive GUI and hence use it in pure post-processing
mode:

interactiveDiagnostics(G, rock, W, 'state', state, 'computeFlux', false);

in which we are not able to edit any well definitions and recompute fluxes.
In Figure 5.11 on page 173 we saw that although the injectors and produc-

ers are completed in all the twenty grid layers of the model, there is almost
no flow in the bottom half of the reservoir. A more careful inspection shows
that there is almost no flow in the upper layers in most of the reservoir either.
This is a result of the fact that the best sand quality is found in the upper-
middle layers of the reservoir, as shown in Figure 12.23, which compares the
permeability in the full model with the permeability in cells having a resi-
dence time less than one hundred years. Because each injector is controlled by
a total fluid rate, large fluid volumes will be injected in completions that are
connected to good quality sand, while almost no fluid is injected into zones
with low permeability and porosity. This can be seen in Figure 12.24, which
shows overall and cumulative well-allocation factors for four of the injectors.
Injectors I3 and I4 are completed in the southern part of the reservoir, and
here low-quality sand in the bottom half of the reservoir leads to almost neg-
ligible injection rates in completions 11 to 20. In a real depletion plan, the
injectors would probably not have been completed in the lower part of the
sand column. Injector I5 located to the west in the reservoir is completed in
a column with low permeability in the top four and the bottom layer, high
permeability in Layers 6 to 9, and intermediate permeability in the remaining
layers. Hence, almost no volume is injected through the top four completions,
which hence are redundant. Finally, injector I6 is completed in a column with

Page: 388 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 389

poor sand quality in the top three layers, high permeability in Layers 4 to 9,
and intermediate permeability in the remaining layers.

Figure 12.24 also shows the flux allocation for all well pairs in the reservoir.
In the plot, each curved line corresponds to a connection between an injector
and a producer, where the color of the line signifies the producer and the
percentage signifies the fraction of the total flux from each injector that goes
to the different producers. The connections have been truncated so that only
pairs that correspond to at least 1% of the flux are shown in the figure; which
explains why not all the fractions sum up to unity. Let us take injector I4 as
an example. Figure 12.25 shows two plots of the tracer region for this injector.
From the well-allocation plots, we have already seen that I4 is connected to
producers P2 to P4; (almost) all the well completions lie inside of the tracer
of I4. Producer P1, on the other hand, is only completed in a single cell inside
the tracer region, and this cell is in the top layer of the reservoir where the
sand quality is very poor. It is therefore not clear whether P1 is actually
connected to I4 or if this weak connection is a result of inaccuracies in the
tracer computation. Since we only use a first-order discretization, the tracer
fields will generally contain a significant amount of numerical smearing near
flow divides, which here is signified by blue-green colors.

Computer exercises:

87. Change all the injectors to operate at a fixed bottom-hole pressure of 300
bar. Does this significantly change the flow pattern in the reservoir? Which
configuration do you think is best?

88. Use the flow diagnostic tool to determine well completions in the SAIGUP
model that have insignificant flow rate, eliminate these well completions,
and rerun the model. Are there any apparent changes in the flux allocation
and volumetric connections?

89. Consider the model given in makeAnticlineModel.m. Can you use flow
diagnostics to suggest a better well configuration?

Page: 389 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



390 12 Flow Diagnostics

Fig. 12.23. Horizontal permeability (log10Kx) for the SAIGUP model. The left plot
shows the full permeability field, while the right plot only shows the permeability in
cells that have a total residence time less than 100 years. (The reservoir is plotted
so that the north-south axis goes from left to right in the figure.)

P4

P6
P2

Well allocation factors

2

4

6

8

10

12

14

16

18

20
0 200 400 600 800

C
o

n
n

e
c
ti
o

n
 #

Accumulated flux [m
3
/day]

Allocation by connection

P1

P2

Well allocation factors

2

4

6

8

10

12

14

16

18

20
0 500 1000

C
o

n
n

e
c
ti
o

n
 #

Accumulated flux [m
3
/day]

Allocation by connection

P6

P5

P4

P3

Well allocation factors

2

4

6

8

10

12

14

16

18

20
0 500 1000 1500

C
o

n
n

e
c
ti
o

n
 #

Accumulated flux [m
3
/day]

Allocation by connection

P4

P2

P3

Well allocation factors

2

4

6

8

10

12

14

16

18

20
0 500 1000

C
o

n
n

e
c
ti
o

n
 #

Accumulated flux [m
3
/day]

Allocation by connection

Well: I3

Well: I4

Well: I5

Well: I6

Fig. 12.24. Flux allocation for all well pairs of the SAIGUP model and well-
allocation factors for injectors I3, I4, I5 and I6.

Page: 390 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



12.4 Interactive flow diagnostics tools 391

Fig. 12.25. Plot of the injector tracer region for well I4.

Page: 391 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A

The MATLAB Reservoir Simulation Toolbox

Practical computer modeling of porous media constitutes an important part of
the book and is presented through a series of examples that are intermingled
with more traditional textbook material. All examples discussed in the book
rely on the MATLAB Reservoir Simulation Toolbox (MRST), which is a free,
open-source software that can be used for any purpose under the GNU General
Public License (GPLv3). The basic part of MRST contains a comprehensive
set of data structures and routines for representing and manipulating the pri-
mary input parameters that make up a simulation model of a porous medium:
grids representing geometry of the porous domain, petrophysical rock prop-
erties, and forcing terms such as gravity, boundary conditions, source terms,
and well models. In addition, there are routines for reading and processing
input files and plotting quantities defined over cells and cell interfaces, as well
as functionality for automatic differentiation. On top of this, MRST provides
a set of add-on modules that supply a wide range of discretizations, solvers,
simulators, and workflow tools that can be combined to perform various tasks
in reservoir modeling. By carefully documenting and releasing this software as
free, open source, we hope to contribute to give a head start to students about
to embark on a master or PhD project, as well as to researchers working on
similar problems.

This chapter will provide you with a brief overview of MRST and the
philosophy underlying its design. We show you how to obtain and install
the software and explain its terms of use, as well as how we recommend
that you use the software as a companion to the textbook. We also briefly
discuss how you can use a scripted, numerical programming environment like
MATLAB to increase the productivity of your experimental programming
and give a few examples of tricks and ways of working with MATLAB that
we have found particularly useful. We end the chapter by introducing you to
automatic differentiation, which is one of the key aspects that make MRST
a powerful tool for rapid prototyping and enable us to write compact and
quite self-explanatory codes that are well suited for pedagogical purposes.
As a complement to the material presented in this chapter, you should also

Page: 447 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



448 A The MATLAB Reservoir Simulation Toolbox

consult the first section [138] of the just-in-time online learning tools (Jolts)
developed in collaboration with Stanford University. This Jolt gives a brief
overview of the software, tells you why and how it was created, and shows you
how to download and install it on your computer. If you are not interested
in programming at all, you can jump directly to Chapter 2. However, if you
choose to not work with the software alongside the textbook material, be
warned, you might miss a lot of valuable insight.

A.1 Getting started with the software

The open-source MRST toolbox was originally developed to support research
on consistent discretization and multiscale solvers on unstructured, polyhe-
dral grids, but has over the years developed into an efficient platform for rapid
prototyping and efficient testing of new mathematical models and simulation
methods. A particular aim of MRST is to accelerate the process of moving
from simplified and conceptual testing to validation and verification on prob-
lems with a high degree of realism, and in many cases, full industry-standard
complexity.

A.1.1 Core functionality and add-on modules

Because MRST is a research tool whose aim is to support research on modeling
and simulation of flow in porous media, it contains a wide variety of mathe-
matical models, computational methods, plotting tools, and utility routines.
To make the software as flexible as possible, MRST is organized quite similar
to MATLAB and consists of a collection of core routines and a set of add-on
modules as illustrated in Figure A.1. The material presented in Part I of the
book relies almost entirely on general routines from the core module, which
contains routines and data structures for creating and manipulating grids,
petrophysical data, and global drive mechanisms such as gravity, boundary
conditions, source terms, and wells. The core also contains an implementa-
tion of automatic differentiation (you write the formulas and specify the in-
dependent variables, the software computes the corresponding derivatives or
Jacobians) based on operator overloading (see Section A.5), as well as a few
routines for plotting cell and face data defined over a grid. The functionality
in the core module is considered to be stable and not expected to change
significantly in future releases.

To minimize maintenance costs and increase flexibility, MRST core does
not contain flow equations, discretizations, and solvers; these are implemented
in various add-on modules. You have already encountered the incompTPFA

solver from the incomp module in Section 1.4; this module implements stan-
dard solves for incompressible, immiscible, single-phase and two-phase flow.
The mathematical models, discretizations, and solutions techniques underly-
ing this module will be extensively discussed in Part II and III of the book. In

Page: 448 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.1 Getting started with the software 449

CO2 saturation
at 500 years

16%

12%

3%

56%

12%

Injected volume:

2.185e+07 m
3

 

 

Height of CO2−column

 

 

Residual (traps)

Residual

Residual (plume)

Movable (traps)

Movable (plume)

Leaked

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

x 10
7

co2lab

multiscale methods

discretizations

fully implicit

flow diagnostics

grid coarsening

Original permeability Upscaled (x−direction) Upscaled (y−direction)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

 

 

Original

Upscaled (x)

upscaling

visualization
input decks

... ...

A
d
d
-o
n
m
od
u
le
s

MRST core

1

2

3

4

5

6

7

8

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

1

2

3

4

5

6

7

cells.faces = faces.nodes = faces.neighbors =

1 10 1 1 0 2

1 8 1 2 2 3

1 7 2 1 3 5

2 1 2 3 5 0

2 2 3 1 6 2

2 5 3 4 0 6

3 3 4 1 1 3

3 7 4 7 4 1

3 2 5 2 6 4

4 8 5 3 1 8

4 12 6 2 8 5

4 9 6 6 4 7

5 3 7 3 7 8

5 4 7 4 0 7

5 11 8 3

6 9 8 5

6 6 9 3

6 5 9 6

7 13 10 4

7 14 10 5

: : : :

Fig. A.1. The Matlab Reservoir Simulation Toolbox consists of a core module that
provides basic data structures and utility functions, and a set of add-on modules
that offer discretizations and solvers, simulators for incompressible and compressible
flow, and various workflow tools such as flow diagnostics, grid coarsening, upscaling,
visualization of simulation output, and so on.

particular, Chapters 5 and 10 outline key functionality offered in the module
and discuss in detail how the solvers are implemented. Chapter 6 introduces
you to the mimetic and mpfa modules which offer consistent discretizations
on general polyhedral grids [137]. Solvers for incompressible flow have been
part of MRST since the beginning and constitute the first family of add-on
modules signified by the ’Discretizations’ block in Figure A.1. The modules
incomp, mimetic, and mpfa are all implemented using a functional program-
ming model, i.e., using mathematical functions that operate mainly on vec-
tors, (sparse) matrices, structures, and a few cell arrays. These are generally
robust and well documented, have remained stable over many years, and will
not likely change significantly in future releases. The family of incompressible
flow solvers also include a few other discretization methods from the research
front like virtual element methods and are intimately connected with two of
the modules implementing multiscale methods (MsFV and MsMFE). These
will not be discussed herein; details can be found in the software itself, in the
MRST webpages, or in one of the many papers using the software.

The second family of modules consists of simulators based on automatic
differentiation and is illustrated by the ’fully implicit’ block in Figure A.1. The
introduction of automatic differentiation in MRST has been a big success and

Page: 449 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



450 A The MATLAB Reservoir Simulation Toolbox

has both enabled efficient development of black-oil simulators, but also opened
up for a unprecedented capabilities for rapid prototyping [123]. The process
of writing new simulators is hugely simplified by the fact that one no longer
needs to compute analytic expressions for derivatives and Jacobians. We will
come back to this in Chapters 7 and 11. Solvers using automatic differentiation
were initially implemented using a functional programming model similar to
the incomp family of modules. Soon it became obvious that this was a limiting
factor, and a new object-oriented programming model implementing a general
framework for solvers referred to as MRST AD-OO [123, 22] was introduced.
The individual modules and the underlying implementations of AD-OO have
undergone significant changes in the period 2014–2016. From MRST 2016a
and onward, however, we expect that the functionality will remain largely
unchanged and only be subject to bugfixes, feature enhancements, and per-
formance improvements.

The ad−core module is the most basic part in MRST AD-OO and does not
contain any complete simulators, but rather implements the common frame-
work used for many other modules. The design of this framework deviates
significantly from that of the incompressible solvers. The main motivation
for introducing an object-oriented framework is to be able to simulate com-
pressible multiphase models of industry-standard complexity. In Chapter 11
at the end of Part III, we will discuss how to simulate compressible multiphase
models of black-oil type, but future releases of MRST will also offer simula-
tors for compositional flow. These types of multiphase models are significantly
more complex to simulate than the basic incompressible models implemented
in the incomp module. Not only do these models have more equations and
more complex parameters and constitutive relationships, but making robust
simulators also necessitates more sophisticated solution algorithms involving
nonlinear solvers, preconditioners, time-step control, variable switching, etc.
Moreover, industry-standard simulations generally require a number of bells
and whistles to implement specific fluid behavior, well controls, etc., as well as
a number of subtle tricks-of-the-trade to ensure that your simulator is able to
reproduce results of leading commercial simulators. Using an object-oriented
framework enables us to divide the implementation into different numerical
contexts (mathematical model, nonlinear solver, time-step control, lineariza-
tion, linear solver, etc), hide unnecessary details, and only expose the details
that are necessary within each specific context.

The third family of modules consist of a series of tools that can be used
as part of the reservoir modeling workflow. In Part IV of the book we will go
through the three types of tools shown in Figure A.1. ’Diagnostics’ signifies
a family of computational methods for determining volumetric connections
in the reservoir, computing well-allocation factors, measuring dynamic het-
erogeneity, providing simplified recovery estimates, etc. Tools from the ’grid
coarsening’ and ’upscaling’ modules can be used to develop reduced simu-
lation models with fewer degrees of freedom and hence lower computational
costs. MRST also offers several other modules of the same type, e.g., history

Page: 450 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.1 Getting started with the software 451

matching and production optimization, but these are outside the scope of the
book.

The fourth family of modules consists of computational methods that have
been developed to study a special problem. In Figure A.1, this is exemplified
by the ’co2lab’ module, which is a comprehensive collection of computational
methods and modeling tools developed especially to study the injection and
long-term migration of CO2 in large aquifer systems. Other modules of the
same type include solvers for geomechanics and various modeling frameworks
and simulators for fractured media. These modules are all outside the scope
of this book.

The last family consists of a variety of utility modules that offer graphical
interfaces and advanced visualization, more comprehensive routines for read-
ing and processing simulation models and other input data, C-acceleration of
selected routines from the core module to avoid computational bottlenecks,
etc. You will encounter functionality from several of these modules throughout
the book, but the modules themselves will not be discussed in any detail.

A.1.2 Downloading and installing

The main parts of MRST are hosted as a collection of private software reposi-
tories on Bitbucket. Public releases are provided as self-contained archive files
that can be downloaded from the webpage:

http://www.sintef.no/MRST/

Assume now that you have downloaded the tarball of one of the recent releases;
here, we use MRST 2016b as an example. Issuing the following command

untar mrst−2016b.tar.gz

in MATLAB will create a new folder mrst−2016b in you current working di-
rector that contains all parts of the software. Once MRST has been extracted
to some folder, which we henceforth refer to as the MRST root folder, you
must navigate MATLAB there, either using the built-in file browser, or by
using the cd command. Assuming that the files were extracted to the home
folder, this would amount to the following on Linux/Mac OS,

cd /home/username/mrst−2016b/ % on Linux/Mac OS
cd C:\Users\username\mrst−2016b\ % on Windows

When you are in the folder that contains the software, you need to run the
following command to activate it

startup;

The whole procedure of downloading and installing MRST, step by step, can
be seen in the first MRST Jolt [138], which was developed using MRST 2014b.

Page: 451 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.sintef.no/MRST/


452 A The MATLAB Reservoir Simulation Toolbox

Fig. A.2. The welcome message displayed when the startup script is run in MRST
2016a and later. The careful reader may notice that the user runs a development
version of the software and not one of the official releases.

At this point, a word of caution is probably in order. Throughout the
book, we will refer to the software as a toolbox. By this we mean that MRST
is a collection of data structures and routines that can be used alongside with
MATLAB. It is, however, not a toolbox in the same sense as those that can
be purchased from the official vendors of MATLAB. This means, for instance,
that MRST is not automatically loaded unless you start MATLAB from the
MRST root folder, or make this folder your standing folder and manually issue
the startup command. Alternatively, if do not want to navigate to the MRST
root folder, for instance in an automated script, you can call startup directly

run /home/username/mrst−2016b/startup

In versions prior to MRST 2016a, the startup script only sets up the global
search path so that MATLAB is able to locate MRST’s core functional-
ity and the various modules. To verify that the software is working, you
can run the simple example discussed in the previous section by typing
flowSolverTutorial1. This should produce the same plot as shown in Fig-
ure 1.3.

A.1.3 Exploring the functionality and getting help

In MRST 2016a and newer, the startup script will display a welcome message
showing the software is initialized and ready to use, see Figure A.2. The
welcome message contains links to a number of functions that are useful if
you want to get more acquainted with MRST. Upon your first encounter with
MRST, the best point to start is by typing (or clicking the corresponding blue
text in the welcome message)

mrstExamples()

Page: 452 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.1 Getting started with the software 453

This will list all introductory examples found in MRST core. Some of these
examples will introduce you to basic functionality in MRST, whereas others
highlight capabilities found in various add-on modules that implement specific
discretizations, solvers, and workflow tools. These examples are designed using
cell-mode scripts, which can be seen as a type of “MATLAB workbook” that
enables you to break a script down into smaller code sections (code cells) that
can be run individually to perform a specific task such as creating parts of a
model or making an illustrative plot; see Figure A.3 for an illustration. In our
opinion, the best way to understand tutorial examples is to go through the
corresponding scripts, evaluating one section at the time. Alternatively, you
can set a breakpoint on the first line and step through the script in debug
mode, e.g., as shown in the fourth video of the first MRST Jolt [138]. Some
of the example scripts in MRST contain quite a lot of text and are designed
to be published as HTML documents, as seen in to the right in Figure A.3. If
you are not familiar with cell-mode scripts or debug mode, we strongly urge
you to learn these useful features in MATLAB as soon as possible. If you want
to know what a specific function (e.g., computeTrans) does, you can type

help computeTrans

which will bring up the documentation shown in Figure A.4. As a general
rule, all core functionality is well documented in a format that follows the
MATLAB standard. The same should apply to functionality you are meant
to utilize from any of the add-on modules. (However, here the format and
level of documentation may differ more, depending upon who developed the
module.)

