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162 hydro plants /386 termal units

398 wind farms /37 PV plants

Brazilian Interconnected System Centrally 
Dispatched by the Brazilian ISO (ONS)

+9,000buses / +13,000 transmission lines

+4,000km

HYDRO
(61.6%)

THERMAL (13.9%)

GAS/LNG OIL/DIESEL COAL

WIND/SOLAR (15.4%)

NUCLEAR

BIOMASS+ OTHERS (8.9%)
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OPTIMIZATION MODELS FOR ENERGY 
PLANNING DEVELOPED BY CEPEL

Developed by CEPEL, 
collaborating with scientific 

comunity

Validated in working groups in 
by ONS, CCEE, EPE, MME, 

ANEEL, as well as task forces 
with most power system 

utilities

Approved for official use by the 
regulatory agency

Used by:
- EPE for system planning
- ONS to dispatch the system 
- CCEE to stablish market prices 3
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Generation of
inflow/wind

scenarios

Daily/Weekly 
inflow forecast

Models for risk-averse energy Planning, 
Hydrothermal-wind Scheduling and Price Setting 

Stochastic
Optimization

(SDDP)

Stochastic
Optimization (DDP)

Long term: optimal policy (FCFs) Mid term: Policy refinement day ahead dispatch/pricing

Flood Prevention
and Control

Hydrothermal
simulation

Nonlinear
(Heuristic

Rules)

Hydrothermal unit
commitment, 

(MILP)

CVaR Risk Averse
Mechanism

Statistical + 
rainfall-

information

Dynamic
Regression

Models, SVM 

Monthly / Weekly / 
hourly load forecast

Stochastic analysis, 
climatic phenomena

Par(p)-A
model



5

Monthly 10 years Monthly

Weekly 2 months weekly

Daily 7 days
up to

half-an-hour

NEWAVE
(since 2000)

DECOMP
(since 2002)

DESSEM 
(since 2020)

System ModelingDiscretizationHorizon
Uncertainty

Solution

FCF

Frequency

lo
n

g
m

id
sh

o
rt

Stochastic,
CVar

Aggregate reservoirs, 
tie lines SDDP

Stochastic,
CVar

Individual plants,
tie lines, DDP

Deterministic
unit commitment,

DC Power Flow MILP

m1 m2Rolling Horizon
Scheme w1         w2        w3        w4          w5         w6       w7         w8        

w9

d1-d7     d8-d14    d15-d21   d22-d28    d29-d35     d36-d42  d43-d49    d50-d56    d57-d63   

NEWAVE

DECOMP

DESSEM

...

COST MINIMIZATION GENERATION PLLANNING WITH 
CVAR RISK AVERSE CRITERION - Rolling Horizon Scheme

Fuel costs
($/MWh)

Cost Information

Thermal units Hydro Plants

Storage

Future 
cost

Water Value
($/hm3)

GH

Q
V

Hydro efficiency
(MWh/hm3)

FCF

New Renewable generation

➢ use “free” generation as much as possible

➢ Generation is curtailed if necessary
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Hourly Prices- Sept 11th, 2022 – 7am-8am

DAY-AHEAD SCHEDULING AND HOURLY 
PRICING IN BRAZIL 

Official use started
on Jan 1st, 2020

+

+

Hourly Prices – last 6 months

Source: CCEE web site (https://www.ccee.org.br/precos/painel-preços)

Official use started
on Jan 1st, 2021

USD 9.7

USD 29.1

Average: 

13.5 USD

10.82 USD
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Anticipated dispatch of
LNG plants in SDDP

Weekly target constraints
for termal Generation and

energy interchanges

Thermal unit
commitment

Dynamic Security 
constraints

Features Developed in the last 20 years

Combined-cycle termal plantsDC power flow for 
the electrical network

Solving strategy by MILP

Improved MILP strategy(Feasibility
Pump / Local search)

