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Motivation

- Large consumers / producers of energy commodities hedge
energy prices using energy derivatives

- Contracts can be over-the-counter (OTC) or exchange traded

- Energy exchanges (EEX, TTF, Nasdaq) offer standardized
oroducts like futures and options

- Movements of the term structure as well as production
volumes are uncertain




What is the problem?

- Futures contracts are the most important hedging
Instruments

- Finding the optimal mix, timing and volumes is difficult
- Companies calibrate hedge plans using rules-of-thumb

- Energy traders speculate on the right moment when to
ouy or sell

- Renewable producers face the risk of over-hedging
- Model-driven approaches are lacking




The Hedging Decision Process
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How does a hedge plan look like?
Example: Hydropower producer with 2500 MW capacity
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Hedging Decision Process with a Model
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Contract Trading and Delivery Periods

Trading Days

March April May June
Bl Delivery Period

March Contract m
Q2 Contract I
April Contract DE

May Contract m
June Contract m

No trading on Easter

No trading on weekends

Planning starts on March 10



Term Structure Dynamics

Example: EEX German Base Futures (Fair Value)
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Literature Review

Focus on hedging strategies for energy risk management
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Measuring Market Impact Cost
Example: Sept-22 Future Nordic
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Detailed Model of Trading Process
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Multistage Stochastic Programming

min cix; + Ej¢ min _ cpx; + -+ Ej¢ min crXT
A1x,=bq 1 [AzXx2+ByXx1=Db; [T-1] | Arxr+BrXT-1=DbT
X120 X520 X120

- &1 = (€1, .-, &) history of stochastic data process up to time ¢
- & = (¢t Ag, B, by): random model parameters (e.q., prices, volumes)
- IEE[H]: expectation conditional on history of data process



Dynamic Programming Reformulation

min c;x; + Ej; min C2Xp + -+ | min CrXr
A1X1=b1 1 AzX2+B2X1=b2 T-1 ATxT+BTXT_1=bT
x120 X220 x1=0

- Assume Markovian data process: P(&;) = P(&fy)
- Q¢: value function of dynamic program

Qe(x¢—q1,¢) = min t cixe + IE|€t[Qt(Xt» 1)

AtxXt+Bixi—1=Db
x¢t20




Stochastic-Dynamic Programming

Qt(xt—l»sgt) = min Cexe + Z P(€t+1|€_t)Qt(xt' Sgt+1)

AtXt+BtXt—1=b¢ _ d
xXt20 Et+1EN (€1,-8¢)

- P(&|¢,): Transition probability matrix
- Q¢ value function of dynamic program



Approximate Dual Dynamic Programming

Step 1
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Scenario Lattice
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O.Quantego QUASAR' SOLUTIONS v BLOG - ABOUT US TRY QUASAR®

i —

QUASAR®: stochastic programming
that ,

The most advanced solver for multistage stochastic mixed-integer quadratic programming. With interfaces to Matlab, Python, Java,
and Scala. Rapid deployment of Ul with QUASAR® Cloud.

QUASAR® in a Nutshell

OUT-OF-THE BOX PERFORMANCE STOCHASTIC TIME SERIES MODELS ALGEBRAIC MODELING LANGUAGE

QUASAR® can solve problems with thousands Any parameter in the objective function or QUASAR®’'s modeling language is easy-to-use

of stages as well as high-dimensional constraints can be represented by stochastic and lets users model decision problems as if



Discretize PFC Dynamics to Lattice

1. Empirical distribution of daily returns of the PFC
2. Create a lattice by simulating empirical PFC returns
3. Set forward prices to expected spot prices (= martingale)

10 nodes per stage 100 nodes per stage
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Case Study: Hydropower Portfolio

Data

- Historical production of Alpine hydropower portfolio

- Historical German Base PFCs from EIKON (fair value)

- Regression model of market impact cost

Model

- 730 decision stages (days)

- Endogenous states: Tradable futures contracts and those in delivery
- Exogenous states. PFC, volumes

Procedure

- Create independent lattices of volumetric risk and PFC dynamics
- Solve optimization problem using QUASAR

- Simulate optimal decision policy



Examplary Dynamic Hedge Plan
Here: hedging for 2020 starts at the beginning of 2019
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- Shaded areas cover [0.05,0.95]-quantiles
- Purpose of hedging is to minimize risk at minimal cost!



Effect of Volumetric Risk on Hedge Ratios

without volumetric risk
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Hedging the Term Structure Risk

Distribution of paid price without volumetric risk
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Decision Support for Daily Trading
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Backtest for Deterministic Targets

Did the hedge make money? - Meaningless!

m 30.86 27.18 24.65 31.22 42.46 31.27

31.35 27.47 25.27 31.72 42.96 31.76
32.00 27.34 27.68 33.31 45.94 33.26

- Did the hedge make money? - Meaningless!
- Purpose of hedging is to minimize risk at minimal cost




Summary

1. Propose model-driven approach for hedging renewable
power portfolio

2. Model takes term structure dynamics and liquidity cost into
account

3. Observation: hedging term structure risk is less effective in
the presence of volumetric risk

4. Future work: storage provides a natural hedge against
volumetric risk but can it reduce term structure risk?
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Efficient Frontier of Different Hedge Plans

Optimized Dynamic Hedging
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Lattice of Volumetric Uncertainty
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