Short-term hydropower optimization Project Methodology Concluding remarks

Using efficiency points to maximize energy generation in the short-term hydro-scheduling problem

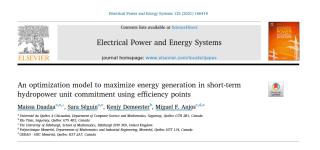
International Conference on Hydropower Scheduling in Competitive Electricity markets, Oslo, Norway

Sara Séguin, ing., Ph.D.

UQAC

Département d'informatique et de mathématique Université du Québec à Chicoutimi

September 13th 2022



Presentation outline

- Short-term hydropower optimization
- Project
 - Hydropower system
 - Short-term hydropower scheduling
- Methodology
 - Approximation of the hydropower production functions
 - Optimization model
 - Mathematical comparison of 2 scenario tree generation methods
 - Numerical results
- 4 Concluding remarks

Project

This project is part of Maissa Daadaa's Ph.D. thesis. Co-advisors are Miguel F. Anjos (University of Edinburgh) and Kenjy Demeester (Rio Tinto).

Hydropower system

Two powerplants from Rio Tinto are used to assess the methodology. CENTRALEDE LACST-JEAN SHIPSHAV

Short-term optimization model

In this project, we are interested in the short-term optimization model.

We aim at taking decisions on :

- Water discharge
- Reservoir volume
- State of turbines

for a given planning horizon.

Short-term hydropower scheduling

Purpose:

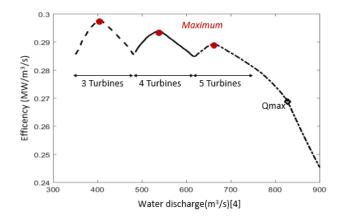
- Maximize the produced energy.
- Imposition of max. 2 startups per 10 days.

Other considerations:

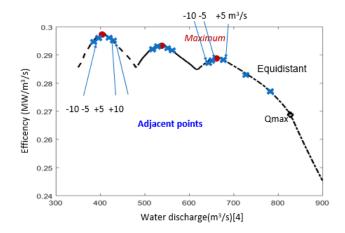
- Calculation times.
- Multiple inflow scenarios.
- Solution directly usable in practice.

Questions:

- Is the solution of the optimization affected by the scenario tree method?
- Are scenarios required?

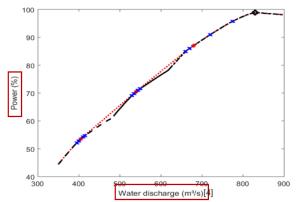

Approximation of the hydropower production functions
Optimization model
Mathematical comparison of 2 scenario tree generation methods
Numerical results

Methodology


In order to answer the proposed questions, the following methodology is proposed.

- Approximation of the hydropower production functions
- Mathematical comparison of 2 scenario tree generation methods
 - Backward scenario tree with Scenred.
 - Neural gaz scenario tree generation method.
- Numerical results on real test cases using both scenario tree methods for the short-term optimization.

Approximation of the hydropower production functions



Approximation of the hydropower production functions

Approximation of the hydropower production functions

A pair of maximum efficiency points of water discharge and power

Optimization model

Objective function :

The objective is to maximize total energy production in stage 0 and expected energy production stages

$$\begin{split} \max_{y,v,z} [\sum_{c \in C} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,0}^c \times y_{k,0}^c - \sum_{c \in C} \theta^c \times (V_{max}^c - v_0^c) - \sum_{c \in C} \sum_{j \in J_0} \varepsilon^c \times z_{j,0}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,i}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,0}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,0}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,i}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,i}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,i}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{j \in J_i} \varepsilon^c \times z_{j,i}^c + \\ \sum_{c \in C} \sum_{i \in I} \sum_{b \in B} \sum_{k \in K_b^c} P_{k,i}^c \times y_{k,i}^c - \sum_{c \in C} \sum_{i \in I} \theta^c \times (V_{max}^c - v_i^c) - \sum_{c \in C} \sum_{i \in I} \sum_{c \in C} \sum_{c \in C}$$

$$\Delta_{t} \times [\sum_{s \in \mathcal{I}} \pi_{s} \times [\sum_{c \in C} \sum_{n \in N_{s}} \sum_{b \in B} \sum_{k \in K_{b}^{c}} P_{k,n}^{c} \times y_{k,n}^{c} - \sum_{c \in C} \sum_{n \in N_{s}} \theta^{c} \times (V_{max}^{c} - v_{n}^{c}) - \sum_{c \in C} \sum_{n \in N_{s}} \sum_{j \in J_{n}} \varepsilon^{c} \times z_{j,n}^{c}]]$$