As a general rule, all modules distributed as part of the MRST release are
required to contain worked tutorials highlighting key functionality that will
be needed by most users; a subset of these tutorials is also available on the
MRST webpage. To list tutorial examples found in individual modules, you
can use the same command as above, which can also be used to list all the
tutorial examples that the software offers,

mrstExamples('ad−blackoil') % all examples in the black−oil module
mrstExamples('all') % all examples across all available modules

To learn more about the different modules and get a full overview of all
functionality that is available in MRST, you can type the command

mrstExploreModules()

This brings up a graphical user interface that lists all accessible modules and
outlines their purpose and functionality, including a short description of all
tutorial examples found in each module, as well as a list of relevant scientific
publications, with possibility to view published and preprint versions and
export citations to BibTEX. The modules will be discussed in more detail in
Section A.3.

Page: 453 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



454 A The MATLAB Reservoir Simulation Toolbox

Fig. A.3. Illustration of the MATLAB workbook concept. The editor window shows
part of the source code for the simpleBC tutorial from MRST 2014b. (In newer
versions, this tutorial has been renamed incompIntro and moved to the new incomp

module.) Notice how cells are separated by horizontal lines and how each cell has a
header and a text that describes what the cell does. The exception is the first cell,
which summarizes the content of the whole tutorial. The right window shows the
result of publishing the workbook as a webpage.

>> help computeTrans
Compute transmissibilities.

SYNOPSIS:
T = computeTrans(G, rock)
T = computeTrans(G, rock, ’pn’, pv, ...)

PARAMETERS:
G - Grid structure as described by grid_structure.

rock - Rock data structure with valid field ’perm’. The permeability
is assumed to be in measured in units of metres squared (m^2).
Use function ’darcy’ to convert from darcies to m^2, e.g.,

perm = convertFrom(perm, milli*darcy)
if the permeability is provided in units of millidarcies.
:
:

RETURNS:
T - half-transmissibilities for each local face of each grid cell

in the grid. The number of half-transmissibilities equals
the number of rows in G.cells.faces.

COMMENTS:
PLEASE NOTE: Face normals are assumed to have length equal to
the corresponding face areas. ..

SEE ALSO:
computeGeometry, computeMimeticIP, darcy, permTensor.

Fig. A.4. Most functions in MRST are documented in a standard format that gives
a one-line summary of what the function does, specifies the synopsis (e.g., how the
function should be called), explains the input and out parameters, and points to
related functions.

Page: 454 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.1 Getting started with the software 455

MRST also offers simplified access to a number of public data sets. To
view a list of all these, you can use the following graphical user interface

mrstDatasetGUI()

which will briefly describe each data set, provide functionality for downloading
and installing the data set in a standard location, list the files contained as
well as the tutorial examples that use each data set. More details are given in
Section A.2.

Last, but not least, a number of common queries have been listed on
MRST’s FAQ page:

http://www.sintef.no/projectweb/mrst/faq/

For further assistance and discussions about MRST you may visit (and sub-
scribe to) the mailing list at

http://www.sintef.no/projectweb/mrst/forum/

or: sintef-mrst@googlegroups.com

A.1.4 Release policy and version numbers

Over the last few years, key parts of MRST have become relatively mature
and well tested. This has enabled a stable release policy with two releases
per year, one in the spring and one in the fall. Throughout the releases, the
basic functionality like grid structures has remained largely unchanged, ex-
cept for occasional and inevitable bugfixes, and the primary focus has been on
expanding functionality by maturing and releasing in-house prototype mod-
ules. However, MRST is mainly developed and maintained as an efficient pro-
totyping tool to support contract research carried out by SINTEF for the
energy-resource industry and public research agencies. Fundamental changes
will therefore occur from time to time, e.g., like when automatic differentia-
tion was introduced in 2012. Likewise, parts of the software may sometimes
be reorganized like when the basic incompressible solvers were taken out of
MRST core and put in a separate module in 2015. In writing this, we (regret-
fully) acknowledge the fact that specific code details and examples in books
describing evolving software tend to become somewhat outdated. To counter-
mand this, complete codes for almost all examples presented in the book are
contained in a separate book module that accompanies MRST 2015a and later
releases.

The version number of MRST refers to the biannual release schedule and
does not imply a direct compatibility with the same release number for MAT-
LAB. That is, you do not need to use MRST 2013a if you are using MATLAB
R2013a, or vice versa, you do not need to upgrade your MATLAB to R2016b
to use MRST 2016b.

Page: 455 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.sintef.no/projectweb/mrst/faq/
http://www.sintef.no/projectweb/mrst/forum/


456 A The MATLAB Reservoir Simulation Toolbox

A.1.5 Software requirements and backward compatibility

MRST was originally implemented so that the minimal requirement should
be MATLAB version 7.4 (R2007a). However, certain parts of the software use
features that were not present in R2007a:

� The functionality for automatic differentiation uses new-style classes (class-
def) that were introduced in R2008a.

� Various scripts and examples use new syntax for random numbers intro-
duced in R2007b.

� Some script may use the tilde operator to ignore return values (e.g.,
[~,i]=max(X,1)) that was introduced in R2009b.

� Some routines, like the fully implicit simulators for black-oil models, rely
on accessing sub-blocks of large sparse matrices. Although these routines
will run on any version from R2007a and onward, they may not be efficient
on versions older than R2011b.

When it comes to visualization, things are a bit more complicated since MAT-
LAB 3D graphics does not behave exactly the same on all platforms. More-
over, MATLAB introduced new handle graphics in R2014b, which has been
criticized by many because it is slow and because it breaks backward com-
patibility. We have tried to revise plotting in newer versions of MRST so that
it works well both with the old and the new handle graphics, but every now
and then you may stumble across certain tricks (e.g., setting grid lines to be
semi-transparent to make them thinner) may not work well on your particular
MATLAB version.

Large parts of MRST can also be used with GNU Octave, which is an open-
source numerical programming environment that is designed to be compatible
with MATLAB. However, there are two main difficulties: GNU Octave has
less (stable) functionality for 3D visualization, which is used a lot throughout
this book, and does not yet offer the new-style classes (classdef) used in the
implementation of automatic differentiation.

Although MRST is designed to only use functionality available in standard
MATLAB, there are a few third-party packages and libraries that we have
found to be quite useful:

� MATLAB-BGL: MATLAB does not yet have extensive support for graph
algorithms. The Boost Graph Library (BGL) is a generic interface for
traversing graphs. The MATLAB Boost Graph Library contains binaries
for useful algorithms in BGL such as depth-first search, computation of
connected components, etc. MATLAB-BGL is freely available under the
BSD License from the Mathwork File Exchange1. MRST has a particular
module, see Section A.3, that downloads and installs this library.

� METIS: is a widely used library for partitioning graphs, partitioning finite
element meshes, and producing fill reducing orderings for sparse matrices
[113]. The library is released2 under a permissive Apache License 2.0.

1 http://www.mathworks.com/matlabcentral/fileexchange/10922
2 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Page: 456 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.mathworks.com/matlabcentral/fileexchange/10922
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview


A.1 Getting started with the software 457

� AGMG: For large problems, the linear solvers available in MATLAB are not
always sufficient, and it may be necessary to use an iterative algebraic
multigrid method. AGMG [185] has MATLAB bindings included and was
originally published as free open-source. The latest releases have unfortu-
nately only offered free licenses for academic research and teaching3.

MATLAB-BGL is required by several of the more advanced solvers that are not
part of the basic functionality in MRST. Installing the other two packages is
recommended but not required. When installing extra libraries or third-party
toolboxes that you want to integrate with MRST, you must make the software
aware of them. To this end, you should add a new script called startup_user.m

and use the built-in command mrstPath to make sure that the routines you
want to use are on the search path used by MRST and MATLAB to find
functions and scripts.

A.1.6 Terms of usage

The MRST software is distributed as free, open-source software under the
GNU Public License (GPLv3)4. This license is a widely used example of a so-
called copyleft license that offers the right to distribute copies and modified
versions of copyrighted creative work, provided the same rights are preserved
in modified and extended versions of the work. For MRST, this means that
you can use the software for any purpose, share it with anybody, modify it
to suit your needs, and share the changes you make. However, if you share
any version of the software, modified or unmodified, you must grant others
the same rights to distribute and modify it as in the original version. By
distributing MRST as free software under the GPLv3 license, the developers
of MRST have made sure that the software will stay free, no matter who
changes or distributes it.

The development of the MRST toolbox has to a large extent been funded
by strategic research grants awarded from the Research Council of Norway.
Dissemination of research results is an important evaluation criterion for these
types of research grants. To provide the developers with an overview of some
usage statistics for the software, you are kindly asked to register your affili-
ation/country upon download. This information is only used when reporting
impact of the creative work to agencies co-funding the development of MRST.
If you also leave an email address, we will notify you when a new release or
critical bugfixes are available. Your e-mail address will under no circumstances
be shared with any third party.

Finally, if you use MRST in any scholar work, we require that the creative
work of the MRST developers is courteously and properly acknowledged by
referring to the MRST webpage or by citing this book or one of the overview
papers that describe MRST [140, 137, 123, 22].

3 http://homepages.ulb.ac.be/~ynotay/AGMG/
4 See http://www.gnu.org/licenses/gpl.html for more details.

Page: 457 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://homepages.ulb.ac.be/~ynotay/AGMG/
http://www.gnu.org/licenses/gpl.html


458 A The MATLAB Reservoir Simulation Toolbox

Computer exercises:

101. Download and install the software
102. Run flowSolverTutorial1 from the command line to verify that your in-

stallation is working.
103. Load the flowSolverTutorial1 tutorial in the editor

(edit flowSolverTutorial1.m) and run it in cell model (evaluating
one cell at the time). Use help or doc to inspect the documentation for
the various functions that are used in the script.

104. Run the flowSolverTutorial1 tutorial line-by-line: Set a breakpoint on
the first executable line by clicking on the small symbol next to line 27,
push the ’play button’, and then use the ’step’ button to advance a single
line at the time. Change the grid size to 10× 10× 25 and .

105. Use mrstExploreModules() to locate and load the incompIntro tutorial
from the incomp module. Examine the tutorial in the same way as you did
for flowSolverTutorial1. Publish the workbook to reproduce the contents
of Figure A.3.

106. Replace the constant permeability in the incompIntro tutorial by a random
permeability field

rock.perm = logNormLayers(G.cartDims,[100 10 100])*milli*darcy;

Can you explain the changes in the pressure field?
107. Run all of the examples listed by mrstExamples() that have the word ’tu-

torial’ in their names. In particular,
� gridTutorialIntro introduces you quickly to the most fundamental

parts of MRST, the grid structure, which will be discussed in more
detail in Chapter 3;

� tutorialPlotting introduces you to various basic routines and tech-
niques for plotting grids and data defined over these;

� tutorialBasicObjects will give you a quick overview of a lot of the
functionality that can be found in the toolbox.

A.2 Public data sets and test cases

Good data sets are in our experience cases essential to enable tests of new
computational methods in a realistic and relevant setting. Such data sets are
hard to come by, and when making MRST we have made an effort to provide
simple access to a number of public data sets that can be freely downloaded.
With the exception of a few illustrations in Chapter 3 that are based on data
that cannot be publicly disclosed, all examples discussed in the book either
use MRST to create their input data or rely on public data sets that can be
downloaded freely from the internet.

To simplify dataset management, MRST offers a graphical user interface,

mrstDatasetGUI()

Page: 458 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.2 Public data sets and test cases 459

SPE 1 SPE 3 SPE 9 SPE 10

BedModels1
BedModel2 Egg CO2 Atlas

Norne SAIGUP

Johansen CaseB4

Fig. A.5. Examples of the free data sets that are distributed along with MRST.

that lists all public data sets known MRST, gives a short description of each,
and can download and unpack most of the data sets to the correct sub-folder of
the standard path. A few data sets require you to register your email address
or fill in a license form, and in this case we provide a link to the correct
webpage. Figure A.5 shows some of the data sets that are available via the
graphical interface. Many of these will be used throughout the book.

Herein, we use the convention that data sets are stored in sub-directories
of a standard path, which you can retrieve by issuing the following query

mrstDataDirectory()

We recommend that you adhere to this convention when using the software as
a supplement to the book. If you insist on placing standard data sets elsewhere,
we suggest that you use mrstDataDirectory(<path>) to reset the default path.

MRST also contains a number of grid factory routines and simplified geo-
statistical algorithms you can use to make your own test cases. These will be
discussed in more detail in Chapters 3 and 2, respectively. Here, we should
add a word of caution about exact reproducibility. Whereas the grid-factory
routines in MRST are mostly deterministic and should enable you to create
the exact same grids each time your run them (and hence reproduce the test
cases discussed in the book), the routines for generating petrophysical data
rely on random numbers and will not give the same results in repeated runs.
Hence, you can only expect to reproduce plots and numbers that are qualita-
tively similar whenever these are used unless you make sure to store and reset
the seed used by MATLAB’s random-number generator.

Page: 459 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



460 A The MATLAB Reservoir Simulation Toolbox

A.3 More about modules and advanced functionality

As you will recall from Section A.1.1, MRST consist of core functionality
and a set of add-on modules that routines and functionality that extend,
complement, and override existing MRST features, typically in the form of
specialized or more advanced solvers and workflow tools like upscaling, grid
coarsening, etc. In this section, we explain how to load and manage different
modules and will also try to explain the basic characteristics of modules, or
in other words, the design criteria you can apply if you intend to develop
your own module. For completeness, we also provide a brief overview of the
comprehensive set of modules that currently are in the official release. Many
of these modules will not be discussed at all in the book, which for brevity
needs to focus on modules offering functionality of a general interest to a wide
audience.

A.3.1 Operating the module system

MRST’s module system is a simple facility for extending and modifying the
feature set. Specifically, the module system enables on-demand activation and
deactivation of advanced features that are not part of the core functionality.
The module system consists of two parts; one that handles mapping of module
names to system paths and one that uses this mapping to manipulate MAT-
LAB’s search path. The search path is a list of folders used by MATLAB to
locate files. A module in MRST is strictly speaking a collection of functions,
scripts, object declarations, etc., located in a folder. Each module needs to
have a unique name and reside in a different folder than other modules. When
you activate a module, the corresponding folder is added to the search path,
and when you deactivate, the folder is removed.

The mapping between module names and paths on your computer is main-
tained by the function mrstPath. The paths are expected to be full paths to
existing folders on your computer. To determine which modules are part of
your current installation, you use the function as a command

mrstPath

This will list all modules that MRST is aware of and can activate. To activate
a particular module, you use the function mrstModule. As an example, calling

mrstModule add mimetic mpfa

will load the two modules that contain the consistent discretization methods
discussed in Chapter 6. The mrstModule function has the following additional
modes of operation

mrstModule <list|clear|reset|gui> [module list]

Page: 460 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.3 More about modules and advanced functionality 461

which will list all active modules, deactivate all modules, deactivate all mod-
ules except for those in the list, or bring up a graphical user interface with
check-boxes that enable you to activate and deactivate individual modules.
For the latter, you can also use the command moduleGUI.

All modules that come bundled with the official release will be placed in
a predefined folder structure, so that they can be added automatically to the
module mapping by the startup function. However, module folders can in
principle be placed anywhere on you computer as long as they are readable.
To make MRST aware of these additional modules, you need to use mrstPath

to register them in the mapping. Assuming, for instance, that you want to
make the AGMG multigrid solver [185] available. This can be done as follows,

mrstPath register AGMG S:\mrst\modules\3rdparty\agmg

Once the mapping is established, the module can be activated

mrstModule add AGMG

In my experience, the best way to register modules that are not part of the
default mapping that comes with the official versions of MRST is to add
appropriate lines to your startup_user file. The following is an excerpt from
mine

mrstPath reregister distmesh ...
/home/kalie/matlab/mrst−bitbucket/mrst−core/utils/3rdparty/distmesh

which adds the mesh generator DistMesh by Persson and Strang [193] as a
module in MRST.

A.3.2 What characterizes a module?

What makes a module in MRST differs quite a lot. Some modules are just
small pieces of code that add specialized capabilities like the mpfa module,
whereas others add comprehensive new functionality such as the incomp,
ad−core, co2lab modules, etc. Some of these modules are robust, well-
documented, and contain features that will likely not change in future releases.
As such, they could have been included as part of the core functionality if we
had not decided to keep this as small as possible to simplify maintenance
and reduce the potential for feature conflicts. Other modules are constantly
changing to support ongoing research. Until recently, all modules in the AD-
OO family were of this type. Using the module concept is often convenient if
you are working on a project that has specific functionality that you may want
to activate or deactivate as you like. In-house, our team as a large number of
modules that are in varying degree of development and/or decay. Some are
accessible to the whole team, whereas others reside on one person’s computer
only. In summary, any module that is part of the official release is just some

Page: 461 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



462 A The MATLAB Reservoir Simulation Toolbox

code that has been organized in a certain way and released to others. Com-
mon for all modules, however, is that they attempt to adhere to the following
recommendations:

� A module should offer some new functionality that is distinctly different
from what is already available in mrst-core and/or other modules.

� A module should distinguish between functionality that is exposed to the
users of the module and functionality that is only used internally. The
latter can be put in a folder called private (and will then not be accessible
to other functions than those in the folder above) or some other folder that
signals that these functions are not the main ones to be used

� A module should contain a set of tutorials/examples that explain and high-
light basic functionality of the module. If these examples require special
data sets, these should be published along with the module.

� All main routines in a module should be documented (similar to what is
already done in MRST) describing input and output data, the underlying
method, and preferably assumptions and limitations

� Modules should, as a general rule, not use functionality from the official
toolboxes that are sold with MATLAB since many users do not have access
to these.

