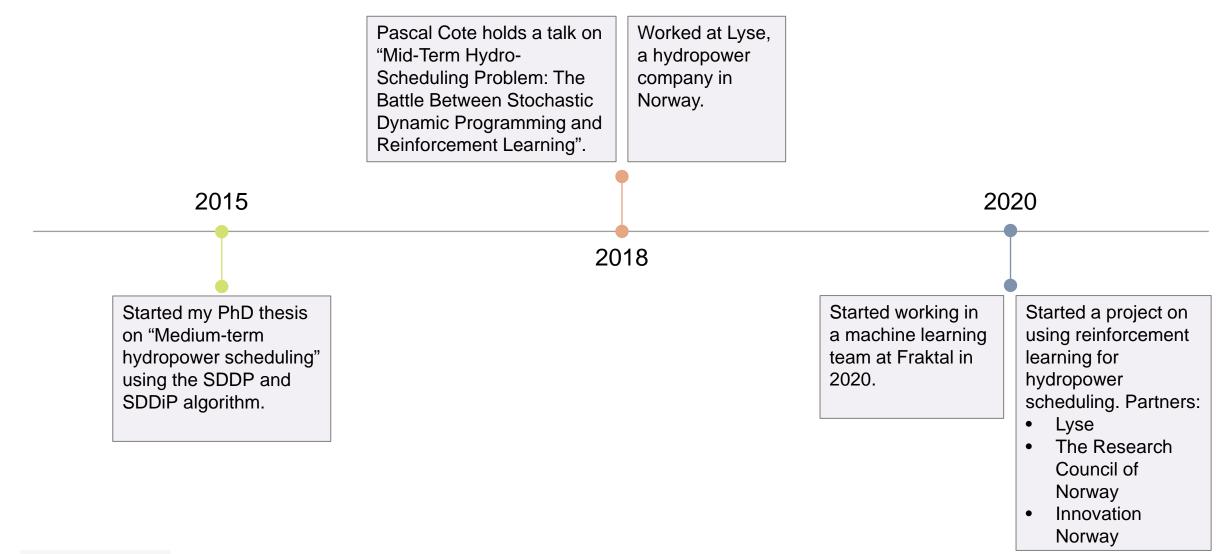


Bridging the Gap Between Reinforcement Learning and SDDP for Hydropower Scheduling

Hydropower Scheduling Conference 2022, Oslo. Martin.Hjelmeland@fraktal.no

Background



Refresher on the Stochastic Dual Dynamic Programming algorithm

Key concepts

Iterative algorithm

Forward iteration provides candidate solutions

Stagewise formulation

$$Q_t(x_{t-1}, \varepsilon_{t-1}) = \max_{(x_t, y_t) \in X_t(x_{t-1}, \varepsilon_{t-1})} \{ f_t(x_t, y_t) + V_t(x_t) \}$$

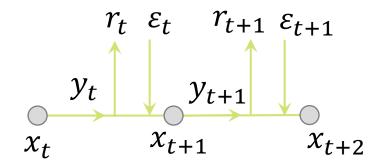
Backward iteration trains the expected future profit function

$$V_t(x_t) = \{ \theta_t \le U_t, \\ \theta_t \le \pi_t x_t + b_t \}$$

- To guarantee convergence
- iid stochastic process
- Linear problem

Reinforcement learning are based on the Markov decision process

Illustration



Nomenclature

SDDP	
\mathcal{Y}_t	Action
x_t	State
f_t	Reward
$Q(x_t)$	State-value function
	Action value function
	Stochastic policy function
	Deterministic policy function
	y_t x_t f_t

What is the objective of RL and stochastic optimization?

