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Plan for course 
Time  Topic 

Lecture 1 Introduction and motivating examples 

Elementary decision analysis and the value of information 

Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Lecture 2 Re-cap of VOI and statistical dependence 

Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Examples of value of information analysis in Earth sciences 

Lecture 3 Computational aspects of VOI analysis, approximate calculations 

Sequential information gathering 

Examples from Earth sciences 

Every day: Small exercises. 



Bayesian model 

• All the currently available information about variables: 
 

 
 

• New data (and the data gathering scheme) is represented 
by a likelihood model: 
 

 
 
• If we collect data, the model is updated to the posterior, 

conditional on the new observations: 
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Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
locations.  

Noisy observations are gathered for all 
locations. 

Partial Exact observations are gathered at 
some locations.  

Noisy observations are gathered at some 
locations 

y x  y x 

,  subsety x ,  subset y x 



Value of information (VOI) 

Prior value: 

Posterior value: 

   VOI PoV PV y y

x

a

- Uncertainties 
 
 

- Alternatives 

y - Data 

 ,v x a - Value function 

VOI    =   Expected posterior value    –   Prior value 

  max ( , )PV vE a A x a

       max , |PoV E v p d  a Ay x a y y y



Decoupling – values are sums 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  
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Profit is sum of timber volumes from units. 
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Computation - Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

Main challenge. 
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Techniques – Computing the VOI 

       max , |PoV E v p d  a Ay x a y y y

Computational techniques : 
• Fully analytically tractable for special cases, like two-actions, Gaussian, linear models.  
• Various approximations and Monte Carlo approaches usually applicable. 
• Should avoid double Monte Carlo (inner and outer). Too time consuming. 

Outer integral. Inner integral. 
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Partly analytical, Monte Carlo for outer  
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Use sampling. 

Inner integral solved.   
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Approximate computation 

   VOI PoV PV y y

 
• Suggest Monte Carlo (outer) and regression approximation (inner).  

       max , |PoV E v p a A

y

y x a y y

Inner expectation: |x y

Outer expectation: y



Simulation-regression illustration 

xa

y ,v x a

Build regression model from Monte Carlo samples. 

Sample variables from prior. 

Sample data from likelihood. 

Set alternatives. 

Evaluate value function. 



Simulation-regression algorithm 
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Inner expectation 

Outer expectation 

1. Simulate uncertainties: 
 

2. Compute values, for all alternatives: 
 

3. Simulate data: 
 

4. Regress samples to fit conditional mean:   
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Illustration - fit regression model to samples 
 ,v x a

y



Illustration - fit regression model to samples 

 ( ,a = 2)vE x
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.  

Choice of regression method   

• Linear regression 
• Principal component regression 
• Neural networks 
• K-nearest neighbors 
• And many others 

 
• Cross-validation to check model fit. Look at residuals 

 



Exercise - two different cases 

In both displays:  
Alternative 1,  
Alternative 2 
 
 for which of these two cases is the VOI largest. 



 Reservoir dogs - petroleum example 

• Decisions about drilling 
alternatives. 
 
 

• Seismic information.  
 

• Model is a represented  by 
multiple realizations, building on 
prior knowledge. 
 
 

• VOI analysis done by a simulation-
regression approach. 
 



Key questions: 

• Decisions about infill drilling for improved oil recovery. 
- Uncertainty, heterogeneity and dependence make this choice difficult. 

 
 

• Data gathering decisions about time-lapse seismic data. 
- Which kind of data are likely to be valuable? How much data is enough? 

Wells drilled at the Gullfaks field, North Sea. 

Well data 

Geological 
knowledge 

time 

Production 

Time lapse 
seismic 

Baseline 
seismic 

Infill drilling 



Illustration of values and data influence 

Infill drilling (Alternative 1) can give 
more value, but can also mean loss. 

If data indicate reservoir variables 
corresponding to these high values  
-> do infill drilling! 

If data indicate reservoir variables 
corresponding to these small values  
-> avoid infill drilling! 

… such data would lead to better decisions in this situation. 



.  

• Is VOI larger than price of time-lapse seismic experiment? 
 

• Is VOI larger for seismic acquisition design A or B ? 
 

• Is VOI larger for seismic processing type I or II ? 