Probability

Optimization model cont'd

$$v_{n+1}^c = v_n^c + \Delta_t \times \left[(\delta_n^c \times \beta) - \sum_{b \in B} \sum_{k \in K_k^c} (q_{n,k}^c \times y_{k,n}^c \times \beta) - (d_n^c \times \beta) + \sum_{l \in U^c} \sum_{b \in B} \sum_{k \in K_k^c} (q_{n,k}^l \times y_{k,n}^l \times \beta) + (d_n^l \times \beta) \right]$$

$$(\sqrt{c} \in C, \forall n \in N_s, \forall s \in S \quad (2)$$

$$\sum_{b \in B} \sum_{k \in K_k^c} y_{k,n}^c = 1 \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (3)$$

$$\sum_{b \in B} \sum_{k \in K_k^c} y_{k,n+1}^c \times A_{n+1,k,j}^c - \sum_{b \in B} \sum_{k \in K_k^c} y_{k,n}^c \times A_{n,k,j}^c \leq z_{j,n}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \forall j \in J_n, \quad (4)$$

$$\sum_{s \in S} \sum_{n \in N_s} \sum_{j \in J_n} \sum_{j \in J_n} \sum_{s_j^c} \sum_{n \in N_s} \sum_{j \in J_n} \sum_{s_j^c} \sum_{n \in N_s} y_{k,n}^c \times A_{n,k,j}^c \leq v_{j,n}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \forall j \in J_n, \quad (4)$$

$$\sum_{s \in S} \sum_{n \in N_s} \sum_{j \in J_n} \sum_{s_j^c} \sum_{s_j^c} \sum_{n \in N_s} y_{k,n}^c \times A_{n,k,j}^c \leq v_{j,n}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (6)$$

$$v_{min}^c \leq v_{max}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (6)$$

$$v_{N_s}^c \geq v_{max}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (7)$$

$$v_{N_s}^c \geq v_{max}^c \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (8)$$

$$y_{k,n}^c, y_{k,n}^c, y_{j,n}^c \in B \quad \forall c \in C, \forall n \in N_s, \forall s \in S \quad (9)$$

$$\forall k \in K_s^c, \forall l \in U^c$$

$$d_n^c, d_n^l, v_n^c \in \mathcal{R}^+ \quad \forall c \in C, \forall n \in N_s, \forall l \in U^c. \quad (10)$$

Numerical results

Approximation of the hydropower production functions
Optimization model
Mathematical comparison of 2 scenario tree generation methods
Numerical results

Validation

The determinisite model was compared to real operational decisions.

Results show that :

- For the 65 instances, the model allows to produce more energy.
- The proposed solutions are always on the efficiency points, where the engineers want to operate the power plants.
- The solution can be directly implemented in practice.

Approximation of the hydropower production functions Optimization model Mathematical comparison of 2 scenario tree generation methods Numerical results

Mathematical comparison of scenario tree generation methods

Is the solution of the optimization affected by the scenario tree method?

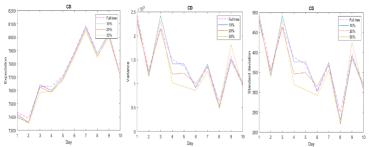
Mathematical comparison of scenario tree generation methods

Two methods are compared:

- Backward reduction. Delete scenarios from full tree to minimize probability distance between reduced tree and full tree.
 - \rightarrow Structure of the tree varies. Implementation with Scenred.
- Neural gaz. Competitive learning method that updates the values of the nodes to gradually reduce distance of the full tree and reduced tree.
 - \rightarrow Structure of the tree is preserved. In-house implementation.

Approximation of the hydropower production functions
Optimization model
Mathematical comparison of 2 scenario tree generation methods
Numerical results

Mathematical comparison of scenario tree generation methods

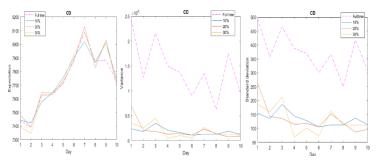

Main takeaways:

- Results were tested on 4 months of inflow scenarios.
- Different % of reduction for backward method. Expectation, variance and standard variation preserved until 20 %.
- Only the expectation preserved with neural gaz method.

 $\label{lem:matter-def} \mbox{Mathematical comparison of 2 scenario tree generation methods} \\ \mbox{Numerical results}$

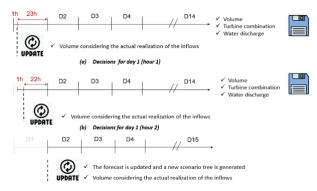
Mathematical comparison of scenario tree generation methods

Example of results for backward method :

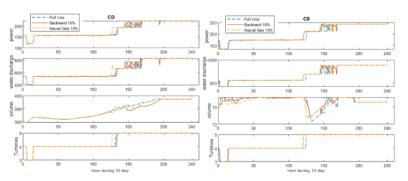


Approximation of the hydropower production functions Optimization model

 $\begin{tabular}{ll} Mathematical comparison of 2 scenario tree generation methods \\ Numerical \ results \end{tabular}$


Mathematical comparison of scenario tree generation methods

Example of results for neural gas method :



Rolling horizon

The stochastic short-term hydropower optimization problem is tested in a rolling horizon fashion.

Operational results

Comparison of the solutions for backward, neural gas methods and the full tree in December with 10% of reduction

Numerical results

- The solutions proposed by the 2 scenario tree generation methods are similar when reduction is below 10%.
- When variability in the inflows is low, the median scenario allows to obtain good results.
- Results are obtained faster with the neural gaz method, but variance is not preserved, which is usually not a problem with low variability.

Concluding remarks

- In this project, efficiency curves were used to force the model to work on efficiency points.
- Two methods of scenario tree generation were compared to see the effect on the preservation of the mathematical aspects, but also operational aspects of the solution.
- The proposed solution can be used directly and a maximal number of startups was imposed to stick to usual operations.

Contact

Tusen takk!

Do not hesitate to contact me : sara.seguin@uqac.ca

Thanks again to Maissa Daadaa for her help with the slides.