Comparative study of two head effect modelling approaches for hydropower production planning

Hydropower scheduling converence 2022-09-12

Mikaela Lindberg, Lina Larsson, Lars Abrahamsson & Jonas Funkquist

9/22/2022

Introductory part

- Outline
- Introduction
- Main contributions summarized

Outline

- Introduction
- Contributions summarized
- Brief description of the two models
 - Bilinear
 - Triangularization
 - Pros and cons
- The comparison briefly

- Some results
- Conclusion

Formalities

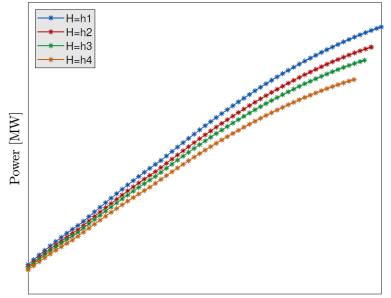
- Presentation based upon Master's thesis results
 - Modeling the Head Effect in Hydropower River Systems using MILP and BLP Approaches
 - https://www.diva-portal.org/smash/get/diva2:1685995/FULLTEXT01.pdf
- Intention: Modifications/improvements for the journal
- The students cannot attend new jobs
- Lars and Jonas supervised

Background

- Need for head effect consideration identified
- Determine which model suited which needs
 - Medium-to-Long-term studies
 - Investment analyses
 - Outage planning
 - Environmental studies
- Begin with comparison of models
 - Proposed new and existing modeling approaches
 - The students chose two one each
 - One existing (some adaptations), one new

Main contributions summarized

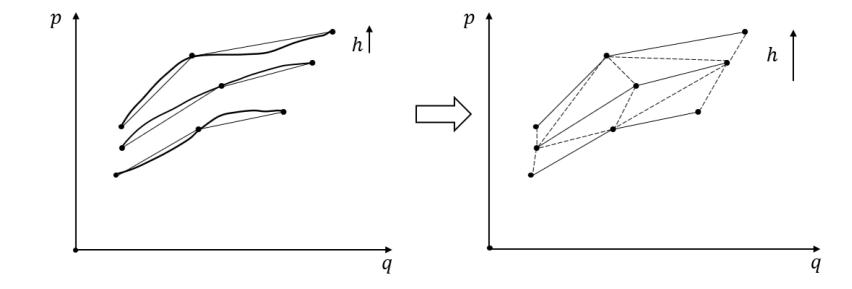
- Bilinear model development, including parameter estimation
- Comparing the triangulation and bilinear models
- Head effect importance of stations


The two head-effectconsidering models

- Triangulation (MIP, existing)
- Bilinear (NLP/QP/QCQP, new)

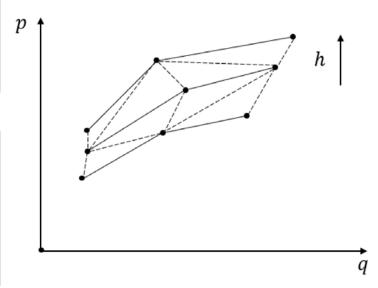
Production functions background

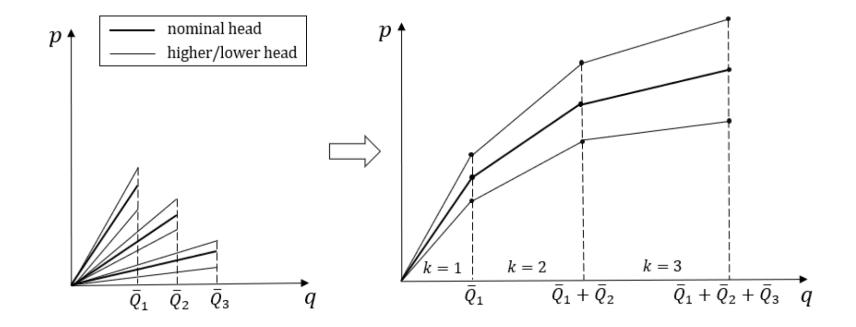
- Head/Level/volume
- Production functions head dependency
 - Not only head
 - Level dependencies, e.g., river losses
- Levels and volumes
 - Reservoirs are irregular not rectangular cuboids
 - Avoiding complicated constraints converting between levels/volumes
 - **Desire**: volumes production function independent variables
 - Upper & lower
 - Head effect including river losses