Information gathering and VOI 

VOI is interpretable as follows: 

VOI    =   Expected posterior value    –   Prior value 



Gullfaks case 

Wells drilled in this part of Gullfaks. 



Gullfaks case (infill drilling and time lapse) 

 
Time-lapse seismic has shown useful at 
Gullfaks. But no formal VOI analysis was 
conducted up-front. 
 
We consider this case in retrospect. 

Well data 

Geological 
knowledge 

time 

Production 

Time lapse 
seismic 

Baseline 
seismic 

Infill drilling 

5 decision alternatives. 



Prior - Reservoir uncertainty 

This distribution of reservoir 
variables is represented by multiple 
Monte Carlo realizations from the 
prior distribution.  

Sample 1 

Sample 1000 …………. 

 p xPrior is            . 

Uncertainties: saturation, pressure, porosity, permeability and fault 
transmissibilities.  (Conditioned on existing data.)  



Simulation-regression illustration 

xa

y ,v x a

Build regression model from Monte Carlo samples. 

Sample reservoir variables. 

Sample data from likelihood. 

Set alternatives. 

Evaluate value function. 



Gullfaks case (values) 

Future production for 5 different infill drilling alternatives. 
 - for each realization, all alternatives are «produced». 
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Simulation-regression illustration 

xa

y ,v x a

Build regression model from Monte Carlo samples. 

Sample reservoir variables. 

Sample data from likelihood. 

Set alternatives. 

Evaluate value function. 



Gullfaks case (likelihood of AI data) 

Synthetic time-lapse seismic ( acoustic impedance (AI) proessing): 
Use rock physics relations connecting reservoir properties to AI. 
 
Simulations indicate some information about saturation from AI for this case.  



Gullfaks case (likelihood of R0,G data) 

Synthetic time-lapse seismic (processing more angle information (R0,G)): 
Use rock physics relations connecting reservoir properties to (R0,G). 
 
Simulations indicate limited information about saturation from (R0, G).  



Simulation-regression illustration 

xa

y ,v x a

Build regression model from Monte Carlo samples. 

Sample reservoir variables. 

Sample data from likelihood. 

Set alternatives. 

Evaluate value function. 



.  

Large data: Partial least squares regression  

• Partial least squares (PLS) regression is used for regression values on 
large seismic data set. 

• Cross-validation to find optimal number of linear combinations.  
• PLS is similar to Principle component regression (PCR).  
 (PLS focuses on explaining covariance instead of variance.)  

 

Number of regressors 

Prediction 
residual 
(cross-validated) 



Gullfaks case (PLS for expected values) 

 ( , | )vE x a y Fit regression model from Monte Carlo samples. 
12 regressor components in the PLS regression.  



Gullfaks case (predictive power)  

Fit of regression models is reasonable (based on AI data here).  



Gullfaks case (VOI results) 

Acoustic impedance (AI)  Angle information, (R0,G) 

VOI of time-lapse data is about $50 million.  
No big differences in VOI of processing methods  
(but the price of these likely differ).  

(Bootstrap used to get distribution.) 



Wrap up example 

• The type of simulation and regression would be very case specific.  And residual 
plots should be used to check performance. 
 

• If there are lots of alternatives, some kind of clustering of alternatives should be 
used. 

  
• VOI approximation is difficult to check, but bootstrap (or bagging) can be used to 

study uncertainty, and to do sensitivity over different regression models.  
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Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

    .VOI PoV PV y y

The analysis is usually done for static decisions and static data gathering schemes: 
- We make the one-time decisions here and now. 
- We can only collect the data here and now. 

Sequential decisions or sequential tests can give benefits over this situation. 



Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
variables.  

Noisy observations are gathered for all 
variables.  

Partial Exact observations are gathered at 
some variables.  

Noisy observations are gathered at some 
variables.  

y x  y x 

,  subsety x ,  subset y x 

Could also have sequential (adaptive) information gathering. 



.  
Sequential information gathering 

Solution is again dynamic programming. 
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Decision maker has the opportunity of dynamic testing, where one can stop 
testing, or continue testing, depending on the currently available data. The 
sequential order of tests and the number of tests also depend on the data. 

Stop testing. 

