

Improving hydro scheduling in a high non-synchronous penetration power system an Australian experience

Tasmania

- Island state of Australia
- Connected to mainland via ~500 MW DC link
- 1200 MW average electricity demand
- Generation 82% hydro, 15% wind, 2% rooftop solar, 1% gas*
- Hydroelectric generation owned & operated by Hydro Tasmania
- Hydro historically managed using heuristic-based models (both short & long-term)
 - Since 2021, implementing MILP & SDDP optimisation models

* Since newest wind farms commissioned in 2020

"National" Electricity Market

"National" Electricity Market

- Coal dominates but retiring
 - Significant wind & solar
 - Significant behind-the-meter solar
- 40,000km of transmission
- 10,000,000 customers
- 54,000 MW capacity
- 180,000 GWh annual demand (operational)

- Energy-only spot market
 - Settled every 5 minutes
 - Cap = \$15,000/MWh (~100,000 NOK)
 - Floor = -\$1000/MWh (~-7000 NOK)
 - 8 frequency control ancillary services markets – co-optimised with energy
 - ALL energy bought & sold on spot market
 - Market participants use financial contracts to manage risks

Hydropower in the NEM

2020 utility-scale generation by fuel

Hydro Tasmania's scheduling models

	Existing	New / under development
Short-term (next few days)	In-house heuristic-based "optimisation" (deterministic) In-house hydraulic simulation	NCP short-term optimisation model (PSR) (deterministic)
Long-term (everything else)	In-house heuristic-based simulation (300 replicates)	Plexos hydro optimisation model (Energy Exemplar)
	Scenarios used for decision- making	SDDP hydro optimisation model (PSR)

Tasmanian hydrology

- Entirely rainfall-driven inflows
- Very seasonal negative summer inflows
- Historical records to 1924
- Impact of climate change on seasonal patterns
 - Dryer autumns & summers
 - Timing of inflows hugely material to operational decision-making
- Range of storage sizes 1/2hr to 3+ years
- 2 largest storages driven by different weather patterns

Negative market prices

	f half-hour was negat			egional
NIC\A/		54	ТЛС	VIC

NSW	QLD	SA	TAS	VIC
4%	7%	23%	13%	19%

- Price caps +\$15 000 to -\$1 000
 - (+100,000 to -7000 NOK)
- Coal / inflexible generators want to avoid start/stop cost
- Renewable generators get renewable energy credits

Negative market prices

- For long- and short-term scheduling
- Linearisation techniques which assume positive price
 - E.g. pumped storage or battery incentivised to store and discharge at the same time
 - E.g. series of linear ">=" inequalities for losses

Synchronous condenser operation

- Very high inverter-based energy resources in Tasmania
 - DC interconnector $\approx 500 \text{ MW}$
 - Wind capacity = 568 MW
 - Solar (utility) capacity = 225 MW
 - Total > 1200 MW

- Operational demand
 - Min 900 MW
 - Average **1100 MW**
 - Max 1700 MW

- Record 91.6% non-synchronous penetration (16 January 2021)
- Working towards 100% instantaneous penetration
- Support with synch con & low-load running of hydro generators (& gas)

Synchronous condenser operation

- For short-term scheduling only
- Third "binary" generator state (on, sc, off)
- Partial start-up costs
- System strength and/or inertia contribution (applies when "on" or "sc")
 - Contributes to multi-machine constraints

Frequency Control Ancillary Services

- Australian NEM's regulation & contingency services
- 8 (10) markets:
 - Regulation raise/lower
 - (1 second raise/lower 2023)
 - 6 second raise/lower
 - 60 second raise/lower
 - 5 minute raise/lower
 - Anything longer than this is "energy" (5-minute spot market)
- Capability defined as trapezium

Frequency Control Ancillary Services

- 8 (10) frequency markets co-optimised with energy
- Trapezium defined as series of linear inequalities
- Initially optimising for minimum availability
 - Optimising bids later shallow market

- 5-minute market
- Energy & FCAS offers updated any time
 - IF changes in demand, price, dispatch, plant condition
- Optimisation re-calculated at least every 5 minutes
- Provide trader with a recommendation they need to respond
 - Can't realistically do this for every plant every 5 minutes
 - Not a good look to toggle between similarly optimal options

Option 1 Option 2

Option 1 Option 2

- Only alert trader of material changes
 - Materiality ≠ magnitude
- Apply materiality/magnitude test to input assumptions
 - Very simple
- Apply small penalty for deviations from last accepted solution
 - More complicated, guarantees materiality
- Post-processing comparison of objective function
 - Only applies at system level

Bid discretisation & smoothing

- 10 price bands per "dispatch unit" per day
- Set the day before
- Can update volumes per price band at any time
- HT storage durations from < 1 hr to > 3 years
- Small storage marginal water value (opportunity cost) varies throughout day
- Cannot accurately dispatch these units (and meet water management requirements) with marginal price bids alone

Bid discretisation & smoothing

- NEM spot market is pay-as-cleared
- Bid small storages at low price to "guarantee" their dispatch at forecast optimal times
- Smooth generation (ΔMW penalty) to avoid over-optimising (forecast accuracy)
 - Also reduces wear and tear

Thankyou To my colleagues at Hydro Tasmania & PSR

www.hydro.com.au Pippa.Williams@hydro.com.au