� Name conflicts should be avoided to avoid messing up the search path in
MATLAB. When two files with the same name appear in multiple folders
on the search path, MATLAB will pick the one found nearest the top of
the search path. To avoid potential unintended side effects, it is therefore
important that files have unique names across different modules.

� To the extent possible, the implementation should try to stick to the
same naming conventions as used in MRST for readability. That is use
camelCaseNames for functions, use G for grid, rock for petrophysics, fluid
for fluid models, etc.

A.3.3 List of modules

In this section, we will go through the various modules that make up the
official MRST release and explain briefly the purpose and key features of each
individual module. To this end, we have followed the subdivision introduced
in Section A.1.1, which is slightly different from the one found on the MRST
webpages.

Incompressible discretizations and solvers

This family of modules consist primarily of functionality for solving Poisson-
type pressure equations:

incomp: The module implements the basic fluid objects necessary to represent
incompressible, two-phase flow. To solve these flow equations, the mod-
ule offers a standard two-point flux-approximation (TPFA) method for

Page: 462 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.3 More about modules and advanced functionality 463

pressure and explicit and implicit transport solvers using single-point up-
stream mobility weighting, which can be combined in sequential solution
procedures. The incomp module was originally part of the core module,
but was moved to a separate module once the software started offering
solvers for more advanced fluid models. The module is described in detail
in Part II and III of the book.

mimetic: The standard two-point flux approximation method implemented
in the incomp module is not consistent and not hence convergent un-
less the grid is K-orthogonal. The solver may therefore give significant
grid-orientation errors for anisotropic permeabilities and skew grids. The
module implements a family of mimetic finite difference methods, which
give consistent discretization for incompressible (Poisson-type) pressure
equations, see Section 6.3

mpfa: The module implements the MPFA-O scheme, which is an example
of a multipoint flux-approximation scheme that employs more degrees of
freedom when constructing the discrete fluxes across cell interfaces; this
to ensure a consistent discretization with reduced grid-orientation effects.

vem: Virtual element methods (VEM) [29, 30] constitute a unified framework
for higher-order methods on general polygonal and polyhedral grids. The
module can be used to solve general incompressible flow problems using
first- and second-order VEM, with the possibility to choose different inner
products. The module was originally developed by Klemetsdal as part of
his master thesis [122].

Implicit solvers based on the AD-OO framework

Although the framework offers functionality for solving a wide class of model
equations, the current functionality is primarily geared towards compressible
multiphase flow.

ad-core: Object-oriented framework for solvers based on automatic differenti-
ation (MRST AD-OO). This module by itself does not contain any com-
plete simulators, but rather implements the common framework used for
many other modules. This framework includes abstract classes for reser-
voir models, for time stepping, nonlinear solvers, linear solvers, function-
ality for variable updating/switching, routines for plotting well responses,
etc. See the discussion in Chapter 11 and [123, 22] for more details.

ad-blackoil: Models and examples that extend the MRST AD-OO framework
found in the ad−core module to black-oil problems. More specifically, the
module adds additional mathematical models that implement the black-
oil equations for multiphase, miscible, compressible flow and offers models
for single-phase, two-phase and three-phase flow. The three-phase mod-
els include dissolution of gas into oil and/or oil vaporizing into the gas
phase. The solvers support source terms, boundary conditions and com-
plex wells with changing controls, production limits and multiple seg-
ments. The module includes a wide variety of examples validating the

Page: 463 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



464 A The MATLAB Reservoir Simulation Toolbox

solvers against a commercial simulator on standard test cases (SPE1 and
SPE9). See Chapter 11 for more details.

blackoil-sequential: This module implements sequential solvers for the same
set of equations that are implemented using a fully-implicit discretization
in ad−blackoil. The solvers are based on a fractional flow formulation
wherein pressure and transport are solved as separate steps, see [164] for
more details. These solvers can be significantly faster than those found
in ad−blackoil for many problems, especially problems where the total
velocity changes slowly during the simulation.

ad-eor: This module builds on top of the AD-OO framework from the ad−core
and ad−blackoil modules, and defines model equations and provides sim-
ulation tools for water-based enhanced oil recovery techniques (polymer
and surfactant injection), see [22] for more details about the polymer case.

optimization: The module contains routines for solving optimal control prob-
lems with (forward and adjoint) solvers based on the AD-OO framework.
The module contains a quasi-Newton optimization routine using BFGS-
updated Hessians, but can easily be set up to use any (non-MRST) opti-
mization code.

ad-props: Functionality related to property calculations for the AD-OO frame-
work. Specifically, the module implements a variety of test fluids and func-
tions that are used to create fluids from external datasets. This module
is used as part of almost all simulators in MRST studying compressible
equations of black-oil or compositional type.

Workflow tools

The two families of modules outlined above are concerned with simulation of
a given reservoir model. The next category of modules contain functionality
that can be used either before or after a reservoir simulation as part of a
general modeling workflow.

diagnostics: Flow diagnostics tools are run to establish connections and basic
volume estimates, and quickly provide a qualitative picture of the flow
patterns in the reservoir. These methods offer a computationally inexpen-
sive alternative to multiphase simulations to rank, compare, and validate
reservoir models, upscaling procedures, and production scenarios. The flow
diagnostics module contains utilities for computing time-of-flight, tracer
partitioning, and measures of dynamic heterogeneity, which in turn can
be used to compute well-allocation factors, drainage/sweep regions, sim-
ple estimates of recovery and net-present-value, etc. See Chapter 12 and
[166, 199, 125] for more details.

upr: The module contains functionality for generating unstructured polyhe-
dral grids that align to prescribed geometric objects. Control-point align-
ment of cell centroids is introduced to accurately represent horizontal and
multilateral wells, but can also be used to create volumetric representa-
tions of fracture networks. Boundary alignment of cell faces is introduced

Page: 464 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.3 More about modules and advanced functionality 465

to accurately preserve geological features such as layers, fractures, faults,
and/or pinchouts. This third-party module is developed based on a master
thesis by Berge [33], see also [187].

coarsegrid: The module contains extended functionality for defining coarse
grids formed as a partition of an underlying fine grid. Such grids form
a key part in upscaling and multiscale methods, but act almost like any
standard MRST grid and can hence be passed to most of the solvers from
other modules. Coarse grid generated from a partition are also useful for
visualization purposes. More details are given in Chapter 13.

agglom: The module contains a set of tools and tutorials for constructiong
coarse grid based upon amalgamation of cells from a fine-scale model [91,
90, 142, 146]. Primary examples are coarse grids that adapt to geological
features such as flow units, deposition environment, and various types of
regions (facies, stone types, initialization regions, etc). Likewise, using an
amalgamation process that consists of a sequence of merging and splitting
operations, one can generated flow-adapted grids based on an indicator
like flux magnitude, time-of-flight, etc.

upscaling: The module includes methods for flow-based upscaling of both per-
meabilities and transmissibilities on general grids, as well as a few tutorials
demonstrating how to implement simple averaging methods. See Chap-
ter 14 for more details.

steady-state: Functionality for upscaling relative permeabilities based on a
steady-state assumption. This includes general steady state, as well as
capillary and viscous-dominated limits. The functionality is demonstrated
through a few tutorial examples. For more details, see Hilden [95, 94].

adjoint: The module implements strategies for production optimisation based
on adjoint formulations. This enables, for instance, optimization of the
net present value constrained by the bottom-hole pressure in wells. This
module is limited to two-phase, incompressible flow as implemented in
the incomp module. For optimization problems with more complex fluid
physics, the newer optimization module from the AD-OO framework is
recommended.

enkf: An ensemble Kalman filter (EnKF) module developed by researchers at
TNO [133, 132] that contains EnKF and EnRML schemes, localization,
inflation, asynchronous data, production and seismic data, updating of
conventional and structural parameters.

remso: The REservoir Multiple Shooting Optimizer (REMSO) is an optimiza-
tion module based on multiple shooting, developed by Codas [66]. It allows
for great flexibility in the handling of non-linear constraints in reservoir
management optimization problems.

Multiscale methods

Multiscale methods can either be used as a robust upscaling method to pro-
duce upscaled flow velocities and pressures on a coarse grid or as an approxi-
mate, iterative fine-scale solver. Instead of placing these methods into one of

Page: 465 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



466 A The MATLAB Reservoir Simulation Toolbox

the categories above, we have given them a separate category, in part because
of the prominent place they have played as a driving force for the development
of MRST:

msmfe: The module implementes the multiscale mixed finite-element (MsMFE)
method on stratigraphic and unstructured grids in 3D [52, 1, 2, 3, 5, 119,
170, 13, 142, 188]. The idea is to introduce a set of basis functions (pro-
longation operators) associated with the faces of a coarse grid. The basis
functions are computed numerically by solving localized flow problems on
pairs of coarse blocks. Using these basis functions, one can define a reduced
flow problem on the coarse grid and prolongate the resulting coarse solu-
tion back to the fine grid to get a mass-conservative flux field. The method
is a good approximative solver, and a robust and accurate alternative to
upscaling, for incompressible flow problems. MRST was originally devel-
oped for the sole purpose of supporting the research on MsMFE methods.
This module has not been actively developed since 2012.

msfv: The module implements the operator formulation [150] of the multiscale
finite-volume (MsFV) method [106] for incompressible flow on structured
and unstructured grids in 3D, under certain restrictions on the grid geom-
etry and topology [158, 159]. The key idea is to introduce a set of prolon-
gation operators, defined by solving flow problems localized to dual coarse
blocks. The prolongation operators are then used to define a reduced flow
problem on the coarse primal grid and map unknowns computed on this
grid back to the underlying fine grid. The resulting method can either be
used as an approximate solver or as a global preconditioner in an itera-
tive solver. The module is not actively developed and is offered mostly for
historic reasons. Users interested in applying multiscale methods should
look at the msrsb module instead.

msrsb: The Multiscale Restricted-Smoothing Basis (MsRSB) method [163,
164] is the current state-of-the-art within multiscale methods [145]. MsRSB
is very robust and versatile can either be used as an approximate coarse-
scale solver having mass-conservative subscale resolution, or as an itera-
tive fine-scale solver that will provide mass-conservative solutions for any
given tolerance. The performance of the method has been demonstrated
on incompressible 2-phase flow [163], compressible 2 and 3-phase-black
oil models [164], as well as compositional models [165]. It has also been
demonstrated that the method can utilize combinations of multiple pro-
longation operators [147], e.g., corresponding to coarse grids with different
resolutions, adapting to geological features, adapting to wells, or moving
displacement fronts. At the moment, only parts of this functionality is
available in the public version of the module.

Specialized simulation tools

This category consists of modules that implement solvers and simulators for
other mathematical models than those discussed in this book.

Page: 466 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.3 More about modules and advanced functionality 467

co2lab: This module combines results of more than one decade of academic re-
search and development on CO2 storage modeling into a unified toolchain
that is easy and intuitive to use. The module is geared towards the study of
long-term trapping in large-scale saline aquifers and offers computational
methods and graphical user interfaces that enable you to visualize migra-
tion paths and compute upper theoretical bounds on structural, residual,
and solubility trapping. The module also offers efficient simulators based
on a vertical-equilibrium (VE) formulation that can be used to analyse
pressure build-up and plume migration and compute detailed trapping
inventories for realistic storage scenarios. Last but not least, the module
provides simplified access to publicly available data sets, e.g., from the
Norwegian CO2 Storage Atlas. For more details, see the following refer-
ences: the general tool chain of methods [179, 143, 16, 144, 17], structural
traps [180], and VE formulations [15, 177, 178].

dfm: The module contains two-point and multipoint solvers for discrete
fracture-matrix systems [204, 222], including multiscale methods. This
third-party module is developed by Sandve from the University of Bergen,
with minor modifications by Keilegavlen.

hfm: The hierarchical fracture module (HFM) utilises the hierarchical fracture
modelling framework to simulate multiphase flow in naturally fractured
reservoirs with multiple length scales. Also known as the embedded dis-
crete fracture model, this method models fractures explicitly, as major
fluid pathways, and benefits from independent definitions of the fracture
and matrix grid. As a result, intricate fracture networks can be modelled
easily, without the need for a complex underlying matrix grid that is con-
formal with each fracture. The module also extends the newly developed
multiscale restriction smoothed basis (MsRSB) method to compute the
flux field developed in a fractured reservoir, see [205] for more details.

dual-porosity: A module for geologic well-testing in naturally fractured reser-
voirs has been developed by the Carbonate Reservoir Group at Heriot
Watt university. The module setups tools to generate synthetic transient
pressure responses for idealized and realistic fracture networks.

vemmech: This module offers functionality to set up solvers for linear elastic-
ity problems on irregular grid, using the virtual element method [30, 82],
which is a generalization of finite-element methods that takes inspira-
tion from modern mimetic finite-difference methods. For more details, see
[18, 181]

fvbiot: The module, developed by Nordbotten and Keilegavlen, implements
cell-centered discretizations of three different equations:
� Scalar elliptic equations (Darcy flow), using multipoint flux approxi-

mations (this is more or less equivalent to the MPFA implementation
in the mpfa module, although the implementation and data structures
are slightly different).

� Linear elasticity, using the multipoint stress-approximation (MPSA)
method [183, 184, 114].

Page: 467 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



468 A The MATLAB Reservoir Simulation Toolbox

� Poro-mechanics, e.g., coupling terms for the combined system of the
above two models.

Utility routines

The last category consists of modules that do not offer any computational or
modeling tools but rather provide general utility functions that can be utilized
by the other modules in MRST:

mrst-gui: Graphical interfaces for interactive visualization of reservoir states
and petrophysical data. The module includes additional routines for im-
proved visualization (histograms, well data, etc) as well as a few utility
functions that enable you to override some of MATLAB’s settings to en-
able faster 3D visualization (rotation, etc).

book: Module containing all the scripts used for the examples, figures, and
some of the exercises in this book.

deckformat: The module contains support for input of complete simulation
decks in the ECLIPSE format, including input reading, conversion to SI
units, and construction of MRST objects for grids, fluids, rock properties,
and wells. Functionality from this module is thus essential for the fully
implicit simulators developed in the ad−blackoil and ad−eor modules,
but is also used in a large number of MRST’s examples and tutorials as
well as many of the examples herein.

spe10: Model 2 from the 10th SPE Comparative Solution Project has devel-
oped into a standard test case used by a large number of researchers. The
spe10 module contains tools for downloading, converting, and loading the
data into MRST. The module also features utility routines for extracting
parts of the model, as well as a script that sets up a (crude) simulation of
the full model (using the AGMG multigrid solver). For more details, see
Section 2.5.3.

libgeometry: Many of the routines in MRST rely on detailed geometric infor-
mation about the grids including cell volumes and centroids, face areas and
normals, etc. Computing this information efficiently in MATLAB is not
an easy task and for very large and complex grids, the builtin functionality
from the core module can be too slow. The current module therefore offers
C-accelerated computation of geometric grid properties (cell centroids and
volumes and face centroids, areas, and normal vectors).

opm gridprocessing: Although the computeGeometry function from MRST’s
core functionality is generally efficient, it can be slow for large models.
To accelerate the processing of large models, this module offers access to
grid-processing routines written in C for the Open Porous Media (OPM)
initiative, which generally can be seen as the C/C++ siebling of MRST.

streamlines: The module implementes Pollock’s method for tracing of stream-
lines on Cartesian and curvilinear grids based on a set of input fluxes,
as computed by the incompressible flow solvers in MRST (i.e., from the
incomp, mimetic, or mpfa module).

Page: 468 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.4 Rapid prototyping using MATLAB and MRST 469

wellpaths: Functionality for defining wells following curvilinear trajectories.

As should be evident from the overview of current modules, MRST does
not have strict requirements on what becomes a module and what does not.
The concept of semi-independent modules is simply a way to organize the
software development that promotes software reuse. If you start to make what
should eventually become a module, you will probably be a bit more careful to
distinguish parts of your development that have generic value from parts that
are case specific or of temporary value only. Moreover, the fact that others
or your future self may want to reuse your functionality will hopefully also
motivate you to put in the extra effort to document your routines and make
examples and tutorials that later decided whether somebody wants to use or
continue to develop the functionality you have implemented or not.

Computer exercises:

108. Try to run the following tutorials and examples from various modules
� simpleBCmimetic from the mimetic module.
� simpleUpscaleExample from the upscaling module
� gravityColumnMS from the msmfem module
� example2 from the diagnostics module
� firstTrappingExample from the co2lab module (notice that this ex-

ample does not work unless you have MATLAB−BGL installed).

A.4 Rapid prototyping using MATLAB and MRST

How can you reduce the time span from the moment you get a new idea to
when you have demonstrated that it works well for realistic reservoir engi-
neering problems?

In our experience, prototyping and validating new numerical methods is
painstakingly slow. There are many reasons for this. First of all, there is of-
ten a strong disconnect between the mathematical abstractions and equations
used to express models and numerical algorithms and the syntax of the com-
puter language you use to implement your algorithms. This is particularly
true for compiled languages, where you typically end up spending most of
your time writing and tweaking loops that perform operations on individ-
ual members of arrays or matrices. Object-oriented languages like C++ offer
powerful functionality that can be used to make abstractions that are both
flexible and computationally efficient and enable you to design your algorithms
using high-level mathematical constructs. However, these advanced features
are usually alien and unintuitive to those who do not have extensive training
in computer sciences. If you are familiar with such concepts and are in the
possession of a flexible framework, you still face the never-ending frustration

Page: 469 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



470 A The MATLAB Reservoir Simulation Toolbox

caused by different versions of compilers and (third-party) libraries that seems
to be an integral part of working with compiled languages.

Based on the experience of a large number of researchers and students over
the past twenty years, we claim that using a numerical computing environment
based on a scripting language like MATLAB (or Python) to prototype, test,
and verify new models and computational algorithms is significantly more ef-
ficient than using a compiled language like Fortran, C, and C++. Not only
is the syntax intuitive and simple, but there are many mechanisms that help
to boost your productivity and you avoid some of the frustrations that come
with compiled languages: there is no complicated build process or handling of
external libraries and your implementation is inherently cross-platform com-
patible.