Iterative LP/MILP procedure for 
CPU time reduction

Dynamic PWL model for 
line transmission losses

Water delay times 
with river routing

4D hydro production
function

Water delay times

CVaR criteria
in SDDP

Variable penstock losses
/ turbine efficiencies

Risk-averse surface 
(RAS) in SDDP

DDP with stage
aggregation

CVaR criteria
in DDP

4D Hydro
Production function

Anticipated dispatch
of LNG plants in DDP

Scenario
Generation w/ 

centroids

Monthly correlation
on inflows

Individual 
modeling of

hydro plants in 
SDDP

Maximum turbined
outflow variable with

water head

Asynchronous SDDP

Improved Hydro
Production Function

Asynchronous DDP

Dynamic model
for the HPF

Dynamic model for thermal
cost curves within SDDP 

PWL immediate cost for 
themal plants within DDP

Selective Sampling for 
backward SDDP scenarios

Chance-constrained
model for the RAS

Hydraulic coupling

among EERs

Minimum release 

constraints for hydro plants

Parallel Processing

in SDDP

RAS w/ 

max-type

penalization

Several EERs in

each subarea

Rule-curves w/ max-

type penalization

Stochastic model 
for each individual 

hydro plant

Inflows for 
Artificial 
gauges

Piecewise-polynomial
curves for tailrace level

“single-LP” 
solution mode

Parallel Processing
in DDP

Linear evaporation
x storage function

Warm starts in LP 
subproblems

Minimum energy
storage constraints

Immediate cost function for 
thermal plants within DDP

Cut selection
in SDDP

Scenario
resampling in SDDP

Par(p)-A Inclusion
in SDDP

NEWAVE

DECOMP

DESSEM

GEVAZP

add. Research
topics

Par(p)-A 
methodology

Piecewise linear 
hydro constraints

Uncertainty on
wind generation

Maximum outflow
constraints

2002       03        04      05       06     07       08      09       2010    11     12       13       14      15       16  17      18        19        20        21       22 

4 REEs 9 REEs 12 REEs

Side inflows for 
tailrace levels

Integrated hydro
inflow/wind speed

scenario generation

GHG emission

consraints

Improved fydraulic

coupling among EERs

Integration
between NEWAVE 

and DESSEM
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Main References for the Models

Maceira, Penna et al, PSCC 2018

Santos, Diniz et al, EPSR, 2020

Diniz, Costa et al, PSCC 2018

Helseth, Melo, Sintef Report, 2020
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MOST RECENT DEVELOPLENTS

1) “Max-type” penalization strategy for 
violation of rule curves: Consideration of a novel 
penalization strategy for violation of minimum storage
level constraints in the SDDP strategy, where a time-
linking maximum violation strategy is employed

2) Par(p)-A model: Extension of the autoregressive
periodic model to add a term related to average
annual inflows for the last year and taking into
account this term in the SDDP solving strategy

3) Joint inflow/wind speed uncertainty model to
generate scenarios for long/mid-term planning, and
modeling of wind farms in SDDP and DDP strategy
with the possibility of generation curtailment

4) Latest improvements in the plant-based hydro
production function for all models:

- penstock losses variable with turbined outflow and
turbine/generator efficiency variable with turbined
outflow and water head

- Piecewise polynomial curves for the tailrace level

- Effect of “side inflows” in the tailrace level 

- improvements in the hydro production function

5) Direct link between operation planning and
short term scheduling to take into account the
impact of the hourly uncertainty/variability of
renewable generation in long term planning
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1) “Max-type” penalization strategy for violation of

minimum storage level constraints (rule curves)

𝑪𝒗𝒊𝒐𝒍 = 𝜟𝟓 𝒑𝒗𝒊𝒐𝒍+ 𝜟𝟔 𝒑𝒗𝒊𝒐𝒍

Traditional Penalization for violation of constraints:

t

storage

1 2 3 4 5 6

Δ5 Δ6

rule curve

𝐶𝑣𝑖𝑜𝑙 = max{𝜟𝟓, 𝜟𝟔} 𝒑𝒗𝒊𝒐𝒍

Improved “max-type” penalization

t1 2 3 4 5 6

Δ6
′

𝜹 Δ5
′

rule curve

storage

✓ in the SDDP algorithm, there is a cumulative effect
in the computation of water values, since one drop 𝛿
of water relieves both violations (𝟐 ∗ 𝒑𝒗𝒊𝒐𝒍) 

✓ That causes very high marginal costs

✓ Although relieveing both violations, the impact of
𝛿 in system costs is only accounted once