RL

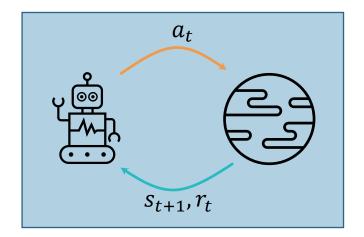
Maximize expected sum of rewards

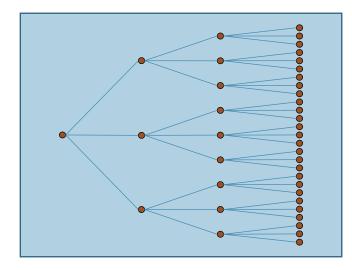
$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) \right]$$

Stochastic Optimization

Minimize expected cost function

$$\min_{(x_n, y_n)} \left\{ \sum_{n \in \mathcal{T}} p_n f_n(x_n, y_n) : (x_{a(n)}, x_n, y_n) \in X_n \forall n \in \mathcal{T} \right\}$$





How are they solved?

RL

SDDP

Maximize expected sum of rewards

$$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) \right]$$

Minimize expected cost function

$$\min_{(x_n, y_n)} \left\{ \sum_{n \in \mathcal{T}} p_n f_n(x_n, y_n) : (x_{a(n)}, x_n, y_n) \in X_n \forall n \in \mathcal{T} \right\}$$

$$Q_n(x_{a(n)}) = \min_{(x_n, y_n)} \left\{ f_n(x_n, y_n) + \sum_{m \in \mathcal{C}(n)} q_{nm} Q_m(x_n) : (x_{a(n)}, x_n, y_n) \in X_n \right\}$$

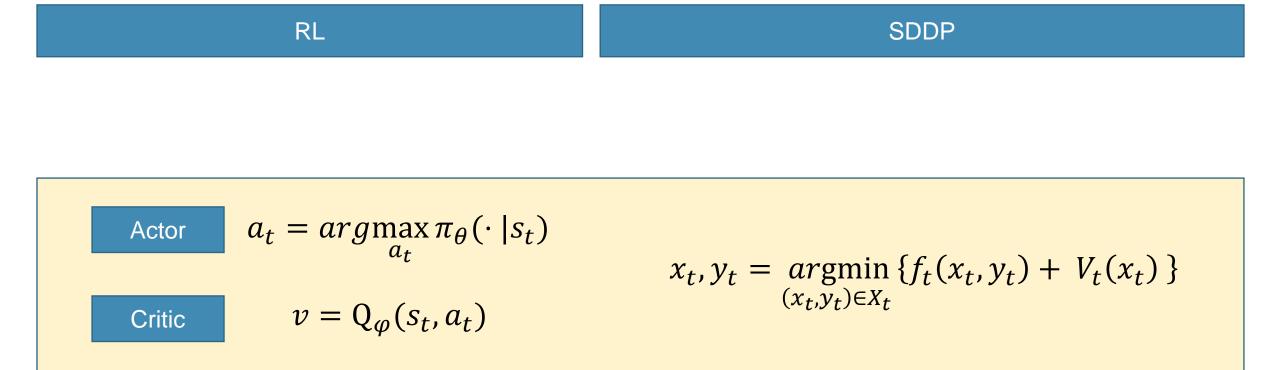
$$Q(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim \rho_{\pi}}[V(s_{t+1})] \qquad Q_t(x_{t-1}) = \min_{(x_t, y_t)} \left\{ f_t(x_t, y_t) + \mathbb{E}_{x_t}[Q_{t+1}(x_t)] : (x_{t-1}, x_t, y_t) \in X_t \right\}$$

Function approximation

- Neural networks
- Gradient ascent

Function approximation

- Hyperplanes
- Mathematical programming solvers



Policy optimization is reinforcement learnings "version" of the mathematical solver

