Dynamic Hedging of Futures Term Structure Risk for Renewable Power Producers

Prof. Dr. Nils Löhndorf

LUXEMBOURG CENTRE FOR LOGISTICS AND SUPPLY CHAIN MANAGEMENT

➡ FACULTY OF LAW,
ECONOMICS
AND FINANCE

Motivation

- Large consumers / producers of energy commodities hedge energy prices using energy derivatives
- Contracts can be over-the-counter (OTC) or exchange traded
- Energy exchanges (EEX, TTF, Nasdaq) offer standardized products like futures and options
- Movements of the term structure as well as production volumes are uncertain

What is the problem?

- Futures contracts are the most important hedging instruments
- Finding the optimal mix, timing and volumes is difficult
- Companies calibrate hedge plans using rules-of-thumb
- Energy traders speculate on the right moment when to buy or sell
- Renewable producers face the risk of over-hedging
- Model-driven approaches are lacking

The Hedging Decision Process

How does a hedge plan look like? Example: Hydropower producer with 2500 MW capacity

Hedging Decision Process with a Model

Simulated Cash Flows

Contract Trading and Delivery Periods

Term Structure Dynamics Example: EEX German Base Futures (Fair Value)

Source: Refinitiv EIKON, TRDEBFVDc*

Literature Review

Focus on hedging strategies for energy risk management

	Resolution	Risk factors	Liquidity cost	Risk measure	Contracts
Dimoski & al (2018)	48 semi-month	PFC, volume	No	Nested CVaR	M,Q,Y
Gauthier & al (2016)	4 weeks	PFC, volume	Yes	Static, Variance	W
Kettunen & el. (2009)	6 weeks	PFC, volume	No	Terminal CVaR	W,M
Mo & al (2001)	52 weeks	Spot, volume	No	Cost constraint	W
Secomandi & Bo (2021)	24 months	PFC	No	Static, Variance	Μ
THIS WORK	>730 days	PFC, volume	Yes	Nested CVaR	W,M,Q,Y

Measuring Market Impact Cost Example: Sept-22 Future Nordic

Source: NASDAQ OMX

Detailed Model of Trading Process

Multistage Stochastic Programming

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c'_1x_1 + \mathbb{E}_{|\xi_1|} \left[\min_{\substack{A_2x_2+B_2x_1=b_2\\x_2\geq 0}} c'_2x_2 + \dots + \mathbb{E}_{|\xi_{[T-1]}} \left[\min_{\substack{A_Tx_T+B_Tx_{T-1}=b_T\\x_T\geq 0}} c'_Tx_T \right] \right]$$

- $\xi_{[t]} = (\xi_1, ..., \xi_t)$: history of stochastic data process up to time t
- $\xi_t = (c_t, A_t, B_t, b_t)$: random model parameters (e.g., prices, volumes) - $\mathbb{E}_{|\xi_{t-1}|}$: expectation conditional on history of data process

Dynamic Programming Reformulation

$$\min_{\substack{A_1x_1=b_1\\x_1\geq 0}} c_1'x_1 + \mathbb{E}_{|\xi_1} \left[\min_{\substack{A_2x_2+B_2x_1=b_2\\x_2\geq 0}} c_2'x_2 + \dots + \mathbb{E}_{|\xi_{T-1}} \left[\min_{\substack{A_Tx_T+B_Tx_{T-1}=b_T\\x_T\geq 0}} c_T'x_T \right] \right]$$

- Assume Markovian data process: $P(\xi_t) = P(\xi_{t})$
- Q_t : value function of dynamic program

$$Q_t(x_{t-1},\xi_t) = \min_{\substack{A_t x_t + B_t x_{t-1} = b_t \\ x_t \ge 0}} c'_t x_t + \mathbb{E}_{|\xi_t} [Q_t(x_t,\xi_{t+1})]$$

Stochastic-Dynamic Programming

$$Q_t(x_{t-1}, \bar{\xi}_t) = \min_{\substack{A_t x_t + B_t x_{t-1} = b_t \\ x_t \ge 0}} c'_t x_t + \sum_{\bar{\xi}_{t+1} \in \mathcal{N}(\bar{\xi}_1, \dots, \bar{\xi}_t)} P(\bar{\xi}_{t+1} | \bar{\xi}_t) Q_t(x_t, \bar{\xi}_{t+1})$$

- $P(\bar{\xi}|\bar{\xi}_t)$: Transition probability matrix
- Q_t : value function of dynamic program

Approximate Dual Dynamic Programming

QUASAR®: stochastic programming that scales.