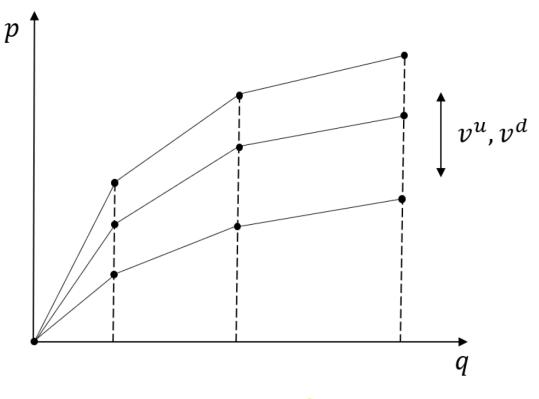
Discharge $[m^3/s]$

2022-09-22

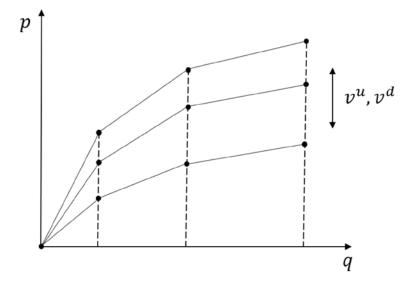

Graphical illustration of triangulation


Triangulation

- Quadrangles / quadrilaterals / tetragons – no unique mapping
- Head linearly determined by volumes
 - Rectangular cuboid assumption
 - Tetrahedrons => more binaries => overcomplicated initial model



Graphical illustration of bilinear (1/2)


Graphical illustration of bilinear (2/2)

Bilinear

- Piecewise linearly concave in turbine discharge
- Gradient affine function of upper/lower volumes
- Parameters estimated contribution in itself
 - Gradient
 - Nominal
 - Upper volume dependency
 - Lower volume dependency
 - \bar{Q} volume dependency (not yet)

Pros and cons

- Triangulation
 - Unit commitment automatically included
 - Forbidden bands of operation easily implementable

- Bilinear
 - Nonconcave => global QCQP solvers exists (slower)
 - Faster, slightly lower accuracy

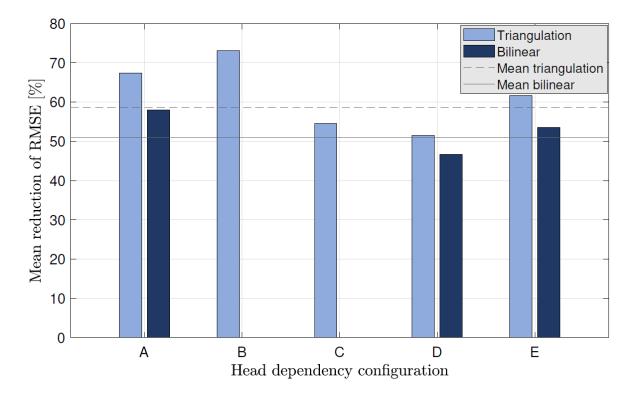
The comparison

- Very simplified explanation
- No detailed optimization to compare with
- Truth: detailed results from simulator
- Accuracy: power RMSE head effect reduction
 - Compared to a reference case

9/22/2022

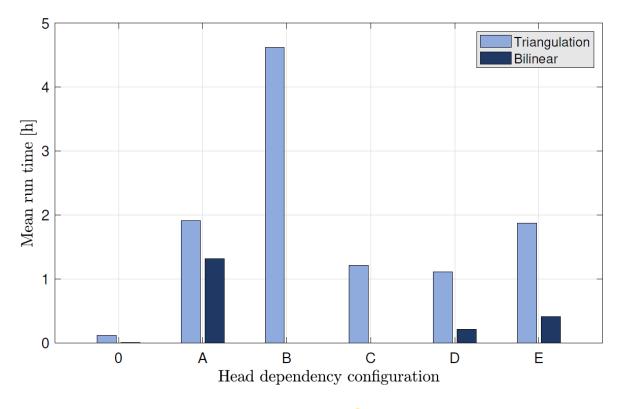
Results

- Head dependency comparison, accuracy/speed trade-off
- Brief visualization of conservativeness
- Summary

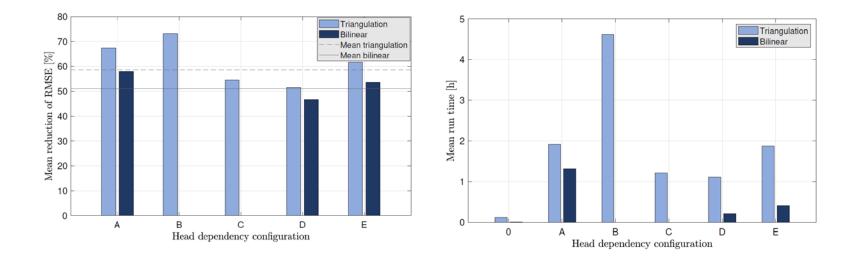


Head dependency

Head dependency name	Description	Triangulation	Bilinear
А	All stations "normally" head dependent		
В	All stations very head dependent		
С	Distribution method 1: not, normal, very		
D	Distribution method 1: not, normal		
E	Distribution method 2: not, normal		