MATLAB, for instance, provides mathematical abstractions for vectors
and matrices and built-in functions for numerical computations, data analy-
sis, and visualization that enable you to quickly write codes that are not only
compact and readable, but also efficient and robust. On top of this, MRST
provides additional functionality that has been developed especially for com-
putational modeling of flow in porous media:

� an unstructured grid format that enables you to implement algorithms
without knowing the specifics of the grid;

� discrete operators, mappings, and forms that are not tied to specific flow
equations, and hence can be precomputed independently and used to write
discretized flow equations in a very compact form that is close to the
mathematical formulations of the same;

� automatic differentiation which enables you to compute the values of gra-
dients, Jacobians, and sensitivities of any programmed function without
having to compute the necessary partial derivatives analytically; this can,
in particular, be used to automate the formulation of fully implicit dis-
cretizations of time-dependent and coupled systems of equations

� data structures that provide unified access and enable you to hide specific
details of constitutive laws, fluid and rock properties, boundary conditions,
wells, etc;

This functionality will be gradually introduced and described in detail through-
out the book.

An equally important aspect of using a numerical environment like MAT-
LAB is that you can develop your program differently than what you would
do in a compiled language. Using the interactive environment, you can in-
teractively analyse, change and extend data objects, try out each operation,
include new functionality, and build your program as you go. This feature is
essential in a debugging process, when one tries to understand why a given
numerical method fails to produce the results one excepts it to give. In fact,
you can easily continue to change and extend your program during a test run:
the debugger enables you to run the code line by line and inspect and change
variables at any point. You can also easily step back and rerun parts of the

Page: 470 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.4 Rapid prototyping using MATLAB and MRST 471

code with changed parameters that may possibly change the program flow.
Since MATLAB uses dynamic type-checking you can also add new behav-
ior and data members while executing a program. However, how to do this
in practice is difficult to teach in a textbook. Instead, you should run and
modify the various examples that come with MRST and the book. We also
recommend that you try to solve the computer exercises that are suggested
at the end of several of the chapters and sections in the book.

Unfortunately, all this flexibility and productivity comes at a price: it is
very easy to develop programs that are not very efficient. In the book, we
therefore try to teach programming concepts that can be used to ensure flexi-
bility and high efficiency of your programs. These include, in particular, pow-
erful mechanisms for traversing data structures like vectorization, indirection
maps, and logical indexes, as well as use of advanced MATLAB functions like
accumarray, bsxfun, etc. Although these will be presented in the context of
reservoir simulation, we think the techniques should be of interest for readers
working with lower-order finite-volume discretizations on general polyhedral
grids. As an illustration of the type of MATLAB programming that will be
used, let us consider a simple example. The following code generates one mil-
lion random points in 3D and counts the number of points that lie inside each
of the eight octants:

n = 1000000;
pt = randn(n,3);
I = sum(bsxfun(@times, pt>0, [1 2 4]),2)+1;
num = accumarray(I,1);

The third line computes the sign of the x, y, and z coordinates and maps
each of the resulting one million triples of logical values to an integer number
between 1 and 8 that represents each of the octants. To count the number of
points inside each octant, we use the function accumarray that groups elements
from a data set and applies a function to each group. The default function is
summation, and by setting a unit value in each element, we count the entries.

Next, let us compute the mean point inside each octant. A simple loop-
based solution could be something like:

avg = zeros(8,3);
for i=1:1000000

quad = sum((pt(i,:)>0).*[1 2 4])+1;
avg(quad,:) = avg(quad,:)+pt(i,:);

end
avg = bsxfun(@rdivide, avg, num);

Use of loops should generally be avoided since they tend to be slow in MAT-
LAB. On the author’s computer, it took 0.09 seconds to count the number of
points within each octant, but 2.6 seconds to compute the mean points. So let
us try to do something more clever and utilize vectorization. The accumarray

function cannot be used since it only works for scalar values. Instead, we can

Page: 471 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



472 A The MATLAB Reservoir Simulation Toolbox

build a sparse matrix that we multiply with the pt array to sum the coordi-
nates of the points. The matrix will have one row per octant and one column
per point. Now, all we have to do is to use our indicator I to assign a unit
value in the correct row for each column use bsxfun to divide the sum of the
coordinates with the number of points inside each octant:

avg = bsxfun(@rdivide, sparse(I,1:n,1)*pt, num);

On the author’s computer this operation took 0.05 seconds, which is fifty
times faster than the loop-based solution. In fact, summing all coordinates
inside each octant is faster than counting the number of points. Let us try to
utilize this to speed up the computation of mean points. This is quite simple:
we expand each coordinate to a quadruple (x, y, z, 1), multiply by the same
sparse matrix, and use bsxfun to divide the first three columns by the fourth
column to compute the average:

avg = sparse(I,1:n,1)*[pt, ones(n ,1)];
avg = bsxfun(@rdivide, avg(:,1:end−1), avg(:,end));

The overall operation ran in 0.07 seconds, which not only is two times faster
than our previous solution, but perhaps also a bit more elegant.

Hopefully, this simple example has inspired you to learn a bit more about
efficient programming tricks if you do not already speak MATLAB fluently.
MRST is generally full of tricks like this, and in the book we will occasionally
show a few of them. However, if you really want to learn the tricks of the
trade, the best way is to dig deep into the actual codes.

A.5 Automatic differentiation in MRST

Automatic differentiation is a technique that exploits the fact that any com-
puter code, regardless of complexity, can be broken down to a limited set of
arithmetic operations (+, −, ∗, /, etc), and, in our case, more or less elemen-
tary MATLAB functions (exp, sin, power, interp, etc). In automatic differen-
tiation (AD) the key idea is to keep track of quantities and their derivatives
simultaneously; every time an operation is applied to a quantity, the corre-
sponding differential operation is applied to its derivative. Consider a scalar
primary variable x and a function f = f(x). Their AD-representations would
then be the pairs 〈x, 1〉 and 〈f, fx〉, where 1 is the derivative dx/dx and fx
is the numerical value of the derivative df/dx. Accordingly, the action of the
elementary operations and functions must be defined for such pairs, e.g.,

〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉 ,
〈f, fx〉 ∗ 〈g, gx〉 = 〈fg, fgx + fxg〉 ,
〈f, fx〉 / 〈g, gx〉 =

〈
f/g, (fxg − fgx)/g2

〉
exp(〈f, fx〉) = 〈exp(f), exp(f)fx〉 ,

Page: 472 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.5 Automatic differentiation in MRST 473

In addition to this, one needs to use the chain rule to accumulate derivatives;
that is, if f(x) = g(h(x)), then fx(x) = dg

dhhx(x). This more or less summarizes
the key idea behind automatic differentiation, the remaining and difficult part
is how to implement the idea as efficient computer code that has a low user-
threshold and minimal computational overhead.

As the above example illustrates, it is straightforward to write down all
elementary rules needed to differentiate a program or piece of code. To be
useful, however, these rules should not be implemented as standard functions,
so that you need to write something like myPlus(a, myTimes(b,c)) when you want
to evaluate a+ bc. An elegant solution is to instead use classes and operator
overloading. When MATLAB encounters an expression a+b, the software will
choose one out of several different addition functions depending on the data
types of a and b. All we now have to do is introduce new addition functions
for the various classes of data types that a and b may belong to. Neidinger
[172] gives a nice introduction to how to implement this in MATLAB. .

There are many automatic differentiation libraries for MATLAB, e.g., ADi-
Mat [213, 34], ADMAT [44, 224], MAD [217, 207, 80], or from MATLAB Cen-
tral [78, 156]. The AD class in MRST uses operator overloading as suggested
in [172] and uses a relatively simple forward accumulation, but differs from
other libraries in a subtle, but important way. Instead of working with a sin-
gle Jacobian of the full discrete system as one matrix, MRST uses a list of
matrices that represent the derivatives with respect to different variables that
will constitute sub-blocks in the Jacobian of the full system. The reason for
this choice is two-fold: computational performance and user utility. In typical
simulation, and particularly for complex model, the mathematical model will
consist of several equations (continuum equations, Darcy’s law, equations of
state, other constitutive relationships, control equations for wells, etc) that
have different characteristics and play different roles in the overall equation
system. In typical cases, we will use fully-implicit discretizations in which one
seeks to solve for all state variables simultaneously, but we may still want
to manipulate parts of the full equation system that represents specific sub-
equations. This is not practical if the Jacobian of the system is represented as
a single matrix; manipulating subsets of large sparse matrices is currently not
very efficient in MATLAB, and keeping track of the necessary index sets may
also be quite cumbersome from a user’s point-of-view. Accordingly, our cur-
rent choice is to let the MRST AD-class represent the derivatives of different
primary variable as a list of matrices.

In the rest of the section, we will go through a few relatively simple exam-
ples that demonstrate how the AD class works. Later in the book we demon-
strate how automatic differentiation can be used to set up simulations in a
(surprisingly) few number of code lines.

Example A.1. As a first example, let us say we want to compute the expression
z = 3e−xy and its partial derivatives ∂z/∂x and ∂z/∂y for the values x = 1
and y = 2. Using our previous notation, AD-representation of z should be an

Page: 473 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



474 A The MATLAB Reservoir Simulation Toolbox

object of the following form

z =
〈
3e−xy,−3ye−xy,−3xe−xy

〉
≈ 〈0.4060,−0.8120,−0.4060〉 .

Computing z and its partial derivatives is done with the following two lines:

[x,y] = initVariablesADI(1,2);
z = 3*exp(−x*y)

The first line tells MRST that x and y are independent variables and initializes
their values. The second line is what you normally would write in MATLAB
to evaluate the given expression. After the second line has been executed, you
have three AD variables (pairs of values and derivatives):

x = ADI Properties:
val: 1
jac: {[1] [0]}

y = ADI Properties:
val: 2
jac: {[0] [1]}

z = ADI Properties:
val: 0.4060
jac: {[-0.8120] [-0.4060]}

∂x

∂x

∂x

∂y

∂y

∂x

∂y

∂y

∂z

∂x

∣∣∣
x=1,y=2

∂z

∂y

∣∣∣
x=1,y=2

If we now go on computing with these variables, each new computation will
lead to a result that contains the value of the computation as well as the
derivatives with respect to x and y.

Let us look a bit in detail on what happens behind the curtain. We start by
observing that the operation 3*exp(−x*y) in reality consists of a sequence of
elementary operations: −, ∗, exp, and ∗, executed in that order. In MATLAB,
this corresponds to the following sequence of call to elementary functions

u = uminus(x);
v = mtimes(u,y);
w = exp(u);
z = mtimes(3,w);

To see this, you can enter the command into a file, set a breakpoint in front of
the assignment to z, and use the ’Step in’ button to step through all details.
The AD class overloads these three functions by new functions that have the
same names, but operate on an AD pair for uminus and exp, and on two AD
pairs or a combination of a double and an AD pair for mtimes. Figure A.6
gives an overview of the sequence of calls that are invoked within the AD
implementation to evaluate 3*exp(−x*y) when x and y are AD variables5.

5 The observant reader may notice that some computational saving could have been
obtained if we had been careful to replace the call to matrix multiply (*=mtimes)
by a call to vector multiply (+.*=times), which are mathematically equivalent
for scalar quantities.

Page: 474 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.5 Automatic differentiation in MRST 475

u = uminus(x);

v = mtimes(u,y);

w = exp(u);

z = mtimes(3,w);

Calling sequence

function h = uminus(u)

h = ADI(-u.val, uminusJac(u.jac));

function J = uminusJac(J1)

J = cellfun(@uminus, J1, ’UniformOutput’, false);

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

h = mtimes(v,u);

else

if numel(u.val) == 1

h = times(repmat(u, [numel(v.val), 1]), v);

elseif numel(v.val) == 1

h = times(u, repmat(v, [numel(u.val), 1]));

else

error(’Operation not supported’);

end

end

function h = repmat(u, varargin)

h = ADI(repmat(u.val, varargin{:}), ...

repmatJac(u.jac, varargin{:}));

function J = repmatJac(J1, varargin)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = repmat(J1{k}, varargin{:});

end

function h = times(u,v)% ’.*’

if ~isa(u,’ADI’) %u is a scalar/vector

if numel(u)==numel(v.val)

h = ADI(u.*v.val, lMultDiag(u, v.jac));

else

h = mtimes(u,v);

end

elseif ~isa(v,’ADI’) %v is a scalar/vector

h = times(v,u);

else

if numel(u.val)==numel(v.val)

h = ADI(u.val.*v.val, ...

timesJac(u.val, v.val, u.jac, v.jac));

elseif numel(v.val)==1||numel(u.val)==1

h = mtimes(u,v);

else

error(’Operation not supported’);

end

end

function J = timesJac(v1, v2, J1, J2)

n = numel(v1);

D1 = sparse((1:n)’, (1:n)’, v1, n, n);

D2 = sparse((1:n)’, (1:n)’, v2, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D1*J2{k} + D2*J1{k};

end

function h = exp(u)

eu = exp(u.val);

h = ADI(eu, lMultDiag(eu, u.jac));

function J = lMultDiag(d, J1)

n = numel(d);

D = sparse((1:n)’, (1:n)’, d, n, n);

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = D*J1{k};

end

function h = mtimes(u,v)% ’*’

if ~isa(u,’ADI’)

h = ADI(u*v.val, mtimesJac(u, v.jac));

elseif ~isa(v,’ADI’)

:

function J = mtimesJac(M, J1)

J = cell(1, numel(J1));

for k = 1:numel(J)

J{k} = M*J1{k};

end

Fig. A.6. Complete set of functions invoked to evaluate 3*exp(−x*y) when x and
y are AD variables. For brevity, we have not included details of the constructor
function ADI(val,Jac), which constructs an AD pair with the value val and list of
Jacobi matrices Jac.

As you can see from the above example, use of automatic differentiation
will give rise to a whole new set of function calls that are not executed if one
only wants to evaluate a mathematical expression and not find its derivatives.
Apart from the cost of the extra code lines one has to execute, user-defined
classes are fairly new in MATLAB and there is still some overhead in using
class objects and accessing their properties (e.g., val and jac) compared to the
built-in struct-class. The reason why AD still pays off in most examples, is
that the cost of generating derivatives is typically much smaller than the cost
of the solution algorithms they will be used in, in particular when working
with equations systems consisting of large sparse matrices with more than one
row per cell in the computational grid. However, one should still seek to limit
the number of calls involving AD-class functions (including the constructor).
We let the following example be a reminder that vectorization is of particular
importance when using AD classes in MRST:

Example A.2. To investigate the efficiency of vectorization versus serial ex-
ecution of the AD objects in MRST, we consider the inner product of two
vectors

z = x.*y;

We will compare the cost of computing z, ∂z/∂x, and ∂z/∂y using four dif-
ferent approaches:

Page: 475 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



476 A The MATLAB Reservoir Simulation Toolbox

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 

 

analytical

vectorized

for+mtimes

for+times

Fig. A.7. Comparison of the time required for computing z=x.*y and derivatives
as function of the number of elements in the vectors x and y.

1. analytical expressions zx = y and zy = x and standard MATLAB vectors
of doubles,

2. the overloaded vector multiply (.*) with AD-vectors for x and y
3. a loop over all vector elements with matrix multiply (*=mtimes) and x

and y represented as scalar AD variables
4. same as 3, but with vector multiply (.*=times)

This is implemented as follows:

[n,t1,t2,t3,t4] = deal(zeros(m,1));
for i = 1:m

n(i) = 2ˆ(i−1);
xv = rand(n(i),1); yv=rand(n(i),1);
[x,y] = initVariablesADI(xv,yv);
tic, z = xv.*yv; zx=yv; zy = xv; t1(i)=toc;
tic, z = x.*y; t2(i)=toc;
tic, for k =1:n(i), z(k)=x(k)*y(k); end; t3(i)=toc;
tic, for k =1:n(i), z(k)=x(k).*y(k); end; t4(i)=toc;

end

Figure A.7 shows a plot of the corresponding runtimes as function of the num-
ber elements in the vector. For this simple function, using AD is a factor 20-40
times more expensive than using direct evaluation of z and the analytical ex-
pressions for zx and zy. Using a loop will on average be more than three orders
more expensive than using vectorization. Since the inner iterations multiplies
scalars, many programmers would implement it using matrix multiply * with-
out a second thought. Replacing * by vector multiply .* reduces the cost by
30% on average, but the factor diminishes as the number of elements increases
in the vector.

Page: 476 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.5 Automatic differentiation in MRST 477

While for-loops in many cases will be quite efficient in MATLAB (contrary
to common belief), one should always try to avoid loops that call functions
that have non-negligible overhead. The AD class in MRST has been designed
to work on long vectors and lists of (sparse) Jacobian matrices and has not
been optimized for scalar variables. As a result, there is considerable overhead
when working with small AD objects.

The main use of AD objects in MRST is to linearize and assemble (large)
systems of discrete equations. To use AD to assemble and solve a linear system
Ax = b, we must first write the system on residual form,

r(x) = Ax− b = 0. (A.1)

Since x is unknown, we will assume that we have an initial guess called y.
Inserting this into (A.1), we obtain

r(y) = Ay − b = A(y − x),

which we can solve for x to obtain x = y − A−1r(y). It follows from (A.1)
that ∂r/∂x = A, which means that if we can write a code the evaluates the
residual for each and every equation that makes up our system, we can use
automatic differentiation to assemble and solve the system.

Example A.3. As a very simple illustration of how automatic differentiation
can be used to assemble a linear system, let us consider the following linear
3× 3 system  3 2 −4

1 −1 2
−2 −2 4

x1

x2

x3

 =

−5
−1

6

 ,
whose solution x = [1 2 3]T can be computed by a single line in MATLAB:

x = [3, 2, −4; 1, −4, 2; −2,− 2, 4]\ [−5; −1; 6]

To solve the same system using automatic differentiation, we need the follow-
ing lines:

x = initVariablesADI(zeros(3,1));
eq1 = [ 3, 2, −4]*x + 5;
eq2 = [ 1, −4, 2]*x + 1;
eq3 = [−2, −2, 4]*x − 6;
eq = cat(eq1,eq2,eq3);
u = −eq.jac{1}\eq.val

Here, the first line sets up the AD variable x and initializes it to zero. The next
three lines evaluate the equations that make up our linear system. Evaluating
each equation results in a scalar residual value eq1.val and a 1× 3 Jacobian
matrix eq1.jac. In the fifth line, the residuals are concatenated to form a
vector and the Jacobians are assembled into the full Jacobian matrix of the
overall system.