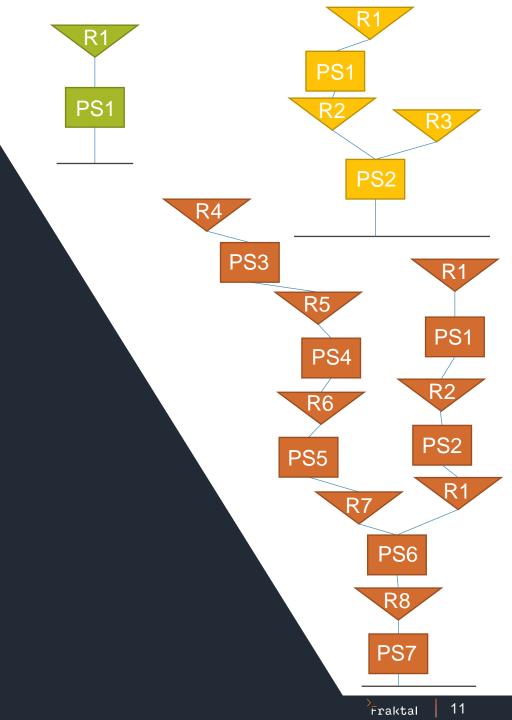
Formulation		
Reward function	$J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) \right]$	
Compute gradient	$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} \left[r(s_t, a_t) \right]$	
Arithmetic		
Policy gradient	$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} log(\pi_{\theta}(a_t s_t)) r(s_t, a_t) \right]$	
Gradient ascent	$\theta = \theta + \tau \nabla_{\theta} J(\pi_{\theta})$	

Q-learning is reinforcement learnings version of SDDP's backward pass

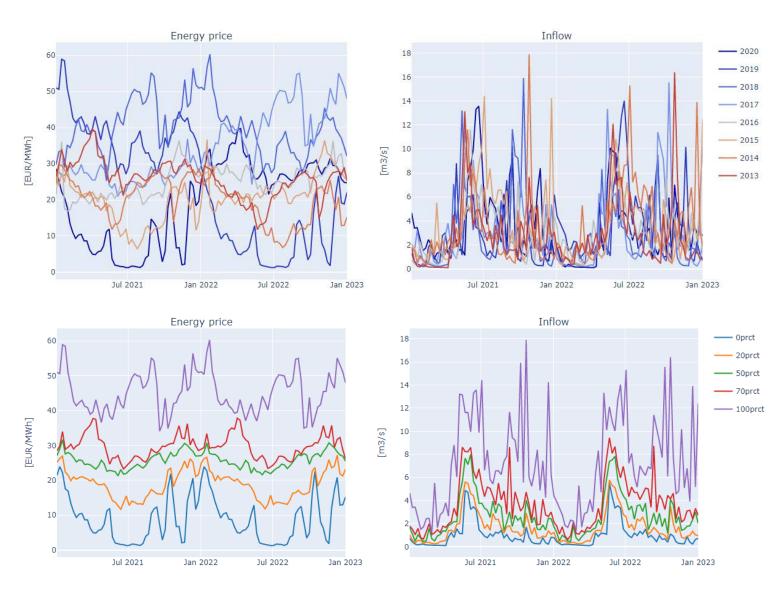
	Formulation
Bellman equation	$Q(s_t, a_t) = r(s_t, a_t) + \mathbb{E}_{s_{t+1} \sim \rho_{\pi}}[V(s_{t+1})]$
Approximate action value	$Q_{\varphi}(s_t, a_t) = r(s_t, a_t) + Q_{\varphi}(s_{t+1}, a_{t+1})$
Bellman error	$\delta_{\varphi} = Q_{\varphi}(s_t, a_t) - [r(s_t, a_t) + Q_{\varphi}(s_{t+1}, a_{t+1})]$
Gradient ascent	$\varphi = \varphi + \tau \nabla \delta_{\varphi}$

