Predicting irritable bowel syndrome (IBS) from brain MR imaging data using machine learning

Arvid Lundervold¹, Eivind A. Valestrand²,⁴, Alexander S. Lundervold³, Trygve Hausken²,⁴

¹Neuroinformatics and Image Analysis Laboratory, Department of Biomedicine; ²Department of Clinical Medicine, University of Bergen, Bergen, Norway; ³Western Norway University of Applied Sciences, Campus Kronstad, Bergen; ⁴National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway

Introduction
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder associated with abdominal discomfort and altered defecation habits, and a majority of patients experience postprandial symptoms exacerbation. Dysfunction of the brain-gut axis has been suggested as an important mechanism in IBS. In this context, thickness of the cerebral cortex might be influenced by chronic pain conditions, and can therefore be increased or decreased in different brain regions. In the human brain, a core network is the salience network, responding to subjective salience of stimulus or the expectation of stimulus. In our study of IBS patients and healthy controls, machine learning classification methods were used to analyse cortical thickness in key nodes of the salience network (Fig. 1).

Methods and materials
From a multimodal MRI intervention study (Fig. 2), two successive 3D T1-weighted MRI acquisitions from 15 IBS patients and 15 healthy controls (HC) were recorded on a GE Sigma 3.0T MR scanner and segmented with FreeSurfer¹. Mean cortical thickness values from 12 anatomical regions in the salience network were extracted and analysed in Python/scikit-learn² applying various machine learning classifiers (cf. Fig. 3) to the 60×12 dimensional feature space used in classification. This is likely because the dataset is small and the feature space is 12-dimensional and we only have 60 observations we shrank the feature space and performed the classification using only two features. These were selected according to recent literature and our previous findings of white matter microstructure differences (i.e. FA calculated from the DTI data) between IBS and HC in the insular regions (cf. left part of Fig. 5, and [6] in Fig.1).

Results
Exploring the group-specific cortical thickness distributions, no single region was significantly different between IBS and HC (Fig. 4). Because the feature space is 12-dimensional and we only have 60 observations we shrank the feature space and performed the classification using only two features. These were selected according to recent literature and our previous findings of white matter microstructure differences (i.e. FA calculated from the DTI data) between IBS and HC in the insular regions (cf. left part of Fig. 5, and [6] in Fig.1).

Discussion/conclusions/limitations
Patients with IBS are known to have brain signatures within the salience network that differs from healthy controls. Finding such patterns would make it possible to discriminate between the IBS and HC brain and is a highly interesting problem, both diagnostically and mechanistically. An overall change in the network could indicate an altered interoceptive function in IBS patients constituting of several minor non-significant findings.

The present study is part of an investigation into the salience network of IBS patients, using MRI and fMRI together with a meal intervention. The classification techniques studied here, using insula only, was not able to distinguish between patients and control in a significantly accurate manner. This is likely because the dataset is small and the variation of the cortical thickness patterns across the groups is subtle.

Using the fMRI data recorded pre and post meal intervention to construct activation graphs in the salience network, and use these networks to classify patients and healthy control would likely lead to better results. This approach is presently being investigated.

---