1. Introduction

- Regionalized Value State Dependence Graph (RVSDG) is an intermediate representation (IR) for optimizing and parallelizing compilers.
- Models flow of data with state edges to sequentialize side-effecting operations.
- Enforces strict static single assignment (SSA) form.
- Exposes hierarchical structure of programs.
- Single unified IR that normalizes program representation.

2. Regionalized Value State Dependence Graph

Expressions

Conditionals

Loops

Functions

LLVM Optimization (-O3) # Invocations

1. Alias Analysis 16
2. Dominator Tree Construction* 14
3. Basic Alias Analysis 13
4. Scalar Evolution Analysis 10
5. Natural Loop Canonicalization* 9
6. Redundant Instruction Combinator 8
7. Loop-Closed SSA Form* 8
8. Loop-Closed SSA Form Verifier* 8
9. CFG Simplifier* 7
10. Natural Loop Information* 6

Total 99

SSA Restoration* 12

3. Motivation

- Raises IR abstraction level by enforcing desirable properties and relaxing the overly strict order of input programs.
- Eliminates many helper passes of conventional CFG-based compilers.
- Explicitly exposes parallelism in programs.

4. Optimizations

- Dead Node Elimination
- Common Node Elimination
- Node Motion

5. Preliminary Results

- Speedup relative to LLVM -O0
- Compilation Time
- Representational Overhead

6. Further Information

1. Perfect Reconstructability of Control Flow from Demand Dependence Graphs
 Transactions on Architecture and Code Optimization (TACO), 2015
2. RVSDG: An Intermediate Representation for the Multi-Core Era
 Nordic Workshop on Multi-Core Computing (MCC), 2018
3. RVSDG API implementation: https://github.com/phate/jive
4. LLVM-based compiler using RVSDG: https://github.com/phate/jlm
5. RVSDG Viewer: https://github.com/phate/rvsgd-viewer