Case Studies

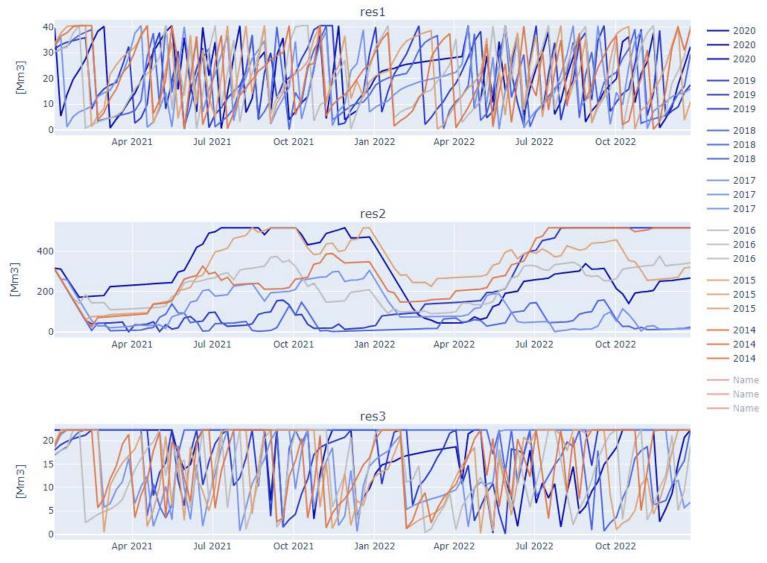
- Three hydro power systems
 - Small
 - Medium
 - Large
- Weekly time resolution over two years
 - 104 stages
- Historical price and inflow scenarios
 - Markov chain for training
 - Actual scenarios for evaluation



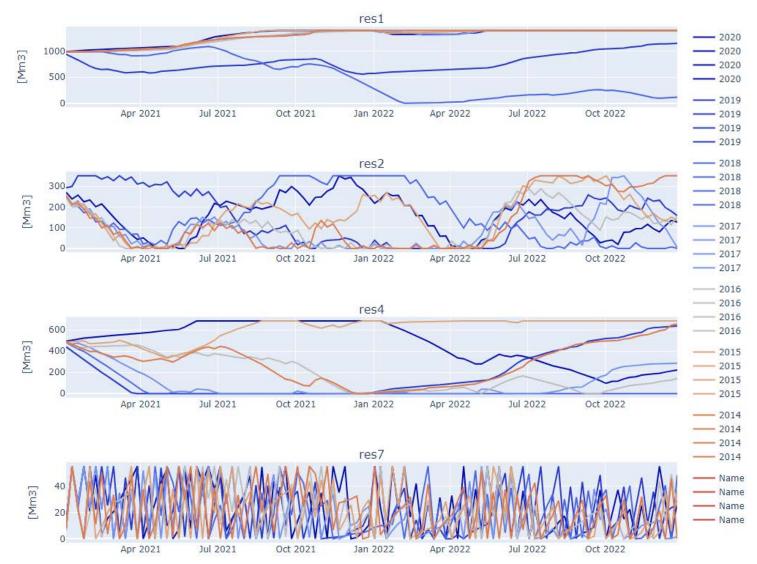
Inflow and energy prices used in case study



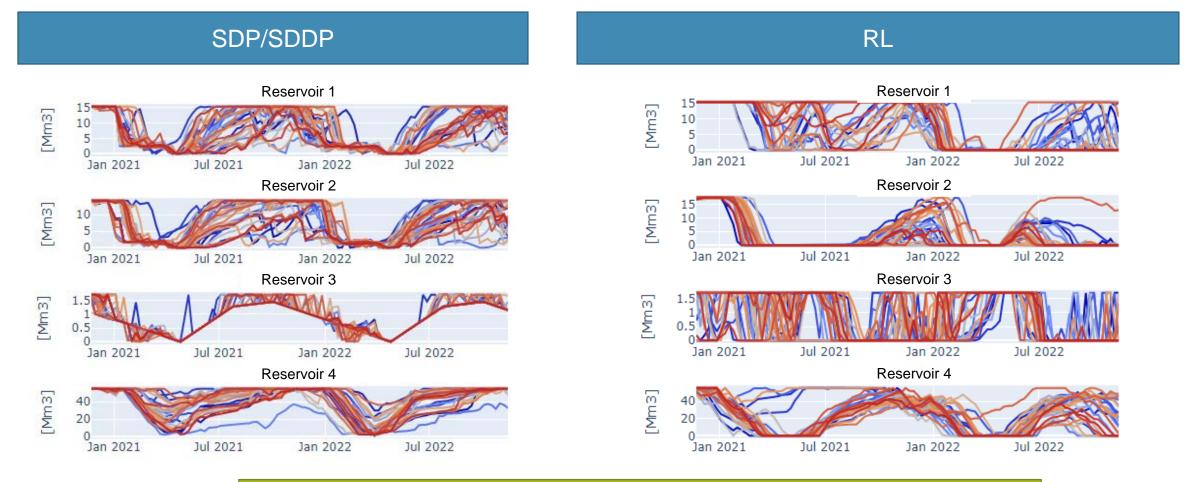
Hydro system "Medium"