Continue testing. 
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Stop testing. 

Continue testing. 



.  
Sequential testing– bivariate illustration 



.  
Sequential information (bivariate data) 
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Value with no more testing (after first test): 

Criterion for continued testing: 

Continue testing when the additional expected value of more testing exceeds the price. 



.  
Dynamic programming 

The exact solution to sequential testing is only available even in small-size 
discrete models.   
 
Various approximate strategies exist. (Approximate dynamic programming). 
 
Myopic (near-sighted) is a common strategy for sequential problems. 
It considers only one-stage at a time, not looking into the ‘future’: 
(A Heuristic solution to the dynamic program.)  



.  
Myopic strategy for information 

• Find best first data design, using one-stage, if any give positive VOI. 
• Collect first data (by simulation) using best design. 
• Update probability distributions, conditional on the data. 
• Find second best design, using one-stage, in new model, if any give positive 

VOI. 
• Collect second data (by simulation from new model) using best design. 
• Update probability distributions, conditional on the data. 
• Find third best data, using one-stage, in new model, if any give positive VOI. 

 

1 level 

2 level 

3 level 

….. 



AUV data for ocean temperatures 

• Goal (value) is to detect large spatial 
gradients in ocean temperature. 
 
 

• Autonomous underwater vehicle (AUV) 
information. Where? And in what 
sequence? 
 

• Model for temperature is represented 
by Gaussian spatial process.  
 
 

• VOI analysis uses analytical approach 
and myopic heuristics. 
 

Fossum et al., 2018, Journal of field robotics. 



Mapping ocean temperature variability 

Possible questions:  
- Environmental challenges 
- Fish farming 
- Algae bloom 
 

Satellite data and ocean models 
realizations are used to build 
Gaussian prior mean and covariance. 

Typical AUV data 

Area outside Trondheim fjord. 



Gaussian prior and likelihood 
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   ,p Nx  Gaussian spatial process prior for temperatures 
(learned from current knowledge). 

Likelihood, design matrix, picks data 
locations, for every time step. 



Goal of surveying 

Waypoints in survey design for AUV. 

The main task for the AUV is to detect large gradients in temperature which 
are linked to algea bloom.  



Adaptive sequential algorithm 

1. Find next best survey line (if any) from analytic VOI, of all possible survey lines. 
2. Collect temperature data along currently best survey line. 
3. Update temperature model in entire spatial domain given survey data. 
4. Go to 1. 

Myopic heuristic for dynamic program. 



Results of adaptive algorithm 

Mean of one survey 

Variance of one survey 



Fresh cold water & salt warm water  

River 
mouth 

River 
mouth 



Excursion sets and excursion probabilities 
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Criterion for path selection: 

       * arg min | 1 |d a d a d d dd EP EP p d d   s y s y y y s

Closed form for Gaussian processes. 

Connections  to active learning. 



(Bivariate) excursion sets 



Bivariate excursion sets – closed form 
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Multivariate Gaussian cumulative 
distribution function 

Standard matrix –vector 
computations. 



Myopic path selection for excursions 

Real time excursion probability (blue = cold fresh 
water, yellow = salt warm water. 



.  Wrap up: 

• VOI (Active learning) is applied to sequential search for good data designs.  
• The design will depend on the data, and the results can be averaged over the data, 

to approximate the value of different strategies. 
 

• For larger-scales operation, the process is spatio-temporal – extensions required. 
 



Illustration: Sequential VOI in Gaussian models 

Consider again the 25x25 grid, with a Gaussian process prior for profits  
(like in the forestry example).   
 
Assume the situation from with low decision flexibility, goal is to classify total (sum of) 
profits from all units. 
 
Use the myopic strategy to find sequential data designs along the 25 North-South lines. 
The price of a test is P=0.1.  
 
How many tests are done before we stop? (varies with data samples) 
What tests are usually done? (varies with data samples) 
 
 
 By playing the game over many runs, we can study properties of the approach. 



.  
Myopic scheme 

1. Find best single NS line, if any. 
 
 
 
 

2. Collect data for this line. 
 

3. Update the model  
 
 
 

4. Stop testing or continue testing. 
 
 
 
 

Etc…. 
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Use updated mean and 
covariances. 


