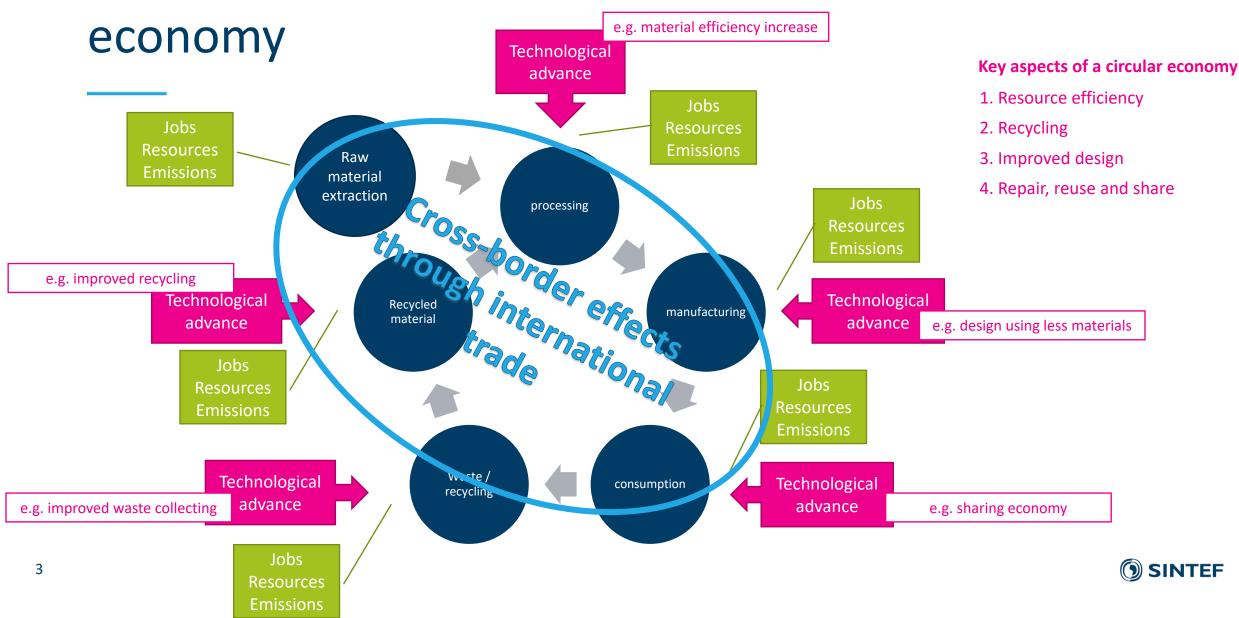


GLOBAL SUSTAINABILITY EFFECTS OF MICRO TECHNOLOGICAL ADVANCES – SOME CONCEPTUAL THOUGHTS

-1-

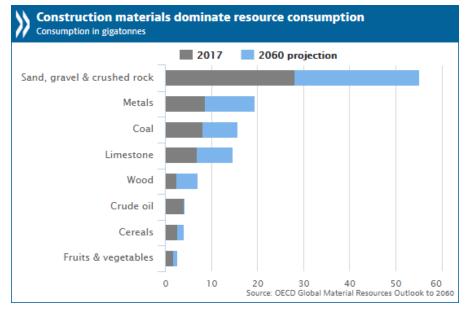
Kirsten S. Wiebe

Circular Economy Conference, June 3-4, 2019


Technological advances are vital for the transformation to a more circular economy

- Raw material extraction has tripled in the last 50 years
- "Decouple natural resource use and environmental impacts from economic growth" (UNEP *et al.*, 2011)
- Systemic transformation
 - 1. Reduce
 - 2. Recycle
 - 3. Repair & reuse
 - 4. (Re-)design

Global material extraction 90B Metal ores **Fossil fuels** 50B Non-metallic minerals **Biomass** 1970 2017 Reference-Disclaimer: WU Vienna (2019): Material flows by material group, 1970-2017. Visualisation based upon the UN IRP Global Material Flows Database. Vienna University of Economics and Business. Online available at: materialflows.net/visualisation-centre



Technological advances for a more circular

Importance of raw materials and raw material trade

Raw materials use to double by 2060 with severe environmental consequences

OECD trade policy brief – Conclusions

- No country is self-sufficient in key raw materials.
- How revenue from the mining sector is spent is as important as how much is collected.
- Export restrictions are not the best way to support or create a downstream processing industry

Global sustainability effects of micro technological advances towards a more circular economy

Aim

• Identify effects on economy, society and environment that occur globally due to advances in a certain technology

Scope

- Analyse impacts on/effects along upstream and downstream value chains
 - within the country and abroad cross-border effects
 - within the industry and, indirectly, in other industries
 - Economic (value creation), social (employment and related), environmental (emissions to and resource extraction from the natural environment)

Technological change & global value chain (GVC) effects – Questions to ask

- What is new compared to the incumbent technology? e.g.
 - Changed production structure of old technology
 - Entirely new technology replacing old technology
- What are the most important differences in the input structure of the technology production?
 - Which industries/countries produced the old intermediate inputs?
 - Which industries/countries produce the new intermediate inputs?
- How important is that new component (raw material/intermediate good)
 - For global trade in this component ?
 - For the affected industry in certain countries?
- What are the most important differences occurring through the use of the new technology? e.g.
 - Are there more or less people employed?

