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In Action

G)

Computation-Unit
● Encapsulates the 
computation.

● Operate on state 
container(s).

● Unit views local context.
● Provided as user defined-
function (UDF).

● State update/transformation 
logic.

● Units are scheduled to state 
containers.

● Unit receives the flow of 
control from  the state 
container (IoC). 

● State container views global 
context.

Concepts

State-Container
● Made explicit as first-class 
citizen.

● Modeled as Distributed 
Abstract Data Type

● Storing data/state in an 
organized way with 
specific distribution & 
access rules. 

● Parallelization & 
distribution behavior: 
singleton, replicated, 
partitioned (range-, 
hash-, ...)

● Access & consistency 
behavior parallel updates, 
state reconcilation

Parameter Server
● Built for very-large industry size 
machine learning problems.

● Parameter storage and parameter 
update mechanism is broken out 
as a primary component!

● Allows efficient distribution of 
state over many machines.
Globally shared parameters are 
represented as dense or sparse 
vectors and matrices.

● Workers store training data and 
run ML algorithm.

● Asynchronous data 
communication between workers 
and the server nodes.

● Communicating over fine-grained 
push/pull interface.

The EXA-Platform is an open programming environment for distributed computational tasks. It provides first-class 
concepts to model concurrent and parallel computation based on the Java platform. The Design follows the philosophy 
of multi-resolution which means strongly tiered building blocks which allow to solve problems on the appropriate level of 
abstraction.

             Logical Representation Physical Representation State/Unit Scheduling

A typical parallelization pipeline for the machine learning use case. A program in the logical representation consisting of State-Container, Computation-
Units and the control flow primitive Loop, Seqential and Parallel is continuously compiled into a physical representation. All of this takes place just in 
time. After compilation, the physical representations are continuously distributed over the cluster and executed on the individual nodes.

Dataflow  Parallelization
Independent (M1 - M3) model 
instances are trained on different 
data partitions (P1 - P3). After 
each training iteration a global 
reduce operation combines all 
the independent models. This 
simple approach is supported by 
major platforms but the Reduce 
leads to communication bursts.
Further the execution is bulk 
synchronous parallel (BSP)


	Slide 1

