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Abstract

We study ferromagnetic thin films, and patterned devices. In particular, we are
interested in their properties regarding magnetic field sensing and magnetic
memory applications. These include magnetostatic properties such as
magnetic anisotropy, coercivity and saturation magnetization, and dynamic
properties such as resonance frequency and magnetization damping. The
latter determine e.g. how quickly the magnetization responds to an external
field. Magnetoresistive properties are also very important, i.e. how resistivity
depends on current direction with respect to magnetization (AMR effect,
anisotropic magnetoresistance) or relative magnetization orientation in
heterostructures (GMR and TMR, giant and tunneling magnetoresistance).

Our work includes thin film deposition and structural characterisation of many
sorts, magnetostatic measurements (VSM, vibration sample magnetometry),
MOKE (magneto-optic Kerr effect magnetometry), and dynamic measurements
such as FMR (ferromagnetic resonance).

Thin film growth and
characterisation

Thin film deposition

We use mostly dc magnetron sputtering for metals or HIPIMS (high power
Impulse magnetron sputtering, i.e. bursts of plasma with a low duty cycle) to
deposit thin ferromagnetic films.

A very common method to affect the direction of magnetic anisotropy after
deposition is to apply a static magnetic field in situ, during growth. Another
method, less commonly used, is to change the incident angle of the sputter
flux, i.e. sputter at an angle other than 90 degrees. Both methods can help
define the anisotropy axes, and we study both, separately and together.
Neither of them is well understood yet!

Materials flux
from target

Sample arrangement during sputter deposition.
The sample is enclosed by permanent magnets
and we change the angle of incident flux.

Structural properties

The crystal structure, epitaxy (or not), grain size, density, defects and film
thickness are very important to know. These are obtained by x-ray
measurements, (XRD: x-ray diffraction, XRR: x-ray reflection, AFM: atomic
force microscopy).
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XRD spectra of dc magnetron sputtered and
HIPIMS deposited permalloy. The interface with
the MgQO substrate is strained, but there is a
perfect cube-on-cube epitaxial relationship
between film and substrate.

Magnetic properties differ dramatically

between the two deposition techniques:

e dc magnetron sputtered films have cubic in-plane
symmetry, with two equivalent easy axes along the
<110> directions and have “hard axes” in-plane along
the <100> directions.

* HIPIMS deposited films have “easy axis” anisotropy,
that is one easy axis and one hard axis at right
angles in the plane of the film. The easy axis in our
case is along <100> while the hard is along <010>.
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Magnetodynamics: Ferromagnetic resonance
We do ferromagnetic resonance measurements on thin
films and patterned structures. Below is a schematic of
an experiment done on 650 nm wide wires, Iin one case
a single 15 nm thick layer of permalloy, in the other
case two such layers separated by a 20 nm thick
spacer layer of copper (hon-magnetic). The results are
shown in the figure on the right. The left panel is a
single layer, while the right panel shows how the layers
couple and split the resonant peak due to magnetostatic
Interaction. (a)
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