AILARON

Autonomous Imaging and Learning Ai Robot identifying planktON taxa in-situ

Machine Vision - Machine Learning - Hydro-dynamics - AI Planning/Execution

Presenter: Dr. Aya Saad, Department of Engineering Cibernetics ITK, NTNU
Project Leader: Assoc. Prof. Dr. Annette Stahl, Department of Engineering Cibernetics ITK, NTNU

Project Number: 262701 FRINATEK IKT PLUSS PROGRAM

Proiect team:

Assoc. Prof. Dr. Nichole Aberle-Malzahn [TBS, NTNU]
Dr. Emlyn Davies [SINTEF MC]
Prof. Dr. Geir Johnsen [TBS, AMOS, NTNU, AUR-Lab, UNIS]
Prof. Dr. Martin Ludvigsen [IMT, AMOS, NTNU, AUR-Lab]
Dr. Raymond Nepstad [SINTEF MC]
Dr. Tor Nordam [SINTEF MC]
Adjunct Intnl Chair Prof. Kanna Rajan [ITK, AMOS, NTNU]
Dr. Aya Saad [ITK, NTNU]
Assoc. Prof Dr. Annette Stahl [ITK, AMOS, NTNU]

Concept

- Imaging-classification-analysis-control chain for plankton-taxa classification in-situ
- Intelligent mobile robotics target sampling on an autonomous under-water vehicle (AUV) for upper-water column microbes biology

Methods

- Imaging technology and bio-sensor data fusion SINTEF scientists have developed the SilCam:
 - to measure particles ranging from 50μm to 12mm
 - within a sample volume of (25mm x 35mm x 8mm)
 - ensures low-noise-level images
 - operating in real-time

Background

- Planktonic organisms are of fundamental importance to marine ecosystems:
 - Basis of the aquatic food web
 - Influence global-scale bio-geo-chemical cycles
 - Indicator of ecosystem condition

phytoplankton blooms

species during

Gyrodinium spirale with an ingested phytoplankton cell inside

(Courtesy Alexandra Kraberg)

Objectives

- Combine robotic vision with bio-optical sensors for in-situ identification and classification of plankton-taxa in order to:
 - generate qualitative measurement of support
 - opportunistic sampling
 - performance orientated navigation
- Secondary Objectives:
 - Calibrate sensor fusion data
 - Build ground-truth on plankton-taxa
 - Reconstruct the environment where targeted taxa are to be found
 - Develop AI-based techniques for planning, scheduling and execution

- Combine Robotic Vision with Machine Learning Deep Learning (DL) for autonomous navigation control and mapping
- Machine Learning (conventional/DL) methods will exploit classification meta-data generated by biologists
- Innovate/construct new learning strategies
- Establish the task of self-guided learning within DL context → new plankton classes found are learned unsupervised
- Flow Estimation and Plankton Transport Predicting future positions of plankton hotspots requires:
 - accessing to a time-resolved current field
 - running a full-scale circulation model
- Artificial Intelligence and robotic control
 - dynamically synthesize survey plans
 - continuously perform updates to mission plans from goals transmitted from shore
 - use advanced methods in Sampling and Control

In-situ particle imaging Optical sensors

Sensor fusion

Generate statistics

Impact

- Determine temporal changes in community structure abundance and dispersion of plankton organisms
- Study of microbial time-series in ongoing studies of the changing planet
- Accelerate the time consuming process of obtaining water samples, storage, transport, microscopy and analysis
- Leveraging advances in imaging and robotics hitherto not accomplished before
- Real-time predict and plan LAUV survey mission trajetories based on identified hotspots
- Enable targeted observation and sampling in the process of constructing oceanographic models of plankton distribution

Localization estimation

