

EXA - A distributed computation
environment

Tobias Herb, Daniel Thilo Schroeder

Introduction

Architecture Application - Distributed Machine Learning

In Action

G)

Computation-Unit
● Encapsulates the
computation.

● Operate on state
container(s).

● Unit views local context.
● Provided as user defined-
function (UDF).

● State update/transformation
logic.

● Units are scheduled to state
containers.

● Unit receives the flow of
control from the state
container (IoC).

● State container views global
context.

Concepts

State-Container
● Made explicit as first-class
citizen.

● Modeled as Distributed
Abstract Data Type

● Storing data/state in an
organized way with
specific distribution &
access rules.

● Parallelization &
distribution behavior:
singleton, replicated,
partitioned (range-,
hash-, ...)

● Access & consistency
behavior parallel updates,
state reconcilation

Parameter Server
● Built for very-large industry size
machine learning problems.

● Parameter storage and parameter
update mechanism is broken out
as a primary component!

● Allows efficient distribution of
state over many machines.
Globally shared parameters are
represented as dense or sparse
vectors and matrices.

● Workers store training data and
run ML algorithm.

● Asynchronous data
communication between workers
and the server nodes.

● Communicating over fine-grained
push/pull interface.

The EXA-Platform is an open programming environment for distributed computational tasks. It provides first-class
concepts to model concurrent and parallel computation based on the Java platform. The Design follows the philosophy
of multi-resolution which means strongly tiered building blocks which allow to solve problems on the appropriate level of
abstraction.

 Logical Representation Physical Representation State/Unit Scheduling

A typical parallelization pipeline for the machine learning use case. A program in the logical representation consisting of State-Container, Computation-
Units and the control flow primitive Loop, Seqential and Parallel is continuously compiled into a physical representation. All of this takes place just in
time. After compilation, the physical representations are continuously distributed over the cluster and executed on the individual nodes.

Dataflow Parallelization
Independent (M1 - M3) model
instances are trained on different
data partitions (P1 - P3). After
each training iteration a global
reduce operation combines all
the independent models. This
simple approach is supported by
major platforms but the Reduce
leads to communication bursts.
Further the execution is bulk
synchronous parallel (BSP)

	Slide 1