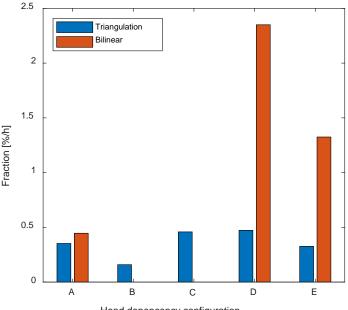


Head dependency: RMSE reduction



Head dependency: run time

Head dependency comparison (1/2)

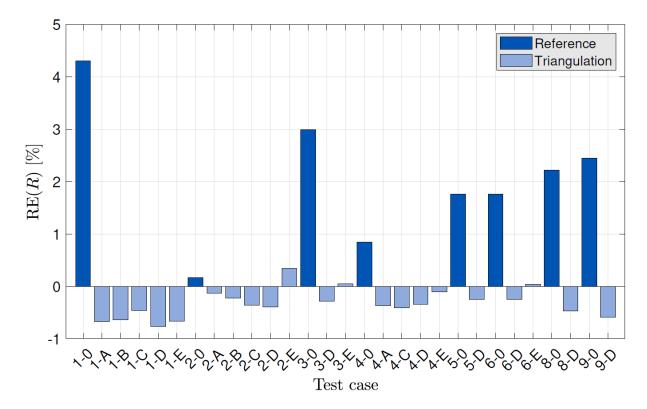


9/22/2022

Head dependency comparison (2/2)

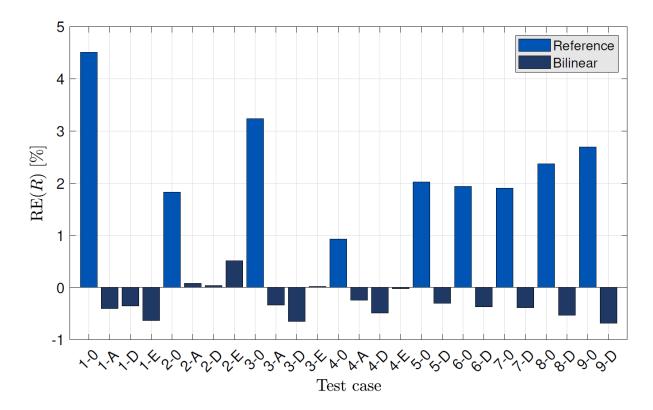
- Accuracy/time trade-off
- Indeed, a rudimentary measure
- But It visualizes some things
 - Tri.: for (very) high accuracy
 - Bilinear: offers a good trade-off
 - Distribution method 1 outperforms method 2
 - Third triangulation head-curve not crucial

9/22/2022



Conservativeness

- Two following slides
- Illustrating
 - Reference (head neglecting) case overestimating revenues
 - Both methods conservative majority test cases



Triangulation relative revenue error

Bilinear relative revenue error

Summary of results

- Proposed new approach seems attractive
 - Triangulation
 - 59 % reduction of RMSE (to its corresponding reference)
 - Longer computational times:
 - Bilinear approach
 - 51 % reduction of RMSE (to its corresponding reference)
 - Shorter computational times:
- Efficient: stations subset considering head effect

Conclusion

- Discussion
- Conclusion
- Future Work

9/22/2022

Discussion

- Dependency on model parameters at hand
 - Not extrapolate conclusions too far
 - Different rivers have different conditions
 - E.g., stricter water-rights judgements => UC importance
 - Quality of data
 - Production curves E.g., two head curves in triangulation
 - Reservoir shape
- Comparison focused on power RMSE
 - Accuracy measures depending on study?
 - Revenue? Reservoir volumes? Flows?

Conclusion

- Proposed model show promising properties
- Station head-dependencies can be quantified & ranked
 - <u>Note</u>: Scenario-dependent component required
 - Usage motivated from accuracy/time trade-off analysis

Future work (1/2)

- Bilinear
 - Investigate the impacts of nonconcavity
 - Compare global with local(QC)QP solvers
 - Improve/finish the parameter estimation
 - E.g., segment lengths head dependent
 - Million strategy-dependent options of improvement
- "Fairer" competition for analysis
 - Increase time limits challenging cases excluded
 - Scenarios chosen
 - Etc.

Future work (2/2)

- Many other modeling approaches in pipe
 - Purely linear =>
 - Generally: Maybe faster and good "enough"
 - Head effect importance: Alleviate low-head issue
 - Two-curve triangulation => simpler model type
 - Head: convex combination or binary selection
 - Turbine discharge: piecewise linear concave
- Analyze usefulness of using multiple cores
 - Theoretically triangularization method (MILP) should benefit more
 - Memory
 - Thorough study needed

9/22/2022

The End

- Questions?
- Discussion ...
- Do not hesitate to contact us
 - lars.abrahamsson@vattenfall.com
 - jonas.funkquist@vattenfall.com

