
An algorithmic differentiation tool (not only) for
FEniCS

Sebastian Mitusch and Simon W. Funke

Automatically derive and solve adjoint and tangent linear equations from FEniCS models

�Provides algorithmic-differentiation (AD) in FEniCS
(extendable to other frameworks).

�Computes gradients, directional derivatives, and Hessian actions
of model outputs with minimal code changes.

�Natural parallel-support and close-to-theoretical performance in
FEniCS.

�Currently being extended to PyTorch to enable coupling FEniCS
and PyTorch models.

Highlights

The implementation consists of two modules:

pyadjoint
A generic, operator-overloading AD tool for Python. During run-
time, pyadjoint records all overloaded operations, and their in-
puts/outputs (as Variables) as a graph. From this graph, the
derivatives of any node with respect to any preceding node can
be computed by successive application of the chain rule.

Operation
implements evaluate,

tlm, adj, 2nd adj

Variable

Variable

stores results

/ Figure: The forward model registers

each operation and its inputs/outputs as a

graph. The stored Operation objects can

evaluate the operation for new inputs, eval-

uate the tangent linear, and the first or the

second-order adjoint operations.

fenics adjoint
This module overloads the most common FEniCS operations.

from fenics import *

from fenics˙adjoint import *

...

c = Constant(1)

bc = DirichletBC(V, c,

”on˙boundary”)

a = inner(grad(u), grad(v))*dx

L = f*v*dx

solve(a == L, u˙, bc)

z = assemble((u˙**2 + f**2)*dx)

dzdc = compute˙gradient(z, Control(c))

M Code: Example FEniCS code with fenics adjoint.

The last line computes the derivative of the model

output with respect to the Dirichlet boundary value.

Figure: .

Visualisation of the recorded pyadjoint computation

graph after executing the above code. The main

high-level FEniCS operations have been recorded.

The output variable z is also overloaded and could

further used, for example to evaluate a more com-

plex functional.

DirichletBCBlock

DirichletBC

SolveBlock
grad(u) : grad(v) dx = fv dx

u_

AssembleBlock
u_**2 dx + f**2

0.5865975

Constant(1)

Function(f)

How it works

Application examples
In this example we consider Burger’s equation

∂u

∂t
+ αu

∂u

∂x
= ν

∂2u

∂x2
in Ω× (0, T),

u = g for Ω× {0}.

Here Ω is the unit interval, and T = 0.3. The

aim is to compute the sensitivity of the functional

J(u) =

∫ T

0

∫
Ω

u2 dx dt

with respect to the initial condition g and the

constant α.

from fenics import *

from fenics˙adjoint import *

F = ((u-u˙)/dt*v

+ a*u*u.dx(0)*v

+ nu*u.dx(0)*v.dx(0))*dx

J = 0

u˙.assign(g)

while (t ¡= T):

solve(F == 0, u, bc)

u˙.assign(u)

t += timestep

J += dt*assemble(u**2*dx)

Apply fenics-adjoint

dJdga = compute˙gradient(J, [g,a],

–”riesz˙representation”: ”L2”˝)

M Code: Simplified FEniCs implementation

(complete code has 32 lines)

/ Figure: The solution u at T and the L2-

gradient with respect to the initial condition.

Time-dependent functional

The idea is to use magnetic resonance imaging (MRI) images of patients together with partial dif-

ferential equation (PDE) constrained optimization, to estimate the apparent diffusion coefficient

in the brain extracellular space.

Specifically, we consider the following constrained minimization problem

min
D,g

∑
i∈Id

∫
Ω

|u(ti)− uobs(ti)|2 dΩ +R(g)

subject to
∂u

∂t
−∇ ·D∇u = 0 in Ω,

u = g on ∂Ω

To test the robustness of the method, we manufacture solutions and add noise to the observations.

M Figure:

The manufactured solution (upper row) versus the estimated solution (lower row) at a single time

point. (A) is the manufactured solution without added noise. (B) is the manufactured solution

with noise amplitude 0.15. (C) is the manufactured solution with noise amplitude 0.30. (D)

shows the estimated solution state using observation (A). (E) shows the estimated solution state

using observation (B). (F) shows the estimated solution state using observation (C).

Inverse problem

The adjoint and tangent linear models inherits the parallelism and scalability of FEniCS.

Time-dependent example

CPUs 1 Optimal

Forward runtime (s) 1.34

Adjoint runtime (s) 0.68

Adjoint/Forward ratio 0.51 0.33

Inverse problem example

CPUs 1 2 Optimal

Forward runtime (s) 84.2 35.2

Adjoint runtime (s) 106.4 47.0

Adjoint/Forward ratio 1.26 1.34 1.00

Tables: Performance timings for the two examples on the right.

Performance

How to get started
pip install git+https://bitbucket.org/dolfin-adjoint/pyadjoint@master