The most advanced solver for multistage stochastic mixed-integer quadratic programming. With interfaces to Matlab, Python, Java, and Scala. Rapid deployment of UI with QUASAR[®] Cloud.

QUASAR[®] in a Nutshell

OUT-OF-THE BOX PERFORMANCE

QUASAR[®] can solve problems with thousands of stages as well as high-dimensional

STOCHASTIC TIME SERIES MODELS

Any parameter in the objective function or constraints can be represented by stochastic

ALGEBRAIC MODELING LANGUAGE

QUASAR®'s modeling language is easy-to-use and lets users model decision problems as if

Discretize PFC Dynamics to Lattice

- 1. Empirical distribution of daily returns of the PFC
- 2. Create a lattice by simulating empirical PFC returns
- 3. Set forward prices to expected spot prices (\rightarrow martingale)

100 nodes per stage

Case Study: Hydropower Portfolio

Data

- Historical production of Alpine hydropower portfolio
- Historical German Base PFCs from EIKON (fair value)
- Regression model of market impact cost

Model

- 730 decision stages (days)
- Endogenous states: Tradable futures contracts and those in delivery
- Exogenous states. PFC, volumes

Procedure

- Create independent lattices of volumetric risk and PFC dynamics
- Solve optimization problem using QUASAR
- Simulate optimal decision policy

Examplary Dynamic Hedge Plan Here: hedging for 2020 starts at the beginning of 2019

- Shaded areas cover [0.05,0.95]-quantiles
- Purpose of hedging is to minimize risk at minimal cost!

Effect of Volumetric Risk on Hedge Ratios

Hedging the Term Structure Risk

Distribution of paid price without volumetric risk

Distribution of paid price <u>with</u> volumetric risk

Decision Support for Daily Trading

Position (MW)

Backtest for Deterministic Targets Did the hedge make money? → Meaningless!

Price in € 2015 2016 2018 2019 Average 2017 30.86 27.18 24.65 31.22 42.46 31.27 Static Corridor 31.72 31.76 31.35 27.47 25.27 42.96 Dynamic 27.34 33.31 32.00 27.68 45.94 33.26

- Did the hedge make money? \rightarrow Meaningless!
- Purpose of hedging is to minimize risk at minimal cost

Summary

- 1. Propose model-driven approach for hedging renewable power portfolio
- 2. Model takes term structure dynamics and liquidity cost into account
- 3. Observation: hedging term structure risk is less effective in the presence of volumetric risk
- 4. Future work: storage provides a natural hedge against volumetric risk but can it reduce term structure risk?

References

- Nersten, S. and Dimoski, J., 2018. Dynamic Hedging for a Norwegian Hydropower Producer-Electricity prices, inflow and currency risk. Master's thesis, NTNU.
- Dupuis, D., Gauthier, G., Godin, F., et al., 2016. Short-term hedging for an electricity retailer. The Energy Journal 37.
- Kettunen, J., Salo, A., Bunn, D.W., 2009. Optimization of electricity retailer's contract portfolio subject to risk preferences. IEEE Transactions on Power Systems 25, 117–128.
- Mo, B., Gjelsvik, A., Grundt, A., 2001. Integrated risk management of hydro power scheduling and contract management. IEEE Transactions on Power Systems 16, 216–221.
- Secomandi, N. and Yang, B., 2021. Quadratic hedging of futures term structure risk in merchant energy trading operations. Available at SSRN.

Efficient Frontier of Different Hedge Plans

Risk (Std Dev)

Lattice of Volumetric Uncertainty