Page: 477 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



478 A The MATLAB Reservoir Simulation Toolbox

At this point, you may argue that what I have shown you is a convo-
luted and expensive way of setting up and solving a simple system. However,
now comes the interesting part. When solving partial differential equations
on complex grids, it is often much simpler to evaluate the residual equations
in each grid cell than assembling the same local equations into a global sys-
tem matrix. Using automatic differentiation, you can focus on the former and
avoid the latter. In Chapter 4.4.2, we will introduce discrete divergence and
gradient operators, div and grad. With these, the evaluation and assembly of
the discrete flow model introduced in Section 1.4 on page 16 can be written
in a form that strongly resembles its continuous form

eq = div((T/mu)*.(grad(p) − g*rho*grad(z)));

where T is the transmissibilities (which can be precomputed for a given grid),
mu and rho are constant fluid viscosity and density, g is the gravity constant,
and z is the vector of cell centroids, which can be extracted from the grid
structure as z=G.cell.centroids(:,3).

Implicitly assembly through automatic differentiation is an alternative to
the explicit, procedural approach implemented in the incompressible solver
incompTPFA introduced in Section 1.4. We will come back to this way of
implementing flow models in Section 4.4.2. However, our primary use of au-
tomatic differentiation is for compressible flow models, which typically give
large systems of nonlinear discrete equations that need to be linearized and
solved using a Newton–Raphson method. As a precursor to the discussion in
Chapter 7, we will in the last example show how you can use AD to solve a
system of nonlinear equations.

Example A.4. Minimizing the Rosenbrock equation

f(x, y) = (a− x)2 + b
(
y − x2

)2
(A.2)

is a classical test problem from optimization. This problem is often called
Rosenbrock’s valley or banana function since the global minimum (a, a2) is
located inside a long, narrow and relatively flat valley of parabolic shape.
While finding this valley is straightforward, it is more challenging to converge
to the global minimum. A necessary condition for a global minimum is that
∇f(x, y) = 0, which translates to the following two equations for (A.2)

g(x) =

[
∂xf(x, y)
∂yf(x, y)

] [
−2(a− x)− 4bx

(
y − x2

)
2b
(
y − x2

) ]
=

[
0
0

]
. (A.3)

To derive the Newton–Raphson method, assume that we have a guess x and
want to move to the correct solution x+∆x. Then we can solve for ∆x from
the following equation

0 = g(x+∆x) ≈ g(x) +∇g(x)∆x (A.4)

This is quite simple using AD in MRST:

Page: 478 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



A.5 Automatic differentiation in MRST 479

Fig. A.8. Convergence of the AD-based Newton solver for the Rosenbrock problem.
The upper plot shows the path taken by the nonlinear solver superimposed over the
function f(x, y). Here, we have used a modified colormap to show the valley in which
the function f attains its 1% lowest values. The lower plot depicts f(x, y)1/10 for
the initial guess and the six iterations needed to reduce the norm of the increment
below 10−6.

[a,b,tol] = deal(1,100,1e−6);
tol = 1e−6;
[x0,incr] = deal([−.5;4]);
while norm(incr)>tol

x = initVariablesADI(x0);
eq = cat( 2*(a−x(1)) − 4*b.*x(1).*(x(2)−x(1).ˆ2), ...

2*b.*(x(2)−x(1).ˆ2));
incr = − eq.jac{1}\eq.val;
x0 = x0 + incr;

end

This is just a backbone version of a Newton solver that e.g., does not contain
safeguards of any kind like checking that the increments are finite, ensuring
that the loop terminates after a finite number of iterations, etc. Figure A.8
illustrates how the Newton solver converges to the global minimum.

Beyond the examples and the discussion above, we will not go more into details
about the technical considerations that lie behind the implementation of AD
in MRST. If you want a deeper understanding of how the AD class works, the
source code is fully open, so you are free to dissect the details to the level of
your own choice.

Page: 479 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



480 A The MATLAB Reservoir Simulation Toolbox

Computer exercises:

109. As an alternative to using automatic differentiation, one can use finite dif-
ferences, f ′(x) ≈ [f(x + h) − f(x)]/h, or a complex extension to compute
f ′(x) ≈ Im(f(x+ ih))/h. Use automatic differentiation and the function

f = @(x) exp((x-.05).*(x-.4).*(x-.5).*(x-.7).*(x-.95));

to assess how accurate the two methods approximate f ′(x) at n equidistant
points in the interval x ∈ [0, 1] for different values of h.

110. While the AD class supports log and exp, it does not yet support log2,
log10, and logm. Study ADI.m and see if you can implement the missing
functions. What about trigonometric functions?

111. Can automatic differentiation be used to compute higher-order derivatives?
How or why not?

Page: 480 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53



References

[1] J. E. Aarnes. On the use of a mixed multiscale finite element method for
greater flexibility and increased speed or improved accuracy in reservoir
simulation. Multiscale Model. Simul., 2(3):421–439, 2004. ISSN 1540-
3459. doi:10.1137/030600655.

[2] J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale fi-
nite elements and streamline methods for reservoir simulation
of large geomodels. Adv. Water Resour., 28(3):257–271, 2005.
doi:10.1016/j.advwatres.2004.10.007.

[3] J. E. Aarnes, S. Krogstad, and K.-A. Lie. A hierarchical multiscale
method for two-phase flow based upon mixed finite elements and nonuni-
form coarse grids. Multiscale Model. Simul., 5(2):337–363, 2006. ISSN
1540-3459. doi:10.1137/050634566.

[4] J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numer-
ics of flow in porous media using Matlab. In G. Hasle, K.-A. Lie, and
E. Quak, editors, Geometrical Modeling, Numerical Simulation and Op-
timisation: Industrial Mathematics at SINTEF, pages 265–306. Springer
Verlag, Berlin Heidelberg New York, 2007. doi:10.1007/978-3-540-68783-
2 9.

[5] J. E. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale mixed/mimetic
methods on corner-point grids. Comput. Geosci., 12(3):297–315, 2008.
ISSN 1420-0597. doi:10.1007/s10596-007-9072-8.

[6] I. Aavatsmark. An introduction to multipoint flux approxima-
tions for quadrilateral grids. Comput. Geosci., 6:405–432, 2002.
doi:10.1023/A:1021291114475.

[7] I. Aavatsmark and R. Klausen. Well index in reservoir simulation for
slanted and slightly curved wells in 3d grids. SPE J., 8(01):41–48, 2003.

[8] I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on
non-orthogonal, curvilinear grids for multi-phase flow. Proc. of the 4th
European Conf. on the Mathematics of Oil Recovery, 1994.

[9] J. H. Abou-Kassem, S. M. Farouq-Ali, and M. R. Islam. Petroleum
Reservoir Simulations. Elsevier, 2013.

Page: 481 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1137/030600655
http://dx.doi.org/10.1016/j.advwatres.2004.10.007
http://dx.doi.org/10.1137/050634566
http://dx.doi.org/10.1007/978-3-540-68783-2_9
http://dx.doi.org/10.1007/978-3-540-68783-2_9
http://dx.doi.org/10.1007/s10596-007-9072-8
http://dx.doi.org/10.1023/A:1021291114475


482 References

[10] AGMG. Iterative solution with AGgregation-based algebraic MultiGrid,
2012. http://homepages.ulb.ac.be/∼ynotay/AGMG/.

[11] I. Akervoll and P. Bergmo. A study of Johansen formation located off-
shore Mongstad as a candidate for permanent CO2 storage. In European
Conference on CCS Research, Development and Demonstration. 10–11
February 2009, Oslo, Norway, 2009.

[12] M. B. Allen, G. A. Behie, and J. A. Trangenstein. Multiphase flow in
porous media: mechanics, mathematics, and numerics. Lecture notes in
engineering. Springer-Verlag, 1988. ISBN 9783540967316.

[13] F. O. Alpak, M. Pal, and K.-A. Lie. A multiscale method for modeling
flow in stratigraphically complex reservoirs. SPE J., 17(4):1056–1070,
2012. doi:10.2118/140403-PA.

[14] J. Alvestad, K. Holing, K. Christoffersen, O. Stava, et al. Interactive
modelling of multiphase inflow performance of horizontal and highly
deviated wells. In European Petroleum Computer Conference. Society
of Petroleum Engineers, 1994.

[15] O. Andersen, S. Gasda, and H. Nilsen. Vertically averaged equations
with variable density for CO2 flow in porous media. Transp. Porous
Media, pages 1–33, 2014. ISSN 0169-3913. doi:10.1007/s11242-014-0427-
z.

[16] O. Andersen, H. M. Nilsen, and K.-A. Lie. Reexamining CO2 storage
capacity and utilization of the Utsira Formation. In ECMOR XIV –
14th European Conference on the Mathematics of Oil Recovery, Cata-
nia, Sicily, Italy, 8-11 September 2014. EAGE, 2014. doi:10.3997/2214-
4609.20141809.

[17] O. Andersen, K.-A. Lie, and H. M. Nilsen. An open-source toolchain for
simulation and optimization of aquifer-wide CO2 storage. Energy Proce-
dia, :1–10, 2015. The 8th Trondheim Conference on Capture, Transport
and Storage.

[18] O. Andersen, H. M. Nilsen, and X. Raynaud. On the use of the virtual
element method for geomechanics on reservoir grids. arXiv preprint
arXiv:1606.09508, 2016.

[19] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite
element methods on nonmatching multiblock grids. SIAM J. Num.
Anal., 37(4):1295–1315, 2000.

[20] H. Ates, A. Bahar, S. El-Abd, M. Charfeddine, M. Kelkar, and A. Datta-
Gupta. Ranking and upscaling of geostatistical reservoir models using
streamline simulation: A field case study. SPE Res. Eval. Eng., 8(1):
22–32, 2005. doi:10.2118/81497-PA.

[21] K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier Ap-
plied Science Publishers, London and New York, 1979.

[22] K. Bao, K.-A. Lie, O. Møyner, and M. Liu. Fully-implicit simula-
tion of polymer flooding with mrst. In ECMOR XV – 15th Euro-
pean Conference on the Mathematics of Oil Recovery. EAGE, 2016.
doi:10.3997/2214-4609.201601880.

Page: 482 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/140403-PA
http://dx.doi.org/10.1007/s11242-014-0427-z
http://dx.doi.org/10.1007/s11242-014-0427-z
http://dx.doi.org/10.3997/2214-4609.20141809
http://dx.doi.org/10.3997/2214-4609.20141809
http://dx.doi.org/10.2118/81497-PA
http://dx.doi.org/10.3997/2214-4609.201601880


References 483

[23] J. Barker and S. Thibeau. A critical review of the use of pseudorelative
permeabilities for upscaling. SPE Reservoir Engineering, 12(2):138–143,
1997. doi:10.2118/35491-PA.

[24] R. P. Batycky, M. R. Thieles, R. O. Baker, and S. H. Chugh. Revisiting
reservoir flood-surveillance methods using streamlines. SPE Res. Eval.
Eng., 11(2):387–394, 2008. doi:10.2118/95402-PA.

[25] J. Bear. Dynamics of Fluids in Porous Media. Dover, 1988. ISBN
0-486-45355-3.

[26] J. Bear. Hydraulics of Groundwater. Dover, 2007. ISBN 0-486-65675-6.
[27] J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phe-

nomena in Porous Media. Theory and Applications of Transport in
Porous Media. Springer, 1990. ISBN 9780792305576.

[28] S. H. Begg, R. R. Carter, and P. Dranfield. Assigning effective values to
simulator gridblock parameters for heterogeneous reservoirs. SPE Res.
Eng., 4(4):455–463, 1989.

[29] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D.
Marini, and A. Russo. Basic principles of virtual element
methods. Math. Mod. Meth. Appl. Sci., 23(01):199–214, 2013.
doi:10.1142/S0218202512500492.

[30] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitch-
hiker’s guide to the virtual element method. Math. Mod. Meth. Appl.
Sci., 24(08):1541–1573, 2014. doi:10.1142/S021820251440003X.

[31] L. Beirao da Veiga, K. Lipnikov, and G. Manzini. The Mimetic Finite
Difference Method for Elliptic Problems, volume 11 of MS&A – Mod-
eling, Simulation and Applications. Springer, 2014. doi:10.1007/978-3-
319-02663-3.

[32] A. Benesoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic Analysis
for Periodic Structures. Elsevier Science Publishers, Amsterdam, 1978.

[33] R. L. Berge. Unstructured PEBI grids adapting to geological feautres in
subsurface reservoirs. Master’s thesis, Norwegian University of Science
and Technology, 2016.

[34] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch, and A. Vehreschild.
Combining source transformation and operator overloading techniques
to compute derivatives for MATLAB programs. In Proceedings of the
Second IEEE International Workshop on Source Code Analysis and Ma-
nipulation (SCAM 2002), pages 65–72, Los Alamitos, CA, USA, 2002.
IEEE Computer Society. doi:10.1109/SCAM.2002.1134106.

[35] D. Braess. Finite elements: Theory fast solvers and applications in solid
mechanics. Cambridge University Press, Cambridge, 1997.

[36] Y. Brenier and J. Jaffré. Upstream differencing for multiphase flow
in reservoir simulation. SIAM J. Numer. Anal., 28(3):685–696, 1991.
doi:10.1137/0728036.

[37] S. C. Brenner and L. R. Scott. The mathematical theory of finite element
methods, volume 15 of Texts in Applied Mathematics. Springer–Verlag,
New York, 1994.

Page: 483 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/35491-PA
http://dx.doi.org/10.2118/95402-PA
http://dx.doi.org/10.1142/S0218202512500492
http://dx.doi.org/10.1142/S021820251440003X
http://dx.doi.org/10.1007/978-3-319-02663-3
http://dx.doi.org/10.1007/978-3-319-02663-3
http://dx.doi.org/10.1109/SCAM.2002.1134106
http://dx.doi.org/10.1137/0728036


484 References

[38] M. Brewer, D. Camilleri, S. Ward, and T. Wong. Generation of hybrid
grids for simulation of complex, unstructured reservoirs by a simulator
with mpfa. In SPE Reservoir Simulation Symposium, 23-25 February,
Houston, Texas, USA, 2015. doi:10.2118/173191-MS.

[39] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods,
volume 15 of Springer Series in Computational Mathematics. Springer-
Verlag, New York, 1991. ISBN 0-387-97582-9.

[40] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of
mimetic finite difference methods on polygonial and polyhedral
meshes. Math. Models Methods Appl. Sci., 15:1533–1553, 2005.
doi:10.1142/S0218202505000832.

[41] R. H. Brooks and A. T. Corey. Properties of porous media affecting
fluid flow. J. Irrigation Drainage Div., 92(2):61–90, 1966.

[42] E. Buckingham. Studies on the movement of soil moisture. Number 38.
United States. Bureau of Soils, 1907.

[43] H. Cao. Development of techniques for general purpose simulators. PhD
thesis, Stanford University, 2002.

[44] Cayuga Research. Admat. URL http://www.cayugaresearch.com/

admat.html. [Online; accessed 15-04-2014].
[45] G. Chavent and J. Jaffre. Mathematical models and finite elements for

reservoir simulation. North Holland, 1982.
[46] G. Chavent and J. Jaffré. Mathematical models and finite elements for

reservoir simulation: single phase, multiphase and multicomponent flows
through porous media. Studies in Mathematics and its Applications.
Elsevier, 1986.

[47] Y. Chen and L. J. Durlofsky. Adaptive local-global upscaling for general
flow scenarios in heterogeneous formations. Transport Porous Media, 62:
157–182, 2006.

[48] Y. Chen, L. J. Durlofsky, M. Gerritsen, and X. H. Wen. A coupled local-
global upscaling approach for simulating flow in highly heterogeneous
formations. Adv. Water Resour., 26:1041–1060, 2003.

[49] Z. Chen. Formulations and numerical methods of the black oil
model in porous media. SIAM J. Numer. Anal., 38(2):489–514, 2000.
doi:10.1137/S0036142999304263.

[50] Z. Chen. Reservoir Simulation: Mathematical Techniques in Oil Recov-
ery. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2007.

[51] Z. Chen and R. E. Ewing. Comparison of various formulations of three-
phase flow in porous media. J. Comput. Phys., 132(2):362–373, 1997.
doi:10.1006/jcph.1996.5641.

[52] Z. Chen and T. Y. Hou. A mixed multiscale finite element method for
elliptic problems with oscillating coefficients. Math. Comp., 72:541–576,
2003. doi:10.1090/S0025-5718-02-01441-2.

[53] Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase
flows in porous media, volume 2 of Computational Science and Engi-

Page: 484 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/173191-MS
http://dx.doi.org/10.1142/S0218202505000832
http://www.cayugaresearch.com/admat.html
http://www.cayugaresearch.com/admat.html
http://dx.doi.org/10.1137/S0036142999304263
http://dx.doi.org/10.1006/jcph.1996.5641
http://dx.doi.org/10.1090/S0025-5718-02-01441-2


References 485

neering. Society of Industrial and Applied Mathematics (SIAM), 2006.
doi:10.1137/1.9780898718942.

[54] M. A. Christie. Upscaling for reservoir simulation. J. Pet. Tech., 48
(11):1004–1010, 1996. doi:10.2118/37324-MS.

[55] M. A. Christie and M. J. Blunt. Tenth SPE comparative solu-
tion project: A comparison of upscaling techniques. SPE Reser-
voir Eval. Eng., 4:308–317, 2001. doi:10.2118/72469-PA. Url:
http://www.spe.org/csp/.

[56] C. Cordes and W. Kinzelbach. Continous groundwater velocity fields
and path lines in linear, bilinear, and trilinear finite elements. Water
Resour. Res., 28(11):2903–2911, 1992.

[57] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differen-
zengleichungen der mathematischen Physik. Math. Ann., 100(1):32–74,
1928.