Hydro System Large



Benchmarking against a conventional SDP/SDDP model. Performed with a Norwegian hydropower producer.



Results were on par when comparing weekly values

However, RL algorithm was not able to handle hourly decision adequately • ~20% worse score

22.09.2022

Is there some way to combine the benefits of reinforcement learning and SDDP?

Idea

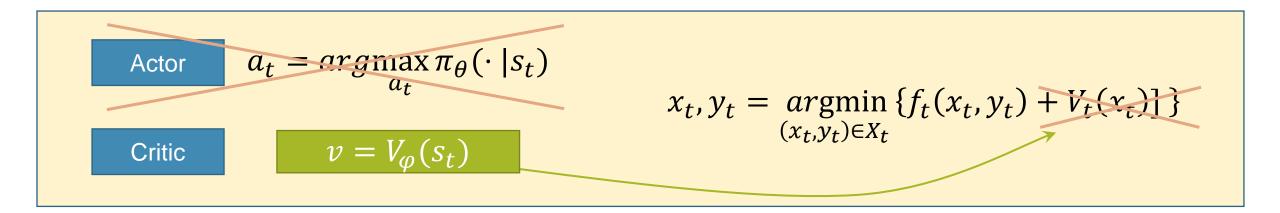
Build the value function with neural nets and solve stagewise decision problem with a mathematical solver

Goal

Leverage nonlinear neural nets and precision of mathematical solvers

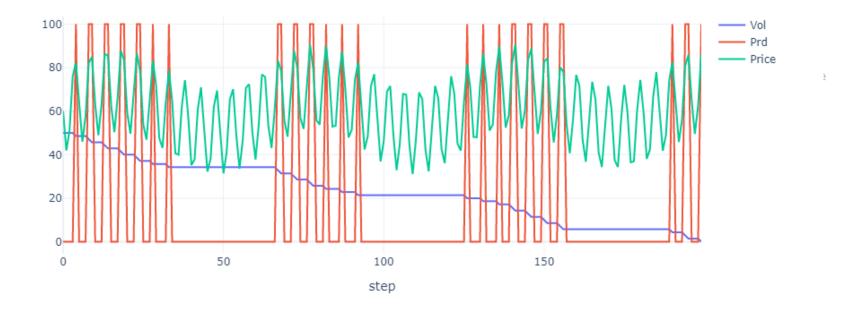
How

Iterative approach with approximated gradients



Overview of the simple deterministic case study used for testing





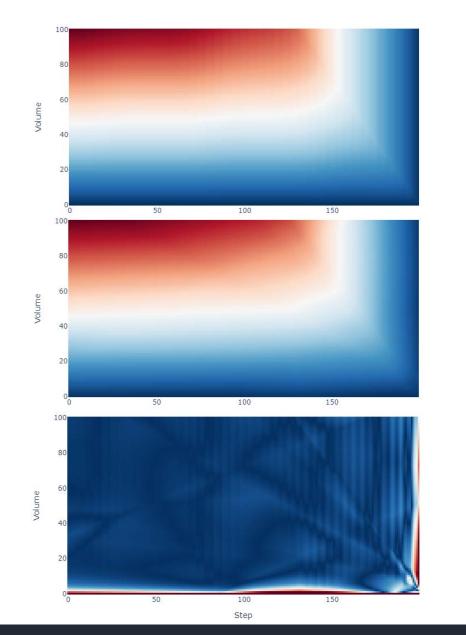
Tractable to compute the actual value functions

