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Problem: Given nonnegative matrix Y € R"*" and integer rank » > 0,
find nonnegative matrices A € R}7"*" and X € R'"" such that ||Y — AX|

is minimal (Y ~ AX).

Hence NMF expresses each element in given data (Y') as a nonnegative
linear combinations of a few well-chosen common basis elements (in X).

A novel extension of usual NMF: The provided data, the n columns ot
matrix Y, are (observations of) continuous signals, Y = {y;(¢)}},, over
interval t € |a, b]. Columns of matrix A are (observations of) polynomials
with fixed degreee D, A = {ax(?)}}_;, and not vectors anymore.
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Two possible cost functions:

e PS-NMF: Data are discretized over m points {7, }"" ;:
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e PI-NMF: Data are polynomials with known coefficients:

min > / (i () — ST an(t)ap)? dt.

Hierarchical alternating least squares (HALS): The idea of this algo-
rithm is to update alternatively matrix A and matrix X until convergence.
Moreover, during the update of A or X, each column is successively up-
dated individually, taking into account updates of previous columns [1].

Usual NMF:
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PS-NMEF: We consider B the matrix of coefficients of polynomials in A, II

the Vandermonde matrix (A4 = II1B) and IT = IT" II. Moreover, P is the set
of polynomials nonnegatives over interval |a, b]. HALS become:
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PI-NMF: We consider Z the matrix of coeftficients of polynomials in Y and
M = f; [1(t) ' TI(¢) dt. Surprisingly, updates are still closed form:
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However both PS-NMF and PI-NMF require a new operation |-|

projection over the set of nonnegative polynomials.
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Problem to solve: Given a polynomial f, find the polynomial g that is
both nonnegative and closest to f over interval [a, b).

b
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Parametrization of nonnegative polynomial over [-1,1]:
g(t) >0fort c[-1,1] & g(t) = a(t) + (1 —t*)c(t) where a(t), c(t) > 0 Vt.
a has degree D (as g) and c has degree D — 2 (Markov-Lukacs).

Parametrization of nonnegative polynomial over R :

g(t) >0Vt < g(t) =, hi(t)?

Moreover, the set of nonnegative polynomials of degree D can be repre-
sented using an LMI (linear matrix inequality) involving a positive semi-
definite matrix of size (D /2 4 1).

(SOS).

Algorithm:  Using previous in-

—— Polynomial g

Projection of g onto
the nonnegative set

/N

formation it is possible to define
our projection as a semidefinite op-
timization problem, and solve it
with an appropriate solver (such as
interior-point MOSEK).

The P-NMF problem has already been considered by Debals and al. in [2].
In this paper, the authors use a least-squares solver in a non-alternative
way. We compare our algorithms to usual HALS and the least-square
approach, denoted LS.

Signals recovered in A:

o Less sensitive to

noise than HALS. —— HALS
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o Recover smoother
signals.

Performances:

Time spent in computations Mean approximation error
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o Error similar to LS. ¢ CPU time increases slowly with problem size.

o Accelerate projection.
o Consider other parametrizable signals (such as splines).
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