

GALVANIC CORROSION IN BOLTED JOINTS

Ole Øystein Knudsen, SINTEF Daniel Höche, Hereon

Contents

- Galvanic corrosion in bolted joints
- Potential solutions to the problem(s)
- Testing of different washer materials
- Modelling galvanic corrosion

- Somewhat different corrosion attacks in the three cases
- Prevention may be different

Not investigated in the project

Potential solutions

- Electrical insulation
- Prevent ingress of water in the bolthole
 - Seal the openings
 - Fill the bolthole with a sealant
- Coat the bolt
 - Sleeves or pre-coated bolts

Potential solutions

- Electrically insulating Al from steel
- Bimetallic shims
 - The AI-SS crevice is eliminated by metallurgical bonding
- Fill the crevice with a polymeric sealant
- Aluminium shims and washers that can be replaced when corroded

Potential solutions

- Electrically insulating Al from steel
- Electrolytically insulating Al from steel
- Aluminium shims and washers that can be replaced when corroded

Atmospheric corrosion test - modified ISO 11997-1*

Table A.1	- Test	parameters	for cycle A
-----------	--------	------------	-------------

Step	Time h	Temperature °C	Condition	Notes	
1	2	35 ± 2	Salt spray	-	
2	4	60 ± 2	Dry: 20 % to 30 % RH	_	
3	2	50 ± 2	Wet: 95 % RH or over	—	
4	Go back to step 1.			This makes a total cycle time of 8 h from step 1 to step 3.	
	Transition time (i.e. time allowed to reach the temperature and relative humidity specified for a condition after changing to that condition):			From salt spray to dry: within 30 min From dry to wet: within 15 min From wet to salt spray: within 30 min The effect of the salt spray will, in principle, be instantaneous.	
			For details of drying-air flow, see <u>6.4</u> .		

* Artificial seawater is used as spray solution instead of 5 % NaCl solution.

	Alloy	Bolt	Washer
1	6082	A2	A2
2	6082	A4	A4
3	6082	A4	Titanium
4	6082	A4	Aluminium, 5052
5	6082	A4	Anodized 5005, Ø16 mm
6	6082	A4	Anodized 5005, Ø24 mm
7	6082	A4	Nylon, Ø16 mm
8	6082	A4	Nylon, Ø24 mm

Weight loss on 6082 sample and washers

Submerged, without cathodic protection

A4

Nylon 16 mm

Anodized 16 mm

A2

5052

Nylon 24 mm

Anodized 24 mm

Bolted joints with double washers

Alloy	Washer material	Diameter
		16 mm
F000	Anodized aluminium	24 mm
5083	Control allow in items	16 mm
	Coated aluminium	24 mm
		16 mm
CO00	Anodized aluminium	24 mm
6082		16 mm
	Coated aluminium	24 mm

- Corrosion on the panels
 - Generally more corrosion on 5083 than 6082
 - Less corrosion with large coated washers
- Corrosion on the washers
 - The anodizing was crushed along the edge of the A4 washers → galvanic corrosion
 - The coating was penetrated by the A4 washer on some samples → large differences between parallels

5083, 24 mm anodized washer

5083, 16 mm anodized washer

24 mm anodized washer

24 mm coated washer

Modelling Galvanic Corrosion

Daniel Höche, Hereon

Computational aided Design of bolted Al-steel joints

Requirements / Goal:

- Avoid (galvanic) corrosion on Al around the steel
- Avoid crevice corrosion between Al, washer, steel
- Mechanical strength limits the use of polymers for electrical insulation
- Improve durability of the joint

Options:

- Materials selection
- Materials modification (e.g. treatments, coatings)
- Joint component system / Joining technology
- Geometry and layout optimization (constructive corrosion protection)

Bad design supports pitting corrosion: (Model vs. Experiment is somehow OK)

Modelling - data based

In progress

Proposed framework for the <u>prediction and classification</u> of atmospheric corrosion in offshore aluminum-steel joints

- Avoid an electric potential in the electrolyte film at AI more positive than E_{pit}. (approx. +250 mV vs. OCP for our system currently).
- The washer diameter (16 vs. 24 mm) can lower the max. corrosion current by something like a factor 2. Maximizing this effect requires passivity of the washer.
- The tangential current in the electrolyte film must be minimized. The salt concentration must be lowered especially at the washer.

Design goal: Avoid conductive electrolyte film formation on the washer

• Suppress cathodic activity on the washer

Finally: How to manage at installations / infrastructures?

Reliable industrial application

Digital Management- and Maintenance system

Combing the models: Proposed framework for the <u>reliability based</u> <u>design optimization</u> of offshore aluminum-steel joints