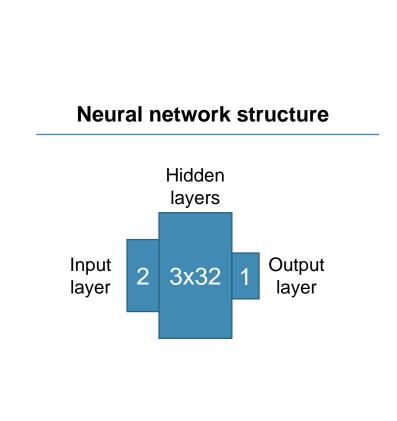
The value function is approximated by a neural network

Actual value function

Neural net value function trained with supervised learning

Difference[%]





500k

400k

300k

200k

100k

500k

400k

300k

200k

100k

40

30

20

10

You have the value function described by a neural network, now what?

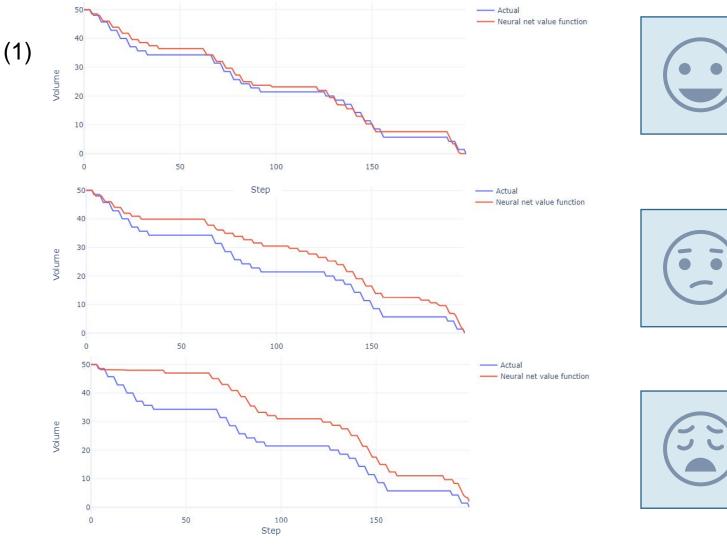
$$x_t, y_t = \operatorname*{argmin}_{(x_t, y_t) \in X_t} \left\{ f_t(x_t, y_t) + V_{\varphi}(x_t^k) \right\}$$

Algo 1

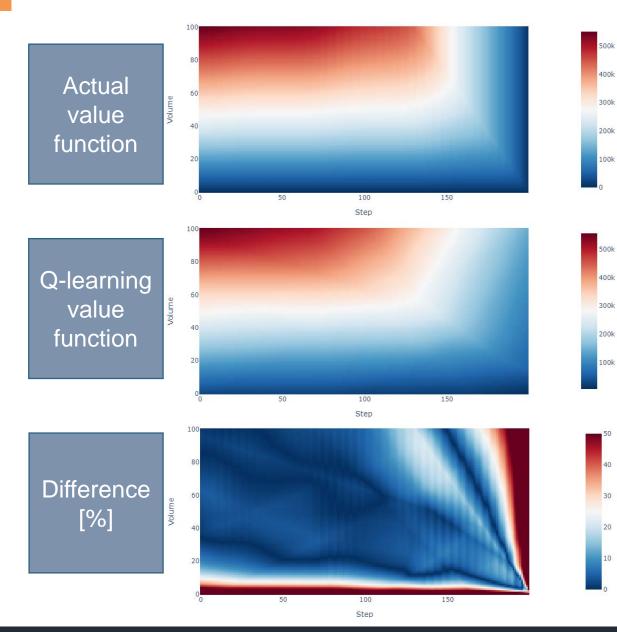
- 1. k = 0, set x_t^0 .
- 2. Fix $V_{\varphi}(x_t^k)$
- 3. Solve (1)
- 4. If $x_t x_t^k > \delta$ Solve gradient ascent Update x_t^k and go to 2. Else:

Finished.