[58] C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics,
volume 325 of Grundlehren der mathematischen Wissenschaften.
Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-04048-1.

[59] H. P. G. Darcy. Les Fontaines Publiques de la Ville de Dijon. Dalmont,
Paris, 1856.

[60] A. Datta-Gupta and M. J. King. A semianalytic approach to tracer flow
modeling in heterogeneous permeable media. Adv. Water Resour., 18:
9–24, 1995.

[61] A. Datta-Gupta and M. J. King. Streamline Simulation: Theory and
Practice, volume 11 of SPE Textbook Series. Society of Petroleum En-
gineers, 2007.

[62] D. DeBaun, T. Byer, P. Childs, J. Chen, F. Saaf, M. Wells, J. Liu,
H. Cao, L. Pianelo, V. Tilakraj, P. Crumpton, D. Walsh, H. Yardu-
mian, R. Zorzynski, K.-T. Lim, M. Schrader, V. Zapata, J. Nolen, and
H. A. Tchelepi. An extensible architecture for next generation scal-
able parallel reservoir simulation. In SPE Reservoir Simulation Sym-
posium, 31 January–2 Feburary, The Woodlands, Texas, USA, 2005.
doi:10.2118/93274-MS.

[63] C. V. Deutsch and A. G. Journel. GSLIB: Geostatistical software library
and user’s guide. Oxford University Press, New York, 2nd edition, 1998.

[64] X. Y. Ding and L. S. K. Fung. An unstructured gridding method for sim-
ulating faulted reservoirs populated with complex wells. In SPE Reser-
voir Simulation Symposium, 23-25 February, Houston, Texas, USA,
2015. doi:10.2118/173243-MS.

[65] J. Douglas Jr, D. W. Peaceman, and H. H. Rachford Jr. A method for
calculating multi-dimensional immiscible displacement. Trans. AIME,
216:297–308, 1959.

[66] A. C. Duarte. Contributions to production optimization of oil reservoirs.
PhD thesis, Norwegian University of Science and Technology, 2016. URL
http://hdl.handle.net/11250/2383090.

Page: 485 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1137/1.9780898718942
http://dx.doi.org/10.2118/37324-MS
http://dx.doi.org/10.2118/72469-PA
http://dx.doi.org/10.1007/978-3-642-04048-1
http://dx.doi.org/10.2118/93274-MS
http://dx.doi.org/10.2118/173243-MS
http://hdl.handle.net/11250/2383090


486 References

[67] L. J. Durlofsky. Numerical calculations of equivalent gridblock perme-
ability tensors for heterogeneous porous media. Water Resour. Res., 27
(5):699–708, 1991.

[68] L. J. Durlofsky. Upscaling of geocellular models for reservoir flow simu-
lation: A review of recent progress, 2003. Presented at 7th International
Forum on Reservoir Simulation Bühl/Baden-Baden, Germany, June 23–
27, 2003.

[69] L. J. Durlofsky. Upscaling and gridding of fine scale geological models
for flow simulation, 2005. Presented at 8th International Forum on
Reservoir Simulation Iles Borromees, Stresa, Italy, June 20–24, 2005.

[70] M. G. Edwards and C. F. Rogers. A flux continuous scheme for the
full tensor pressure equation. Proc. of the 4th European Conf. on the
Mathematics of Oil Recovery, 1994.

[71] Y. Efendiev and T. Y. Hou. Multiscale Finite Element Methods, vol-
ume 4 of Surveys and Tutorials in the Applied Mathematical Sciences.
Springer Verlag, New York, 2009.

[72] G. Eigestad, H. Dahle, B. Hellevang, W. Johansen, K.-A. Lie, F. Riis,
and E. Øian. Geological and fluid data for modelling CO2 injec-
tion in the Johansen formation, 2008. URL http://www.sintef.no/

Projectweb/MatMorA/Downloads/Johansen.
[73] G. Eigestad, H. Dahle, B. Hellevang, F. Riis, W. Johansen, and E. Øian.

Geological modeling and simulation of CO2 injection in the Johansen
formation. Comput. Geosci., 13(4):435–450, 2009. doi:10.1007/s10596-
009-9153-y.

[74] T. Ertekin, J. H. Abou-Kassem, and G. R. King. Basic applied reservoir
simulation, volume 7 of SPE Textbook Series. Society of Petroleum
Engineers Richardson, TX, 2001.

[75] R. E. Ewing, R. D. Lazarov, S. L. Lyons, D. V. Papavassiliou,
J. Pasciak, and G. Qin. Numerical well model for non-Darcy flow
through isotropic porous media. Comput. Geosci., 3(3-4):185–204, 1999.
doi:10.1023/A:1011543412675.

[76] J. R. Fanchi. Principles of applied reservoir simulation. Gulf Profes-
sional Publishing, 2005.

[77] C. L. Farmer. Upscaling: a review. Int. J. Numer. Meth. Fluids, 40
(1–2):63–78, 2002. doi:10.1002/fld.267.

[78] M. Fink. Automatic differentiation for Matlab. MATLAB Central, 2007.
URL http://www.mathworks.com/matlabcentral/fileexchange/

15235-automatic-differentiation-for-matlab. [Online; accessed
15-04-2014].

[79] F. J. T. Floris, M. D. Bush, M. Cuypers, F. Roggero, and A. R.
Syversveen. Methods for quantifying the uncertainty of production fore-
casts: a comparative study. Petroleum Geoscience, 7(S):S87–S96, 2001.

[80] S. A. Forth. An efficient overloaded implementation of forward mode
automatic differentiation in MATLAB. ACM Trans. Math. Software, 32
(2):195–222, 2006.

Page: 486 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen
http://www.sintef.no/Projectweb/MatMorA/Downloads/Johansen
http://dx.doi.org/10.1007/s10596-009-9153-y
http://dx.doi.org/10.1007/s10596-009-9153-y
http://dx.doi.org/10.1023/A:1011543412675
http://dx.doi.org/10.1002/fld.267
http://www.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab
http://www.mathworks.com/matlabcentral/fileexchange/15235-automatic-differentiation-for-matlab


References 487

[81] L. S. K. Fung, X. Y. Ding, , and A. H. Dogru. Unconstrained voronoi
grids for densely spaced complex wells in full-field reservoir simulation.
SPE J., 19(5):803–815, 2014. doi:10.2118/163648-PA.

[82] A. L. Gain, C. Talischi, and G. H. Paulino. On the virtual element
method for three-dimensional linear elasticity problems on arbitrary
polyhedral meshes. Comput. Meth. App. Mech. Engng., 282:132–160,
2014.

[83] M. Gerritsen and J. V. Lambers. Integration of local-global upscaling
and grid adaptivity for simulation of subsurface flow in heterogeneous
formations. Comput. Geosci., 12(2):193–208, 2008. doi:10.1007/s10596-
007-9078-2.

[84] S. K. Godunov. A difference method for numerical calculation of discon-
tinuous solutions of the equations of hydrodynamics. Mat. Sb. (N.S.),
47 (89):271–306, 1959.

[85] D. Guérillot, J. L. Rudkiewicz, C. Ravenne, D. Renard, and A. Galli. An
integrated model for computer aided reservoir description: From outcrop
study to fluid flow simulations. Oil & Gas Science and Technology, 45
(1):71–77, 1990.

[86] H. Hægland, H. K. Dahle, K.-A. Lie, and G. T. Eigestad. Adaptive
streamline tracing for streamline simulation on irregular grids. In P. Bin-
ning, P. Engesgaard, H. Dahle, G. Pinder, and W. Gray, editors, Pro-
ceedings of the XVI International Conference on Computational Meth-
ods in Water Resources, Copenhagen, Denmark, 18–22 June 2006. URL
http://proceedings.cmwr-xvi.org/.

[87] H. Hajibeygi and H. A. Tchelepi. Compositional multiscale finite-
volume formulation. SPE J., 19(2):316–326, 2014. doi:10.2118/163664-
PA.

[88] H. B. Hales. A method for creating 2-d orthogonal grids which conform
to irregular shapes. SPE J, 1(2):115–124, 1996. doi:10.2118/35273-PA.

[89] A. Harten, P. D. Lax, and B. v. Leer. On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws. SIAM review,
25(1):35–61, 1983. doi:10.1137/1025002.

[90] V. L. Hauge. Multiscale Methods and Flow-based Gridding for Flow
and Transport in Porous Media. PhD thesis, Norwegian University of
Science and Technology, 2010. URL http://ntnu.diva-portal.org/

smash/get/diva2:400507/FULLTEXT02.
[91] V. L. Hauge, K.-A. Lie, and J. R. Natvig. Flow-based coarsening for

multiscale simulation of transport in porous media. Comput. Geosci.,
16(2):391–408, 2012. doi:10.1007/s10596-011-9230-x.

[92] Z. He, H. Parikh, A. Datta-Gupta, J. Perez, and T. Pham. Identifying
reservoir compartmentalization and flow barriers from primary produc-
tion using streamline diffusive time of flight. SPE J., 7(3):238–247, June
2004. doi:10.2118/88802-PA.

Page: 487 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/163648-PA
http://dx.doi.org/10.1007/s10596-007-9078-2
http://dx.doi.org/10.1007/s10596-007-9078-2
http://proceedings.cmwr-xvi.org/
http://dx.doi.org/10.2118/163664-PA
http://dx.doi.org/10.2118/163664-PA
http://dx.doi.org/10.2118/35273-PA
http://dx.doi.org/10.1137/1025002
http://ntnu.diva-portal.org/smash/get/diva2:400507/FULLTEXT02
http://ntnu.diva-portal.org/smash/get/diva2:400507/FULLTEXT02
http://dx.doi.org/10.1007/s10596-011-9230-x
http://dx.doi.org/10.2118/88802-PA


488 References

[93] R. Helmig. Multiphase flow and transport processes in the subsurface: a
contribution to the modeling of hydrosystems. Environmental engineer-
ing. Springer, 1997. ISBN 9783540627036.

[94] S. T. Hilden. Upscaling of water-flooding scenarios and modeling of poly-
mer flow. PhD thesis, Norwegian University of Science and Technology,
2016. URL http://hdl.handle.net/11250/2388331.

[95] S. T. Hilden, K.-A. Lie, and X. Raynaud. Steady state upscaling of
polymer flooding. In ECMOR XIV – 14th European Conference on
the Mathematics of Oil Recovery, Catania, Sicily, Italy, 8-11 September
2014. EAGE, 2014. doi:10.3997/2214-4609.20141802.

[96] H. Holden and N. Risebro. Front Tracking for Hyperbolic Conservation
Laws, volume 152 of Applied Mathematical Sciences. Springer, New
York, 2002.

[97] H. Holden and N. H. Risebro. Front Tracking for Hyperbolic Conser-
vation Laws, volume 152 of Applied Mathematical Sciences. Springer-
Verlag, New York, 2002. ISBN 3-540-43289-2.

[98] L. Holden and B. F. Nielsen. Global upscaling of permeability in het-
erogeneous reservoirs; the output least squares (ols) method. Trans.
Porous Media, 40(2):115–143, 2000.

[99] U. Hornung. Homogenization and porous media. Springer–Verlag, New
York, 1997.

[100] H. Hoteit and A. Firoozabadi. Numerical modeling of two-phase flow in
heterogeneous permeable media with different capillarity pressures. Adv.
Water Resour., 31(1):56–73, 2008. doi:10.1016/j.advwatres.2007.06.006.

[101] M. K. Hubbert. Darcy’s law and the field equations of the flow of
underground fluids. Petrol. Trans., AIME, 207:22–239, 1956.

[102] E. Idrobo, M. Choudhary, and A. Datta-Gupta. Swept volume calcu-
lations and ranking of geostatistical reservoir models using streamline
simulation. In SPE/AAPG Western Regional Meeting, Long Beach,
California, USA, 19–23 June 2000. SPE 62557.

[103] M. R. Islam, S. H. Mousavizadegan, S. Mustafiz, and J. H. Abou-
Kassem. Advanced Petroleum Reservoir Simulations. John Wiley &
Sons, Inc., 2010. ISBN 9780470650684. doi:10.1002/9780470650684.

[104] O. Izgec, M. Sayarpour, and G. M. Shook. Maximizing volu-
metric sweep efficiency in waterfloods with hydrocarbon f-φ curves.
Journal of Petroleum Science and Engineering, 78(1):54–64, 2011.
doi:10.1016/j.petrol.2011.05.003.

[105] P. Jenny, C. Wolfsteiner, S. H. Lee, and L. J. Durlofsky. Modeling flow
in geometrically complex reservoirs using hexahedral multiblock grids.
SPE J., 7(2), 2002. doi:10.2118/78673-PA.

[106] P. Jenny, S. H. Lee, and H. A. Tchelepi. Multi-scale finite-volume
method for elliptic problems in subsurface flow simulation. J. Com-
put. Phys., 187:47–67, 2003. doi:10.1016/S0021-9991(03)00075-5.

[107] P. Jenny, H. A. Tchelepi, and S. H. Lee. Unconditionally con-
vergent nonlinear solver for hyperbolic conservation laws with s-

Page: 488 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://hdl.handle.net/11250/2388331
http://dx.doi.org/10.3997/2214-4609.20141802
http://dx.doi.org/10.1016/j.advwatres.2007.06.006
http://dx.doi.org/10.1002/9780470650684
http://dx.doi.org/10.1016/j.petrol.2011.05.003
http://dx.doi.org/10.2118/78673-PA
http://dx.doi.org/10.1016/S0021-9991(03)00075-5


References 489

shaped flux functions. J. Comput. Phys., 228(20):7497–7512, 2009.
doi:10.1016/j.jcp.2009.06.032.

[108] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of dif-
ferential operators and integral functionals. Springer–Verlag, New York,
1994.

[109] E. Jimenez, K. Sabir, A. Datta-Gupta, and M. J. King. Spatial error
and convergence in streamline simulation. SPE J., 10(3):221–232, June
2007.

[110] A. Journel, C. Deutsch, and A. Desbarats. Power averaging for block
effective permeability. In SPE California Regional Meeting, 2-4 April,
Oakland, California, SPE 15128, 1986.

[111] M. Karimi-Fard and L. J. Durlofsky. Accurate resolution of near-well
effects in upscaled models using flow-based unstructured local grid re-
finement. SPE J., 17(4):1084–1095, 2012. doi:10.2118/141675-PA.

[112] K. Karlsen, K.-A. Lie, and N. Risebro. A front tracking method for
conservation laws with boundary conditions. In M. Fey and R. Jeltsch,
editors, Hyperbolic Problems: Theory, Numerics, Applications, volume
129 of International Series of Numerical Mathematics, pages 493–502.
Birkhäuser Basel, 1999. doi:10.1007/978-3-0348-8720-5 53.

[113] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comp., 20(1):359–392,
1998. doi:10.1137/S1064827595287997.

[114] E. Keilegavlen and J. M. Nordbotten. Finite volume methods for elas-
ticity with weak symmetry. arXiv preprint arXiv:1512.01042, 2015.

[115] E. Keilegavlen, J. E. Kozdon, and B. T. Mallison. Multidimensional
upstream weighting for multiphase transport on general grids. Comput.
Geosci., 16:1021–1042, 2012. doi:10.1007/s10596-012-9301-7.

[116] M. King, D. MacDonald, S. Todd, and H. Leung. Application of novel
upscaling approaches to the Magnus and Andrew reservoirs. In European
Petroleum Conference, 20-22 October, The Hague, Netherlands, SPE
50643, 1998.

[117] M. J. King and A. Datta-Gupta. Streamline simulation: A current per-
spective. In Situ, 22(1):91–140, 1998.

[118] M. J. King and M. Mansfield. Flow simulation of geologic models. SPE
Res. Eval. Eng., 2(4):351–367, 1999. doi:10.2118/57469-PA.

[119] V. Kippe, J. E. Aarnes, and K.-A. Lie. A comparison of multiscale
methods for elliptic problems in porous media flow. Comput. Geosci.,
12(3):377–398, 2008. ISSN 1420-0597. doi:10.1007/s10596-007-9074-6.

[120] R. A. Klausen and A. F. Stephansen. Mimetic MPFA. In Proc. 11th
European Conference on the Mathematics of Oil Recovery, 8-11 Sept.,
Bergen, Norway, number A12. EAGE, 2008.

[121] R. A. Klausen, A. F. Rasmussen, and A. Stephansen. Velocity interpo-
lation and streamline tracing on irregular geometries. Comput. Geosci.,
16:261–276, 2012. doi:10.1007/s10596-011-9256-0.

Page: 489 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1016/j.jcp.2009.06.032
http://dx.doi.org/10.2118/141675-PA
http://dx.doi.org/10.1007/978-3-0348-8720-5_53
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1007/s10596-012-9301-7
http://dx.doi.org/10.2118/57469-PA
http://dx.doi.org/10.1007/s10596-007-9074-6
http://dx.doi.org/10.1007/s10596-011-9256-0


490 References

[122] Ø. S. Klemetsdal. The virtual element method as a common framework
for finite element and finite difference methods – numerical and theo-
retical analysis. Master’s thesis, Norwegian university of science and
technology, 2016.

[123] S. Krogstad, K.-A. Lie, O. Møyner, H. M. Nilsen, X. Raynaud, and
B. Skaflestad. MRST-AD – an open-source framework for rapid proto-
typing and evaluation of reservoir simulation problems. In SPE Reser-
voir Simulation Symposium, 23–25 February, Houston, Texas, 2015.
doi:10.2118/173317-MS.

[124] S. Krogstad, X. Raynaud, and H. M. Nilsen. Reservoir management op-
timization using well-specific upscaling and control switching. Comput.
Geosci., 2015. doi:10.1007/s10596-015-9497-4.

[125] S. Krogstad, K.-A. Lie, H. M. Nilsen, C. F. Berg, and V. Kippe. Flow
diagnostics for optimal polymer injection strategies. In ECMOR XV –
15th European conference on the mathematics of oil recovery, Amster-
dam, Netherlands. EAGE, 2016. doi:10.3997/2214-4609.201601874.

[126] S. N. Kružkov. First order quasilinear equations in several independent
variables. Mathematics of the USSR-Sbornik, 10(2):217, 1970.

