
Geilo winter school - SeLMA - Workpackage 3: Large scale data analysis

Nonnegative matrix factorization with polynomial signals
via hierarchical alternating least squares
Cécile HAUTECOEUR and François GLINEUR: UCLouvain, CORE & ICTEAM/INMA

Nonnegative Matrix Factorization (NMF)
Problem: Given nonnegative matrix Y ∈ Rm×n

+ and integer rank r > 0,
find nonnegative matrices A ∈ Rm×r

+ and X ∈ Rr×n
+ such that ||Y −AX||

is minimal (Y ' AX).

Hence NMF expresses each element in given data (Y ) as a nonnegative
linear combinations of a few well-chosen common basis elements (in X).

NMF with polynomial signals (P-NMF)
A novel extension of usual NMF: The provided data, the n columns of
matrix Y , are (observations of) continuous signals, Y = {yi(t)}ni=1, over
interval t ∈ [a, b]. Columns of matrix A are (observations of) polynomials
with fixed degreee D, A = {ak(t)}rk=1, and not vectors anymore.

Two possible cost functions:

• PS-NMF: Data are discretized over m points {τj}mj=1:

min
A,X

n∑
i=1

m∑
j=1

(
yi(τj)−

∑r
k=1ak(τj)xk,i

)2
.

• PI-NMF: Data are polynomials with known coefficients:

min
A,X

n∑
i=1

∫ b

a

(
yi(t)−

∑r
k=1ak(t)xk,i

)2
dt.

Algorithms
Hierarchical alternating least squares (HALS): The idea of this algo-
rithm is to update alternatively matrix A and matrix X until convergence.
Moreover, during the update of A or X, each column is successively up-
dated individually, taking into account updates of previous columns [1].

Usual NMF:

a:j ←
[
Y x>j: −

∑
k 6=j a:kxk: x

>
j:

xj:x>j:

]
+

xj: ←
[
a>:jY −

∑
k 6=j a

>
:ja:kxk:

a>:ja:j

]
+

PS-NMF: We consider B the matrix of coefficients of polynomials in A, Π

the Vandermonde matrix (A = ΠB) and Π̃ = Π>Π. Moreover, P is the set
of polynomials nonnegatives over interval [a, b]. HALS become:

b:j ←
[

Π†Y x>j: −
∑

k 6=j b:kxk: x
>
j:

xj:x>j:

]
P

xj: ←
[
b>:jΠ>Y −

∑
k 6=j b

>
:j Π̃b:kxk:

b>:j Π̃b:j

]
+

PI-NMF: We consider Z the matrix of coefficients of polynomials in Y and
M =

∫ b

a
Π(t)>Π(t) dt. Surprisingly, updates are still closed form:

b:j ←
[
Zx>j: −

∑
k 6=j b:kxk: xj:

>

xj:x>j:

]
P

xj: ←
[
b>:jMZ −

∑
k 6=j b

>
:jMb:kxk:

b>:jMb:j

]
+

However both PS-NMF and PI-NMF require a new operation
[
·
]
P

namely
projection over the set of nonnegative polynomials..

Projection onto the set of nonnegative polynomials
Problem to solve: Given a polynomial f , find the polynomial g that is
both nonnegative and closest to f over interval [a, b].

min
g

∫ b

a

(g(t)− f(t))2 dt such that g ∈ P.

Parametrization of nonnegative polynomial over [-1,1]:

g(t) ≥ 0 for t ∈ [−1, 1] ⇔ g(t) = a(t) + (1− t2)c(t) where a(t), c(t) ≥ 0 ∀t.

a has degree D (as g) and c has degree D − 2 (Markov-Lukacs).

Parametrization of nonnegative polynomial over R :

g(t) ≥ 0 ∀t ⇔ g(t) =
∑

i hi(t)
2 (SOS).

Moreover, the set of nonnegative polynomials of degree D can be repre-
sented using an LMI (linear matrix inequality) involving a positive semi-
definite matrix of size (D/2 + 1).

Algorithm: Using previous in-
formation it is possible to define
our projection as a semidefinite op-
timization problem, and solve it
with an appropriate solver (such as
interior-point MOSEK).
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Observations and results
The P-NMF problem has already been considered by Debals and al. in [2].
In this paper, the authors use a least-squares solver in a non-alternative
way. We compare our algorithms to usual HALS and the least-square
approach, denoted LS.

Signals recovered in A:

� Less sensitive to
noise than HALS.

� Recover smoother
signals.
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� Error similar to LS. � CPU time increases slowly with problem size.

Further work
� Accelerate projection.
� Consider other parametrizable signals (such as splines).
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