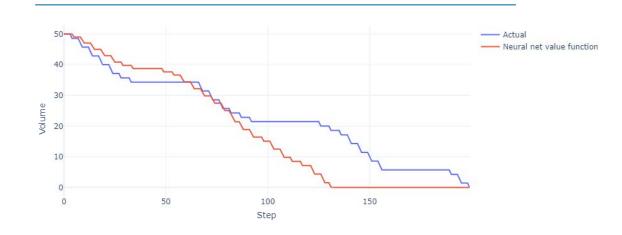
The solution is sensitive to the random initialization of the neural net and hyperparameters of **Algo 1**



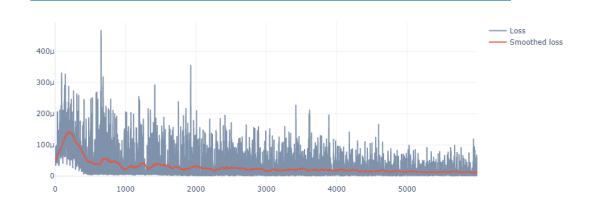
The value function learned with Q-learning



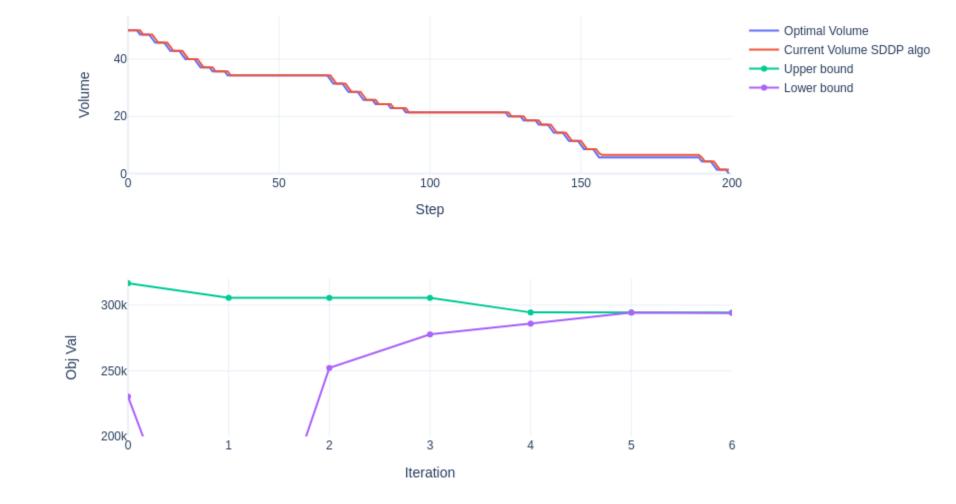
Reservoir trajectory



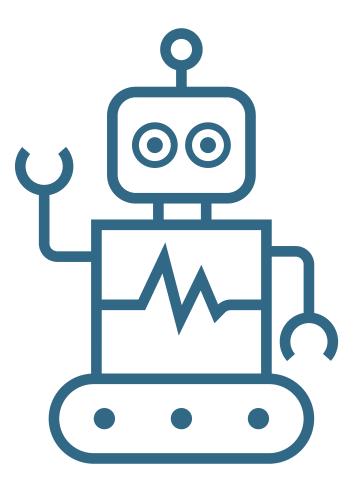
Bellman error (Loss)



SDDP is still king ...



.... but the robots are getting closer!



3 102

►15

Thank you!

Martin.Hjelmeland@fraktal.no