6

Is more or less capital and other resources required?

System wide analysis tools

• Life-cycle Assessment (LCA)

Looking at the cradle-to-grave environmental pressures of individual products

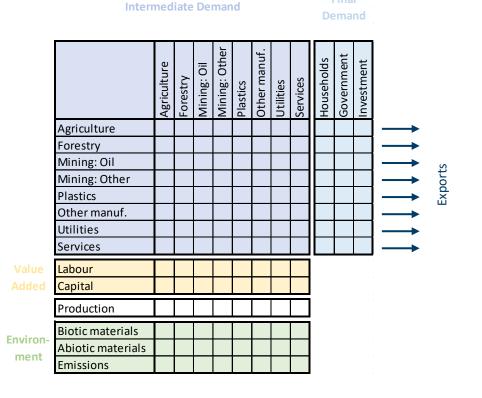
• Life-cycle Impact Assessment (LCIA)

Adds conversion to environmental impacts (e.g. GWP, biodiversity loss) to LCA

➔ Mostly not considering country-differences

• Material-flow analysis (MFA)

"Captures the mass balances in an economy where inputs (extractions + imports) equal outputs (consumption + exports + accumulation + wastes)" *

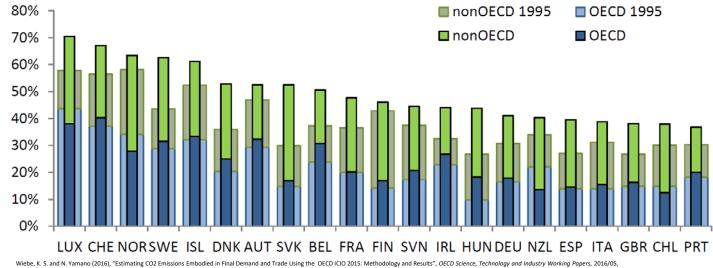

• Multi-regional input-output analysis (MRIO)

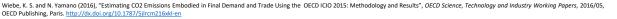
Representation of monetary flows through the economy at the meso-level, including **trade**, and country-specific impacts

Global value chain (GVC) analysis using input-output (IO) data

Input-output (IO) analysis

- IO tables give a detailed snapshot of a country's economy
- IO tables are consistent with the System of National Accounts (SNA)
- Production and use of intermediate and final products by industry/economic actor
- Factor input use (e.g. labour, capital) by industry
- Direct / indirect / induced effects of technological change on the economy




Global value chain (GVC) analysis using input-output data

Global IO analysis

- Linking national IO tables using bilateral trade data at the product group level
- Two major drivers
 - OECD/WTO Trade in Value Added (TiVA) initiative
 - Environmental footprints of countries

Figure 7: Share of CO₂ emitted abroad in total CO₂ embedded in domestic final demand

Limitations and opportunities of GVC analysis of micro-technological advances based on global IO data

Limitations

- Aggregated industries/product groups
 - Impossible to correctly represent most micro technological advances
- Missing data for resource rich developing countries

Opportunities

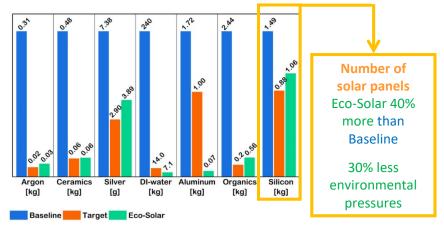
- Use the GVC thinking for individual technologies, by including bilateral trade data
- Complement other value chain analysis tools, e.g.
 - LCA by considering the effect of the product on the value chain and impacts across borders
 - Environmental impact assessment by providing socio-economic and environmental analysis in a consistent framework

Micro to global

Micro technological advances

- Replacing one input by another
- Reducing material inputs

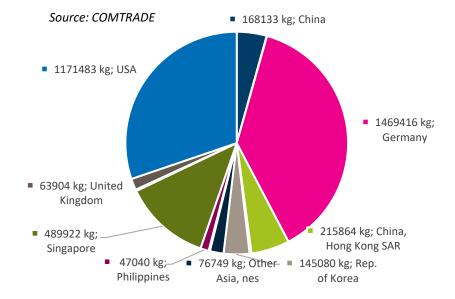
Detailed global bilateral trade databases


