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Introduction

The EXA-Platform is an open programming environment for distributed computational tasks. It provides first-class
concepts to model concurrent and parallel computation based on the Java platform. The Design follows the philosophy
of multi-resolution which means strongly tiered building blocks which allow to solve problems on the appropriate level of
abstraction.
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A typical parallelization pipeline for the machine learning use case. A program in the logical representation consisting of State-Container, Computation-
Units and the control flow primitive Loop, Segential and Parallel is continuously compiled into a physical representation. All of this takes place just In
time. After compilation, the physical representations are continuously distributed over the cluster and executed on the individual nodes.
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