[127] A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-
upwind schemes for hyperbolic conservation laws and hamilton–
jacobi equations. SIAM J. Sci. Comp., 23(3):707–740, 2001.
doi:10.1137/S1064827500373413.

[128] F. Kwok and H. Tchelepi. Potential-based reduced Newton algorithm
for nonlinear multiphase flow in porous media. J. Comput. Phys., 227
(1):706–727, 2007. doi:10.1016/j.jcp.2007.08.012.

[129] L. W. Lake. Enhanced Oil Recovery. Prentice-Hall, 1989.
[130] P. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure

Appl. Math., 13(2):217–237, 1960.
[131] S. H. Lee, P. Jenny, and H. A. Tchelepi. A finite-volume method with

hexahedral multiblock grids for modeling flow in porous media. Comput.
Geosci., 6(3-4):353–379, 2002. ISSN 1420-0597. Locally conservative
numerical methods for flow in porous media.

[132] O. Leeuwenburgh and R. Arts. Distance parameterization for efficient
seismic history matching with the ensemble kalman filter. In ECMOR
XIII - 13th European Conference on the Mathematics of Oil Recovery.
EAGE, 2012. doi:10.3997/2214-4609.20143176.

[133] O. Leeuwenburgh, E. Peters, and F. Wilschut. Towards an integrated
workflow for structural reservoir model updating and history matching.
In SPE EUROPEC/EAGE Annual Conference and Exhibition, 23-26
May, Vienna, Austria, 2011. doi:10.2118/143576-MS.

[134] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, 2002.

[135] M. C. Leverett. Capillary behavior in porous solids. Trans. AIME, 142:
159–172, 1941. doi:10.2118/941152-G.

Page: 490 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/173317-MS
http://dx.doi.org/10.1007/s10596-015-9497-4
http://dx.doi.org/10.3997/2214-4609.201601874
http://dx.doi.org/10.1137/S1064827500373413
http://dx.doi.org/10.1016/j.jcp.2007.08.012
http://dx.doi.org/10.3997/2214-4609.20143176
http://dx.doi.org/10.2118/143576-MS
http://dx.doi.org/10.2118/941152-G


References 491

[136] X. Li and D. Zhang. A backward automatic differentiation frame-
work for reservoir simulation. Comput. Geosci., pages 1–14, 2014.
doi:10.1007/s10596-014-9441-z.

[137] K. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. Nilsen, and
B. Skaflestad. Open-source MATLAB implementation of consistent dis-
cretisations on complex grids. Comput. Geosci., 16:297–322, 2012. ISSN
1420-0597. doi:10.1007/s10596-011-9244-4. URL http://dx.doi.org/

10.1007/s10596-011-9244-4.
[138] K.-A. Lie. Jolt 1: Introduction to MRST. SINTEF ICT / ICME, Stan-

ford University, Dec. 2015. URL http://www.sintef.no/projectweb/

mrst/jolts/. Jolts – Just-in-time online learning tools.
[139] K.-A. Lie. Jolt 2: Grids and petrophysical data. SINTEF ICT /

ICME, Stanford University, Dec. 2015. URL http://www.sintef.no/

projectweb/mrst/jolts/. Jolts – Just-in-time online learning tools.
[140] K.-A. Lie, S. Krogstad, I. S. Ligaarden, J. R. Natvig, H. M. Nilsen, and

B. Skaflestad. Discretisation on complex grids – open source MATLAB
implementation. In Proceedings of ECMOR XII–12th European Confer-
ence on the Mathematics of Oil Recovery, Oxford, UK, 6–9 September
2010. EAGE.

[141] K.-A. Lie, J. R. Natvig, and H. M. Nilsen. Discussion of dynamics and
operator splitting techniques for two-phase flow with gravity. Int. J
Numer. Anal. Mod. (Special issue in memory of Magne Espedal), 9(3):
684–700, 2012.

[142] K.-A. Lie, J. R. Natvig, S. Krogstad, Y. Yang, and X.-H. Wu. Grid
adaptation for the Dirichlet–Neumann representation method and the
multiscale mixed finite-element method. Comput. Geosci., 18(3):357–
372, 2014. doi:10.1007/s10596-013-9397-4.

[143] K.-A. Lie, H. M. Nilsen, O. Andersen, and O. Møyner. A simulation
workflow for large-scale CO2 storage in the Norwegian North Sea. In
ECMOR XIV – 14th European Conference on the Mathematics of Oil
Recovery, Catania, Sicily, Italy, 8-11 September 2014. EAGE, 2014.
doi:10.3997/2214-4609.20141877.

[144] K.-A. Lie, H. M. Nilsen, O. Andersen, and O. Møyner. A simulation
workflow for large-scale CO2 storage in the Norwegian North Sea. Com-
put. Geosci., :1–16, 2015. doi:10.1007/s10596-015-9487-6.

[145] K.-A. Lie, O. Møyner, J. R. Natvig, A. Kozlova, K. Bratvedt, S. Watan-
abe, and Z. Li. Successful application of multiscale methods in a real
reservoir simulator environment. In ECMOR XV – 15th European Con-
ference on the Mathematics of Oil Recovery, Amsterdam, Netherlands,
29 Aug–1 Sept, 2016. doi:10.3997/2214-4609.201601893.

[146] K.-A. Lie, K. Kedia, B. Skaflestad, X. Wang, Y. Yang, X.-H. Wu,
and N. Hoda. a general non-uniform coarsening and upscaling frame-
work for reduced-order modeling. In SPE Reservoir Simulation
Conference, Montgomery, Texas, USA, 20-22 February 2017, 2017.
doi:10.2118/182681-MS.

Page: 491 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1007/s10596-014-9441-z
http://dx.doi.org/10.1007/s10596-011-9244-4
http://dx.doi.org/10.1007/s10596-011-9244-4
http://dx.doi.org/10.1007/s10596-011-9244-4
http://www.sintef.no/projectweb/mrst/jolts/
http://www.sintef.no/projectweb/mrst/jolts/
http://www.sintef.no/projectweb/mrst/jolts/
http://www.sintef.no/projectweb/mrst/jolts/
http://dx.doi.org/10.1007/s10596-013-9397-4
http://dx.doi.org/10.3997/2214-4609.20141877
http://dx.doi.org/10.1007/s10596-015-9487-6
http://dx.doi.org/10.3997/2214-4609.201601893
http://dx.doi.org/10.2118/182681-MS


492 References

[147] K.-A. Lie, O. Møyner, and J. R. Natvig. A feature-enriched multiscale
method for simulating complex geomodels. In SPE Reservoir Simula-
tion Conference, Montgomery, Texas, USA, 20–22 February 2017, 2017.
doi:10.2118/182701-MS.

[148] I. S. Ligaarden. Well models for mimetic finite difference methods and
improved representation of wells in multiscale methods. Master’s thesis,
University of Oslo, 2008. URL http://www.duo.uio.no/sok/work.

html?WORKID=77236.
[149] K. Lipnikov, M. Shashkov, and I. Yotov. Local flux mimetic finite dif-

ference methods. Numer. Math., 112(1):115–152, 2009. ISSN 0029-
599X. doi:10.1007/s00211-008-0203-5. URL http://dx.doi.org/10.

1007/s00211-008-0203-5.
[150] I. Lunati and S. H. Lee. An operator formulation of the multiscale finite-

volume method with correction function. Multiscale Model. Simul., 8(1):
96–109, 2009. doi:10.1137/080742117.

[151] B. Mallison, C. Sword, T. Viard, W. Milliken, and A. Cheng. Un-
structured cut-cell grids for modeling complex reservoirs. SPE J., 2014.
doi:10.2118/163642-PA.

[152] T. Manzocchi et al. Sensitivity of the impact of geological uncertainty
on production from faulted and unfaulted shallow-marine oil reservoirs:
objectives and methods. Petrol. Geosci., 14(1):3–15, 2008.

[153] S. F. Matringe and M. G. Gerritsen. On accurate tracing of streamlines.
In SPE Annual Technical Conference and Exhibition, Houston, Texas,
USA, 26-29 September 2004. SPE 89920.

[154] S. F. Matringe, R. Juanes, and H. A. Tchelepi. Streamline tracing on
general triangular or quadrilateral grids. SPE J., 12(2):217–233, June
2007.

[155] C. C. Mattax and R. L. Dalton, editors. Reservoir Simulation, volume 13
of SPE Monograph Series. Society of Petroleum Engineers, 1990. ISBN
978-1-55563-028-7.

[156] W. McIlhagga. Automatic differentiation with Mat-
lab objects. MATLAB Central, mar 2010. URL
http://www.mathworks.com/matlabcentral/fileexchange/

26807-automatic-differentiation-with-matlab-objects. [Online;
accessed 15-04-2014].

[157] R. Merland, G. Caumon, B. Lvy, and P. Collon-Drouaillet. Voronoi
grids conforming to 3d structural features. Comput. Geosci., 18(3-4):
373–383, 2014. doi:10.1007/s10596-014-9408-0.

[158] O. Møyner. Multiscale finite-volume methods on unstructured grids.
Master’s thesis, Norwegian University of Science and Technology, Trond-
heim, 2012. URL http://daim.idi.ntnu.no/masteroppgave?id=

7377.
[159] O. Møyner and K.-A. Lie. The multiscale finite-volume method on

stratigraphic grids. SPE J., 19(5):816–831, 2014. doi:10.2118/163649-
PA.

Page: 492 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/182701-MS
http://www.duo.uio.no/sok/work.html?WORKID=77236
http://www.duo.uio.no/sok/work.html?WORKID=77236
http://dx.doi.org/10.1007/s00211-008-0203-5
http://dx.doi.org/10.1007/s00211-008-0203-5
http://dx.doi.org/10.1007/s00211-008-0203-5
http://dx.doi.org/10.1137/080742117
http://dx.doi.org/10.2118/163642-PA
http://www.mathworks.com/matlabcentral/fileexchange/26807-automatic-differentiation-with-matlab-objects
http://www.mathworks.com/matlabcentral/fileexchange/26807-automatic-differentiation-with-matlab-objects
http://dx.doi.org/10.1007/s10596-014-9408-0
http://daim.idi.ntnu.no/masteroppgave?id=7377
http://daim.idi.ntnu.no/masteroppgave?id=7377
http://dx.doi.org/10.2118/163649-PA
http://dx.doi.org/10.2118/163649-PA


References 493

[160] O. Møyner and K.-A. Lie. A multiscale method based on restriction-
smoothed basis functions suitable for general grids in high contrast me-
dia. In SPE Reservoir Simulation Symposium held in Houston, Texas,
USA, 23–25 February 2015, 2015. doi:10.2118/173256-MS. SPE 173265-
MS.

[161] O. Møyner and K.-A. Lie. A multiscale restriction-smoothed basis
method for high contrast porous media represented on unstructured
grids. J. Comput. Phys., 304:46–71, 2016. doi:10.1016/j.jcp.2015.10.010.

[162] O. Møyner and K.-A. Lie. A multiscale restriction-smoothed basis
method for compressible black-oil models. SPE J., 2016. in press.

[163] O. Møyner and K.-A. Lie. A multiscale restriction-smoothed basis
method for high contrast porous media represented on unstructured
grids. J. Comput. Phys., 2016. doi:10.1016/j.jcp.2015.10.010.

[164] O. Møyner and K.-A. Lie. A multiscale restriction-smoothed ba-
sis method for compressible black-oil models. SPE J., 21(06), 2016.
doi:10.2118/173265-PA.

[165] O. Møyner and H. A. Tchelepi. A feature-enriched multiscale method
for simulating complex geomodels. In SPE Reservoir Simulation
Conference, Montgomery, Texas, USA, 20–22 February 2017, 2017.
doi:10.2118/182679-MS.

[166] O. Møyner, S. Krogstad, and K.-A. Lie. The application of flow di-
agnostics for reservoir management. SPE J., 20(2):306–323, 2014.
doi:10.2118/171557-PA.

[167] M. Muskat and R. D. Wyckoff. The flow of homogeneous fluids through
porous media, volume 12. McGraw-Hill New York, 1937.

[168] J. R. Natvig and K.-A. Lie. Fast computation of multiphase flow in
porous media by implicit discontinuous Galerkin schemes with optimal
ordering of elements. J. Comput. Phys., 227(24):10108–10124, 2008.
doi:10.1016/j.jcp.2008.08.024.

[169] J. R. Natvig, K.-A. Lie, B. Eikemo, and I. Berre. An ef-
ficient discontinuous Galerkin method for advective transport in
porous media. Adv. Water Resour., 30(12):2424–2438, 2007.
doi:10.1016/j.advwatres.2007.05.015.

[170] J. R. Natvig, B. Skaflestad, F. Bratvedt, K. Bratvedt, K.-A. Lie,
V. Laptev, and S. K. Khataniar. Multiscale mimetic solvers for efficient
streamline simulation of fractured reservoirs. SPE J., 16(4):880–888,
2011. doi:10.2018/119132-PA.

[171] J. R. Natvig, K.-A. Lie, S. Krogstad, Y. Yang, and X.-H. Wu. Grid adap-
tion for upscaling and multiscale methods. In Proceedings of ECMOR
XIII–13th European Conference on the Mathematics of Oil Recovery,
Biarritz, France, 10–13 September 2012. EAGE.

[172] R. Neidinger. Introduction to automatic differentiation and MAT-
LAB object-oriented programming. SIAM Review, 52(3):545–563, 2010.
doi:10.1137/080743627.

Page: 493 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/173256-MS
http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/10.1016/j.jcp.2015.10.010
http://dx.doi.org/10.2118/173265-PA
http://dx.doi.org/10.2118/182679-MS
http://dx.doi.org/10.2118/171557-PA
http://dx.doi.org/10.1016/j.jcp.2008.08.024
http://dx.doi.org/10.1016/j.advwatres.2007.05.015
http://dx.doi.org/10.2018/119132-PA
http://dx.doi.org/10.1137/080743627


494 References

[173] H. Nessyahu and E. Tadmor. Nonoscillatory central differencing for
hyperbolic conservation laws. J. Comput. Phys., 87(2):408–463, 1990.

[174] B. F. Nielsen and A. Tveito. An upscaling method for one-phase flow
in heterogeneous reservoirs; a Weighted Output Least Squares (WOLS)
approach. Comput. Geosci., 2:92–123, 1998.

[175] H. M. Nilsen, P. A. Herrera, M. Ashraf, I. Ligaarden, M. Iding,
C. Hermanrud, K.-A. Lie, J. M. Nordbotten, H. K. Dahle, and
E. Keilegavlen. Field-case simulation of CO2-plume migration using
vertical-equilibrium models. Energy Procedia, 4(0):3801–3808, 2011.
doi:10.1016/j.egypro.2011.02.315.

[176] H. M. Nilsen, K.-A. Lie, and J. R. Natvig. Accurate modelling of faults
by multipoint, mimetic, and mixed methods. SPE J., 17(2):568–579,
2012. doi:10.2118/149690-PA.

[177] H. M. Nilsen, K.-A. Lie, and O. Andersen. Robust simulation of
sharp-interface models for fast estimation of CO2 trapping capac-
ity. Computational Geosciences, pages 1–21, 2015. ISSN 1420-0597.
doi:10.1007/s10596-015-9549-9. URL http://dx.doi.org/10.1007/

s10596-015-9549-9.
[178] H. M. Nilsen, K.-A. Lie, and O. Andersen. Fully implicit simulation of

vertical-equilibrium models with hysteresis and capillary fringe. Com-
put. Geosci., :, 2015. ISSN 1420-0597. doi:10.1007/s10596-015-9547-y.
URL http://dx.doi.org/10.1007/s10596-015-9547-y.

[179] H. M. Nilsen, K.-A. Lie, and O. Andersen. Analysis of CO2 trapping
capacities and long-term migration for geological formations in the Nor-
wegian North Sea using MRST-co2lab. Computers & Geoscience, 79:
15–26, 2015. doi:10.1016/j.cageo.2015.03.001.

[180] H. M. Nilsen, K.-A. Lie, O. Møyner, and O. Andersen. Spill-
point analysis and structural trapping capacity in saline aquifers
using MRST-co2lab. Computers & Geoscience, 75:33–43, 2015.
doi:10.1016/j.cageo.2014.11.002.

[181] H. M. Nilsen, J. M. Nordbotten, and X. Raynaud. Comparison between
cell-centered and nodal based discretization schemes for linear elasticity.
arXiv preprint arXiv:1604.08410, 2016.

[182] J. Nordbotten, I. Aavatsmark, and G. Eigestad. Monotonicity
of control volume methods. Numer. Math., 106(2):255–288, 2007.
doi:10.1007/s00211-006-0060-z.

[183] J. M. Nordbotten. Convergence of a cell-centered finite volume dis-
cretization for linear elasticity. SIAM J. Numer. Anal., 53(6):2605–2625,
2015. doi:10.1137/140972792.

[184] J. M. Nordbotten. Stable cell-centered finite volume discretization
for biot equations. SIAM J. Numer. Anal., 54(2):942–968, 2016.
doi:10.1137/15M1014280.

[185] Y. Notay. An aggregation-based algebraic multigrid method. Electron.
Trans. Numer. Anal., 37:123–140, 2010.

Page: 494 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1016/j.egypro.2011.02.315
http://dx.doi.org/10.2118/149690-PA
http://dx.doi.org/10.1007/s10596-015-9549-9
http://dx.doi.org/10.1007/s10596-015-9549-9
http://dx.doi.org/10.1007/s10596-015-9549-9
http://dx.doi.org/10.1007/s10596-015-9547-y
http://dx.doi.org/10.1007/s10596-015-9547-y
http://dx.doi.org/10.1016/j.cageo.2015.03.001
http://dx.doi.org/10.1016/j.cageo.2014.11.002
http://dx.doi.org/10.1007/s00211-006-0060-z
http://dx.doi.org/10.1137/140972792
http://dx.doi.org/10.1137/15M1014280


References 495

[186] P.-E. Øren, S. Bakke, and O. J. Arntzen. Extending predictive capabil-
ities to network models. SPE J., 3(4):324–336, 1998.

