

MARINE EXPERIENCES WITH ALUMINIUM

Ole Øystein Knudsen SINTEF

- Good experiences
- Corrosion problems
- Recommendations to avoid galvanic corrosion

Photo: Marine Aluminium

North Sea Buoy II

 Investigation of samples at Hydro R&D Plate from splash water zone Extruded tube from permanent immersion zone 0.2 mm

Technical survey after 30 years of service in open sea:

- No substantial wall thickness reduction
- No cracks in base material or weld seams
- Weldability identical to new material
- Joints with stainless steel screws fully intact without galvanic isolation

- Constructed from AA5083 sheet and AA6082 extrusions
- No surface treatment
- Sub-surface corrosion protection by sacrificial zinc anodes
- Zinc anode consumption approx. 1/5 of that required for cathodic protection of steel

Successful insulation of aluminium from steel

Photo: Roald Lilletvedt NTNU

- Severe corrosion on cast aluminium actuator
- The alloy contained about 1% Cu
- Standards for selection of Al alloys
 - NORSOK M-121
 - DIN 81249

- Passive fire protection with absorbed salt water
- The water acidifies with time and becomes aggressive to aluminium

Under/around stainless bolts

Low alloy bolts

Steel-aluminium weld

- Pitting potential for aluminium alloys is about – 0,7 V (Ag/AgCl reference)
- Corrosion potential of steel in seawater:
 - C-steel: about -0,6 V
 - Stainless steel: about 0 V
- Galvanic coupling to steel will polarize the aluminium above the pitting potential
- → galvanic corrosion

- Designs where water may accumulate on the aluminium
 - Vertical lip on horizontal flange
 - Bolt holes that eventually fill with water
 - Non-draining surfaces
- Stagnant salt water on aluminium results in acidification (pH about 4) and corrosion

Galvanic corrosion in Al-steel explosion weld

Fracture along the weld interface

Galvanic corrosion running along the interface, separating Al from steel

Galvanic corrosion on the aluminium, but not along the interface

Galvanic corrosion in submerged conditions

- Aluminium parts on subsea ROV
- Stainless steel parts mounted on anodized aluminium (thick film anodized, 50 μm)
- Corrosion in the crevices
- CP probably not able to penetrate the crevice due to high resistance

- Galvanic corrosion in damages/weaknesses in anodized layer
- No cathodic protection? Severe attacks locally

If the bolt hole gets filled with salt water \rightarrow galvanic corrosion

If the crevice is filled with salt water → galvanic corrosion CP will not work inside the crevice – too high resistance in the electrolyte

When the surface is covered with salt deposits \rightarrow galvanic corrosion

Electric insulation – difficult and weak

Stainless steel shims – only partly effective

- Nonmetallic shim or bimetallic shim
- Nonmetallic, FRP or bimetallic washer
- Shims are to extend 5 mm beyond the aluminium

- Successful use of aluminium in marine constructions
 - When aluminium is used alone, no connection to other materials
 - When aluminium is galvanically insulated from other materials
- Reported corrosion issues with aluminium in marine constructions
 - Mainly galvanic corrosion in aluminium-steel joints
 - Submerged: Cathodic protection will not help, the protection will not enter the crevice
- Protection against galvanic corrosion
 - Electrical insulation works, but must be done correctly and may degrade with time
 - Bimetallic shims/washers may work but is not commercially available or well documented