- UN COMTRADE https://comtrade.un.org/
- OECD Balanced International Merchandise Trade Statistics (121 countries, 57 products) <u>https://stats.oecd.org/Index.aspx?DataSetCode</u> <u>=BIMTS_CPA</u>
- OECD Bilateral Trade in Goods by Industry and End-use (BTDIxE), ISIC Rev.4 <u>https://stats.oecd.org/Index.aspx?DataSetCode</u> <u>=BTDIXE_I4</u> (171/208 countries, 99/109 Industries)

Example: solar panel

EU project ECO Solar with SINTEF participation

Ressursforbruk for produksjon av et multikrystallinsk panel med 60 solceller



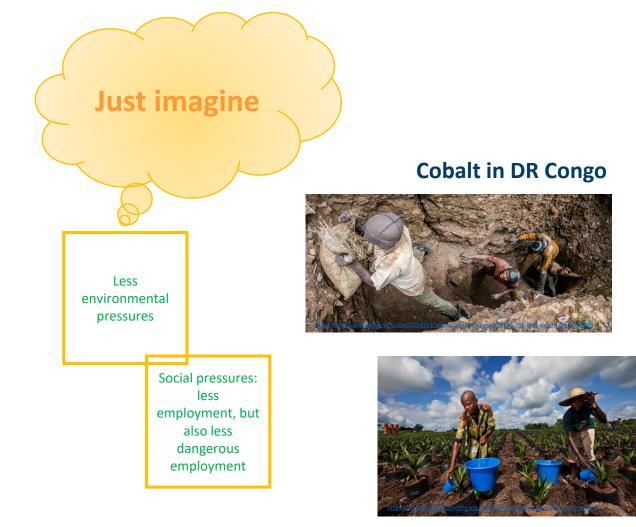
Grafen viser besparelsene innenfor en rekke viktige materialer som brukes i dagens solcelleproduksjon. Den blå søylen viser dagens normalforbruk, den oransje søylen viser forskernes mål i prosjektet. Den grønne søylen viser faktisk forbruk med bruk av ECO-Solar konseptet. Illustrasjon fra prosjektet.

https://gemini.no/2019/04/dette-er-verdens-gjerrigste-solcellepanel/

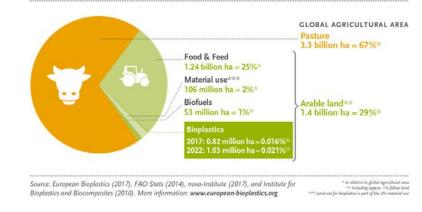
Upstream: Reduce Downstream: Recycle & reuse Upstream: even more reduction

Trade in relevant raw materials: Silicon containing by weight not less than 99.99% of silicon (HS 280461)

() SINTEF


Norway's imports in 2017: 3875 t \rightarrow low importance for global market

Example: batteries & other electronics


Example: Bioplastics

Differences in production

- Raw materials
 Oil vs starch, cellulose, wood, sugar
- 8% of global oil is used for plastics
- Increasing use of biomass
 - Pollution from fertilizers
 - Food-feed-fuel discussion will not necessarily be food-feed-fuel-plastics

	Agriculture	Forestry	Mining: Oil	Mining: Other	Plastics	Other manuf.	Utilities	Services	Households	Government	Investment
Agriculture											
Forestry											
Mining: Oil											
Mining: Other											
Plastics											
Other manuf.											
Utilities											
Services											
Labour											
Capital											
Production											
Biotic materials											
Abiotic materials											
Emissions											

Land use estimation for bioplastics 2017 and 2022

Ę

Example: Bioplastics

Upstream: GVC changes Downstream: less environmental impacts

Differences in production

- Raw materials
 Oil vs starch, cellulose, wood, sugar
- 8% of global oil is used for plastics
- Increasing use of biomass
- Pollution from fertilizers
- Food-feed-fuel discussion will not necessarily be food-feed-fuel-plastics

Trade related impacts

- Oil production is concentrated in few world regions
- Bio-based materials can be produced globally

Use of results

Industries / companies

- Be aware of non-cost related impacts outside the direct supply chain/network
- Link of companies' actions to global environmental pressures, e.g. raw material scarcity
- Reduce dependencies
 - Reduction in material inputs
 - 'In-house' recycling

Policy

- Consider environmental impacts outside national borders
- Distribute employment effects around the world
- Decrease import dependencies

Take away

We need to combine economic, environmental, and social impact analysis, and explicitly consider international trade to assess global sustainability!

- Indirect effects on society and environment should always be estimated to avoid potential negative implications of a technology that's originally designed to be "good" = "green"
- Micro-technological advances need to be deployed at a large scale in order to foster a global shift towards a more circular economy
- If this is done, international raw material markets might be affected to a large degree in two ways
 - Shortages of materials needed for new technologies might arise
 - Raw material extraction countries might suffer if the raw materials are increasingly replaced by recycled materials (or lower demand through reuse and sharing)

Teknologi for et bedre samfunn