[187] Oystein S. Klemetsdal, R. L. Berge, K.-A. Lie, H. M. Nilsen, and
O. Møyner. Unstructured gridding and consistent discretizations for
reservoirs with faults and complex wells. In SPE Reservoir Simula-
tion Conference, Montgomery, Texas, USA, 20-22 February 2017, 2017.
doi:10.2118/182679-MS.

[188] M. Pal, S. Lamine, K.-A. Lie, and S. Krogstad. Validation of the multi-
scale mixed finite-element method. Int. J. Numer. Meth. Fluids, 77(4):
206–223, 2015. doi:10.1002/fld.3978.

[189] H.-Y. Park and A. Datta-Gupta. Reservoir management using
streamline-based flood efficiency maps and application to rate optimiza-
tion. In Proceedings of the SPE Western North American Region Meet-
ing, 7-11 May 2011, Anchorage, Alaska, USA, 2011. doi:10.2118/144580-
MS.

[190] D. W. Peaceman. Interpretation of well-block pressures in numerical
reservoir simulation with nonsquare grid blocks and anisotropic perme-
ability. Soc. Petrol. Eng. J., 23(3):531–543, 1983. doi:10.2118/10528-PA.
SPE 10528-PA.

[191] D. W. Peaceman. Fundamentals of Numerical Reservoir Simulation.
Elsevier Science Inc., New York, NY, USA, 1991. ISBN 0444415785.

[192] D. W. Peaceman et al. Interpretation of well-block pressures in numer-
ical reservoir simulation. Soc. Petrol. Eng. J., 18(3):183—194, 1978.

[193] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM
Review, 46(2):329–345, 2004. doi:10.1137/S0036144503429121.

[194] G. F. Pinder and W. G. Gray. Essentials of Multiphase Flow in Porous
Media. John Wiley & Sons, Hoboken, New Jersey, USA, 2008.

[195] D. W. Pollock. Semi-analytical computation of path lines for finite-
difference models. Ground Water, 26(6):743–750, 1988.

[196] D. K. Ponting. Corner point geometry in reservoir simulation. In
P. King, editor, Proceedings of the 1st European Conference on Math-
ematics of Oil Recovery, Cambridge, 1989, pages 45–65, Oxford, July
25–27 1989. Clarendon Press.

[197] T. C. Potempa. Finite element methods for convection dominated
transport problems. PhD thesis, Rice University, 1982. URL https:

//scholarship.rice.edu/handle/1911/15714.
[198] M. Prevost, M. G. Edwards, and M. J. Blunt. Streamline tracing on

curvilinear structured and unstructured grids. SPE J., 7(2):139–148,
June 2002.

[199] A. F. Rasmussen and K.-A. Lie. Discretization of flow diagnostics on
stratigraphic and unstructured grids. In ECMOR XIV – 14th European
Conference on the Mathematics of Oil Recovery, Catania, Sicily, Italy,
8-11 September 2014. EAGE, 2014. doi:10.3997/2214-4609.20141844.

[200] P. A. Raviart and J. M. Thomas. A mixed finite element method for
second order elliptic equations. In I. Galligani and E. Magenes, edi-

Page: 495 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/182679-MS
http://dx.doi.org/10.1002/fld.3978
http://dx.doi.org/10.2118/144580-MS
http://dx.doi.org/10.2118/144580-MS
http://dx.doi.org/10.2118/10528-PA
http://dx.doi.org/10.1137/S0036144503429121
https://scholarship.rice.edu/handle/1911/15714
https://scholarship.rice.edu/handle/1911/15714
http://dx.doi.org/10.3997/2214-4609.20141844


496 References

tors, Mathematical Aspects of Finite Element Methods, pages 292–315.
Springer–Verlag, Berlin – Heidelberg – New York, 1977.

[201] P. Renard and G. De Marsily. Calculating equivalent permeability: a
review. Adv. Water Resour., 20(5):253–278, 1997.

[202] L. A. Richards. Capillary conduction of liquids through porous
mediums. Journal of Applied Physics, 1(5):318–333, 1931.
doi:10.1063/1.1745010.

[203] P. Samier. A finite element method for calculation transmissibilities in
n-point difference equations using a non-diagonal permeability tensor.
In Guérillot, editor, 2nd European Conference on the Mathematics of
Oil Recovery, pages 121–130. Editions TECHNIP, 1990.

[204] T. Sandve, I. Berre, and J. Nordbotten. An efficient multi-point flux ap-
proximation method for discrete fracturematrix simulations. J. Comput.
Phys., 231(9):3784 – 3800, 2012. doi:10.1016/j.jcp.2012.01.023.

[205] S. Shah, O. Møyner, M. Tene, K.-A. Lie, and H. Hajibeygi. The multi-
scale restriction smoothed basis method for fractured porous media. J.
Comput. Phys., 318:36–57, 2016. doi:10.1016/j.jcp.2016.05.001.

[206] M. Shahvali, B. Mallison, K. Wei, and H. Gross. An alternative to
streamlines for flow diagnostics on structured and unstructured grids.
SPE J., 17(3):768–778, 2012. doi:10.2118/146446-PA.

[207] L. F. Shampine, R. Ketzscher, and S. A. Forth. Using AD to solve BVPs
in MATLAB. ACM Trans. Math. Software, 31(1):79–94, 2005.

[208] G. Shook and K. Mitchell. A robust measure of heterogeneity for ranking
earth models: The F-Phi curve and dynamic Lorenz coefficient. In SPE
Annual Technical Conference and Exhibition, 4-7 October, New Orleans,
Louisiana, 2009. doi:10.2118/124625-MS.

[209] C.-W. Shu. Total-variation-diminishing time discretizations. SIAM J.
Sci. Stat. Comput., 9(6):1073–1084, 1988. doi:10.1137/0909073.

[210] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. Springer, 1998.
doi:10.1007/BFb0096355.

[211] G. R. Shubin and J. B. Bell. An analysis of the grid orientation
effect in numerical simulation of miscible displacement. Computer
Methods in Applied Mechanics and Engineering, 47(1):47–71, 1984.
doi:10.1016/0045-7825(84)90047-1.

[212] H. L. Stone. Rigorous black oil pseudo functions. In SPE Symposium
on Reservoir Simulation, 17-20 February, Anaheim, California. Society
of Petroleum Engineers, 1991. doi:10.2118/21207-MS.

[213] Technische Universität Darmstadt. Automatic Differentiation for Mat-
lab (ADiMat). URL http://www.adimat.de/. [Online; accessed 15-04-
2014].

[214] M. R. Thiele and R. P. Batycky. Water injection optimization using a
streamline-based workflow. In Proceedings of the SPE Annual Technical
Conference and Exhibition, 5-8 October 2003, Denver, Colorado, 2003.
doi:10.2118/84080-MS.

Page: 496 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1063/1.1745010
http://dx.doi.org/10.1016/j.jcp.2012.01.023
http://dx.doi.org/10.1016/j.jcp.2016.05.001
http://dx.doi.org/10.2118/146446-PA
http://dx.doi.org/10.2118/124625-MS
http://dx.doi.org/10.1137/0909073
http://dx.doi.org/10.1007/BFb0096355
http://dx.doi.org/10.1016/0045-7825(84)90047-1
http://dx.doi.org/10.2118/21207-MS
http://www.adimat.de/
http://dx.doi.org/10.2118/84080-MS


References 497

[215] G. W. Thomas. Principles of hydrocarbon reservoir simulation. IHRDC,
Boston, MA, Jan 1981.

[216] M. R. Todd, P. M. O’Dell, and G. J. Hirasaki. Methods for increased
accuracy in numerical reservoir simulators. Society of Petroleum Engi-
neers Journal, 12(06):515–530, 1972. doi:10.2118/3516-PA.

[217] Tomlab Optimization Inc. Matlab Automatic Differentiation (MAD).
URL http://matlabad.com/. [Online; accessed 15-04-2014].

[218] S. M. Toor, M. G. Edwards, A. H. Dogru, and T. M. Shaalan. Boundary
aligned grid generation in three dimensions and cvd-mpfa discretiza-
tion. In SPE Reservoir Simulation Symposium, 23-25 February, Hous-
ton, Texas, USA, 2015. doi:10.2118/173313-MS.

[219] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics.
Springer-Verlag, Berlin, third edition, 2009. doi:10.1007/b79761. A
practical introduction.

[220] J. A. Trangenstein. Numerical solution of hyperbolic partial differential
equations. Cambridge University Press, Cambridge, 2009.

[221] J. A. Trangenstein and J. B. Bell. Mathematical structure of the black-
oil model for petroleum reservoir simulation. SIAM J. Appl. Math., 49
(3):749–783, 1989. ISSN 0036-1399.

[222] E. Ucar, I. Berre, and E. Keilegavlen. Simulation of slip-induced per-
meability enhancement accounting for multiscale fractures. In Fourtieth
Workshop on Geothermal Reservoir Engineering, tanford University,
Stanford, California, January 26–28, 2015, 2015.

[223] M. T. van Genuchten. Closed-form equation for predicting the hydraulic
conductivity of unsaturated soils. Soil Science Soc. America J., 44(5):
892–898, 1980. doi:10.2136/sssaj1980.03615995004400050002x.

[224] A. Verma. ADMAT: Automatic differentiation in MATLAB using ob-
ject oriented methods. In SIAM Interdiscplinary Workshop on Object
Oriented Methods for Interoperability, pages 174–183, 1999.

[225] D. V. Voskov and H. A. Tchelepi. Comparison of nonlinear
formulations for two-phase multi-component eos based simulation.
J. Petrol. Sci. Engrg., 82-83(0):101–111, 2012. ISSN 0920-4105.
doi:10.1016/j.petrol.2011.10.012.

[226] D. V. Voskov, H. A. Tchelepi, and R. Younis. General nonlinear solution
strategies for multiphase multicomponent eos based simulation. In SPE
Reservoir Simulation Symposium, 2–4 February, The Woodlands, Texas,
2009. doi:10.2118/118996-MS.

[227] X. Wang and H. A. Tchelepi. Trust-region based solver for nonlinear
transport in heterogeneous porous media. Journal of Computational
Physics, 253:114– –137, 2013. doi:10.1016/j.jcp.2013.06.041.

[228] Y. Wang, H. Hajibeygi, and H. A. Tchelepi. Algebraic multiscale solver
for flow in heterogeneous porous media. J. Comput. Phys., 259:284–303,
2014. doi:10.1016/j.jcp.2013.11.024.

Page: 497 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.2118/3516-PA
http://matlabad.com/
http://dx.doi.org/10.2118/173313-MS
http://dx.doi.org/10.1007/b79761
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://dx.doi.org/10.1016/j.petrol.2011.10.012
http://dx.doi.org/10.2118/118996-MS
http://dx.doi.org/10.1016/j.jcp.2013.06.041
http://dx.doi.org/10.1016/j.jcp.2013.11.024


498 References

[229] X.-H. Wen and J. J. Gómez-Hernández. Upscaling hydraulic conductiv-
ities in heterogeneous media: An overview. J. Hydrol., (183):ix–xxxii,
1996.

[230] J. A. Wheeler, M. F. Wheeler, and I. Yotov. Enhanced velocity mixed
finite element methods for flow in multiblock domains. Comput. Geosci.,
6(3-4):315–332, 2002. doi:10.1023/A:1021270509932.

[231] M. F. Wheeler, T. Arbogast, S. Bryant, J. Eaton, Q. Lu, M. Peszynska,
and I. Yotov. A parallel multiblock/multidomain approach for reservoir
simulation. In SPE Reservoir Simulation Symposium, 14-17 February,
Houston, Texas, pages 51–61, 1999. doi:10.2118/51884-MS.

[232] S. Whitaker. Flow in porous media I: A theoretical derivation of
Darcy’s law. Transp. Porous Media, 1(1):3–25, 1986. ISSN 1573-1634.
doi:10.1007/BF01036523.

[233] O. Wiener. Abhandlungen der Matematisch. PhD thesis, Physis-
chen Klasse der Königlichen Sächsischen Gesellscaft der Wissenschaften,
1912.

[234] X. H. Wu, Y. Efendiev, and T. Y. Hou. Analysis of upscaling absolute
permeability. Discrete Contin. Dyn. Syst. Ser. B, 2(2):185–204, 2002.

[235] J. L. Yanosik and T. A. McCracken. A nine-point, finite-difference reser-
voir simulator for realistic prediction of adverse mobility ratio displace-
ments. Society of Petroleum Engineers Journal, 19(04):253–262, 1979.
doi:10.2118/5734-PA.

[236] R. Younis. Advances in Modern Computational Methods for Nonlinear
Problems; A Generic Efficient Automatic Differentiation Framework,
and Nonlinear Solvers That Converge All The Time. PhD thesis, Stan-
ford University, Palo Alto, California, 2009.

[237] R. Younis and K. Aziz. Parallel automatically differentiable data-
types for next-generation simulator development. In SPE Reservoir
Simulation Symposium, 26–28 February, Houston, Texas, USA, 2007.
doi:10.2118/106493-MS. SPE 106593-MS.

[238] P. Zhang, G. E. Pickup, and M. A. Christie. A new upscaling approach
for highly heterogenous reservoirs. In SPE Reservoir Simulation Sym-
posium, 31 January-2 Feburary, The Woodlands, Texas, SPE 93339,
2005.

[239] Y. Zhou, H. A. Tchelepi, and B. T. Mallison. Automatic differenti-
ation framework for compositional simulation on unstructured grids
with multi-point discretization schemes. In SPE Reservoir Sim-
ulation Symposium, 21-23 February, The Woodlands, Texas, 2011.
doi:10.2118/141592-MS. SPE 141592-MS.

Page: 498 job: mrst-book macro: svmono.cls date/time: 13-Dec-2016/16:53

http://dx.doi.org/10.1023/A:1021270509932
http://dx.doi.org/10.2118/51884-MS
http://dx.doi.org/10.1007/BF01036523
http://dx.doi.org/10.2118/5734-PA
http://dx.doi.org/10.2118/106493-MS
http://dx.doi.org/10.2118/141592-MS

	Introduction
	Petroleum production
	Reservoir simulation
	Outline of the book
	The first encounter with MRST

	Part I Geological Models and Grids
	Modelling Reservoir Rocks
	Formation of sedimentary rocks
	Creation of crude oil and natural gas
	Multiscale modelling of permeable rocks
	Macroscopic models
	Representative elementary volumes
	Microscopic models: The pore scale
	Mesoscopic models

	Modelling rock properties
	Porosity
	Permeability
	Other parameters

	Property modelling in MRST
	Homogeneous models
	Random and lognormal models
	10th SPE Comparative Solution Project: Model 2
	The Johansen Formation
	SAIGUP: shallow-marine reservoirs


	Grids in Subsurface Modeling
	Structured grids
	Unstructured grids
	Delaunay tessellation
	Voronoi diagrams
	Other types of tessellations
	Using an external mesh generator

	Stratigraphic grids
	Corner-point grids
	2.5D unstructured grids

	Grid structure in MRST
	Examples of more complex grids


	Part II Single-Phase Flow
	Mathematical Models and Basic Discretizations
	Fundamental concept: Darcy's law
	General flow equations for single-phase flow
	Auxiliary conditions and equations
	Boundary and initial conditions
	Injection and production wells
	Field lines and time-of-flight
	Tracers and volume partitions

	Basic finite-volume discretizations
	Two-point flux-approximation
	Discrete div and grad operators
	Time-of-flight and tracer


	Incompressible Solvers
	Basic data structures in a simulation model
	Fluid properties
	Reservoir states
	Fluid sources
	Boundary conditions
	Wells

	Incompressible two-point pressure solver
	Upwind solver for time-of-flight and tracer
	Simulation examples
	Quarter five-spot
	Boundary conditions
	Structured versus unstructured stencils
	Using Peaceman well models


	Single-Phase Flow and Rapid Prototyping
	Implicit discretization
	A simulator based on automatic differentiation
	Model setup and initial state
	Discrete operators and equations
	Well model
	The simulation loop

	Pressure-dependent viscosity
	Non-Newtonian fluid
	Thermal effects


	Part III Multiphase Flow
	Mathematical Models for Multiphase Flow
	New physical properties and phenomena
	Saturation
	Wettability
	Capillary pressure
	Relative permeability

	Flow equations for multiphase flow
	Single-component phases
	Multicomponent phases
	Black-oil models

	Model reformulations for immiscible two-phase flow
	Pressure formulation
	Fractional flow formulation in phase pressure
	Fractional flow formulation in global pressure
	Fractional flow formulation in phase potential
	Richards' equation

	The Buckley–Leverett theory of 1D displacements
	Horizontal displacement
	Gravity segregation
	Front tracking: semi-analytical solutions


	Solvers for Incompressible Immiscible Flow
	Fluid objects for multiphase flow
	Sequential solution procedures
	Pressure solvers
	Saturation solvers

	Simulation examples
	Buckley–Leverett displacement 
	Inverted gravity column
	Homogeneous quarter five-spot
	Heterogeneous quarter five-spot: viscous fingering
	Buoyant migration of CO2 in a sloping sandbox
	Water coning and gravity override
	The effect of capillary forces – capillary fringe
	Norne: simplified simulation of a real-field model

	Numerical errors
	Splitting errors
	Grid-orientation errors



	Part IV Reservoir Engineering Workflows
	Flow Diagnostics
	Flow patterns and volumetric connections
	Volumetric partitions
	Time-of-flight per tracer region: improved accuracy
	Well-allocation factors

	Measures of dynamic heterogeneity
	Flow and storage capacity
	Lorenz coefficient and sweep efficiency
	Summary of diagnostic curves and measures

	Case studies
	Tarbert formation: volumetric connections
	Layers of SPE10: heterogeneity and sweep improvement

	Interactive flow diagnostics tools
	Simple 2D example
	SAIGUP: flow patterns and volumetric connections


	The MATLAB Reservoir Simulation Toolbox
	Getting started with the software
	Core functionality and add-on modules
	Downloading and installing
	Exploring the functionality and getting help
	Release policy and version numbers
	Software requirements and backward compatibility
	Terms of usage

	Public data sets and test cases
	More about modules and advanced functionality
	Operating the module system
	What characterizes a module?
	List of modules

	Rapid prototyping using MATLAB and MRST
	Automatic differentiation in MRST

	References


