simula

EXA - A distributed computation
environment

Tobias Herb, Daniel Thilo Schroeder

Introduction

The EXA-Platform is an open programming environment for distributed computational tasks. It provides first-class
concepts to model concurrent and parallel computation based on the Java platform. The Design follows the philosophy
of multi-resolution which means strongly tiered building blocks which allow to solve problems on the appropriate level of
abstraction.

Architecture Application - Distributed Machine Learninc

Dataflow Parallelization

Exa Actors Independent (M1 - M3) model
Distributed Actor Instances are trained on different
System data partitions (P1 - P3). After

each training iteration a global
reduce operation combines all

Exa Kernel the independent models. This | N\ (N\ (A
Core Runtime Services simple approach is supported by @ @
e eomanieaion s | 0 | S] 4
Module Management Management Coordination : _ ' hd hd hd
Further the execution is bulk L~ Ianl=Janl A
synchronous parallel (BSP))\

Parameter Server

* Built for very-large industry size | :
m Computation-Unit State-Container . L“;‘;m';‘:;f::;‘:ggep;‘:‘z"I*O';‘gmeter e e e e i
State . . - - ot _ _ : |
Egr(:\e:apustgi?;ﬁs the :\:l:gggnexpllcn as first-class update mechanism is broken out |
. ' . ' - as a primary component! : :
@ S(])anetraaitnee(r)(g)state Xlg gter!fc(: gsat[zlzsrg‘:)beuted * Allows efficient distribution of A L A4S S '
(s)(s) +Unitviews local context. » Storing data/state in an sétfots a(I)Iv e;gz;lgal ";?gmgf:’r's are PUsHRUL
* Provided as user defined- organized way with re rese):\te d as dpense or Sparse
@ @ function (UDF). specific distribution & b . P ‘ : S
e State update/transformation access rules vectors and matrices. : :
D D logic P - Parallelization & * Workers store training data and ! :
* % e Lo _ run ML algorithm. i o :
Units are scheduled to state distribution behavior: . Asynchronous data :'lﬂ} #‘H :
containers. singleton, replicated, communication between workers)
| * Unit receives the flow of partitioned (range-, and the server nodes : |
o control from the state hash-, ...) . Communicating over fine-arained
' container (loC). * Access & consistency ush/oull interigace J
* State container views global behavior parallel updates, P P '
context. state reconcilation
In Action
Logical Representation Physical Representation State/Unit Scheduling
9 P
NODE[0] || NODE[1] || NODE[2]
(" Fracwent) PRE- @ @ @
e 5 P CSING
e { // hw:; \\ PR, PR, a
P s P NN ==Y | - |
—~ — — | S .. . " o || =)
@ P (@ NS ey 0 g GO | HIE (NN R P aliame
M PO | | o | 1[PR:],1[PR; ey SR “a|: i Ly S L Ml L)
/\ — | AN () e ()
. . DO i1!{ D' J1l{ D2)I | _2|] |- _0_“-:”-:'
@ _I_"j_-__-_'_l‘_'_-_ _-_'_I‘_"-_-_-_f_ : B | e —
_ /
--- w | @@ ®

M2
PROCESSING
PO, PO, PO, I

A typical parallelization pipeline for the machine learning use case. A program in the logical representation consisting of State-Container, Computation-
Units and the control flow primitive Loop, Segential and Parallel is continuously compiled into a physical representation. All of this takes place just In
time. After compilation, the physical representations are continuously distributed over the cluster and executed on the individual nodes.

	Slide 1