✓ It allows using intuitve values (most expensive termal 
cost) when setting the value of 𝒑𝒗𝒊𝒐𝒍

Motivation

Diniz, Maceira et al, 

ANOR, 2020
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Implementation in SDDP requires an additional state variable

1) “Max-type” penalization strategy for violation 

of rule curves: 

𝑉𝑡 + Δ𝑡 ≥ 𝑉𝑀𝐼𝑁𝑡

Δ𝑀𝐴𝑋
𝑡 ≥ Δ𝑀𝐴𝑋

𝑡−1

Min  (…) + 𝑝𝑣𝑖𝑜𝑙Δ
𝑡 + 𝑝𝑣𝑖𝑜𝑙Δ𝑀𝐴𝑋

𝑡

only in the last
seasonal period

s.t.

(…)

Δ𝑀𝐴𝑋
𝑡 − Δ𝑡 ≥ 0

minimum level
constraint for each 𝑡

“max-type” constraints
for each 𝑡

+ 𝛼(𝑣𝑡, Δ𝑀𝐴𝑋
𝑡−1 )

Only in 
backward 

pass

additional state
variable in the FCF
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➢ Par(p) methodology has a low order of magnitude (𝑝 = 1 or 2) for most plants, 

which makes it difficult to represent the annual correlation

✓ recent history “looses its memory” after some months (6-12)

➢ Some river basins (specially in the Northeast region) had been experiencing

very negative inflows (below average) for many consecutive years

2) PAR(p)-A Model: Extended Par(p) model including

average annual inflows

➢ In order to address this issue, we add an additional regression term 𝝍 related to average inflows for the

last year in the Par(p) model, in order to better represent recente critical hydrological conditions

𝐼𝑡,𝑖 =

𝑗=1

𝑝𝑚

𝜙𝑡,𝑗,𝑖 𝐼𝑡−𝑗,𝑖 + 𝝍𝒕,𝒊𝑰𝑨,𝒕 + 𝜀𝑡,𝑖

Motivation

𝑰𝑨,𝒕 =

𝒋=𝟏

𝟏𝟐

𝐼𝑡−𝑗,𝑖, where

➢ Implementation in the SDDP solving procedure leads to the inclusion of additional state variables for the

problem related to past inflows from (𝑡 = 𝑝 + 1) to (𝑡 = 12) for each plant

Treistman, Maceira et al, PMAPS 2020
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➢ Better representation of annual correlation

➢ Thorough statistical tests showed that the Par(p)-A 

methodology yielded

✓ Better adherence to historical autocorrelation structure

and negative sequences

✓ the same good ahderence of the Par(p) model in average,

standard deviation and distribution of Monthly inflows, as

well s spatial correlation

➢ Scenarios generated with Par(p)-A methodology have

a better persistence of negative inflows

Test for negative sequences of inflows

2) PAR(p)-A Model: Assessment of scenarios
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2) PAR(p)-A Model: Results of the NEWAVE model 

System  Costs

2,000 (scenarios)

Par(p)

Par(p)-A

Marginal Costs (SE)

Thermal Generation Storage Levels (SE)

➢ Despite the increase in the number of state variables (past inflows), the CPU time 

per iteration did not increase significantly, but convergence takes longer

PAR(p)-A methodology yields a more risk-averse policy in the presence of critical scenarios

higher thermal generation higher storage levels in the reservoirs

Deficit Risk

reduction of the déficit 
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Historical / reanalysis 
data of hourly wind 
speed / generation

Aggregation of wind 
farms based on spatial 

correlation data

Computation of 
monthly Power x speed 

Production Curves

Hourly curve

- Par(p)-Par(P)-A model for inflows
- Weibull distribution for wind speed
- Spatial correlation of wind and inflows

Joint generation of 
inflows / wind speed 

scenarios

Monthly curve

Linear regression for 
production curves

Wind farms 
formulation in the 
optimization model 

with power 
curtailment

3) Joint inflow/wind speed uncertainty model 



𝒄=𝟏

𝑵𝑷𝑴𝑪

𝑮𝑾𝒕,𝒖,𝒄 ≤ 𝒃𝒕,𝒖
𝑾 + 𝒂𝒕,𝒖

𝑾 𝑽𝒕,𝒖

Maceira, Melo et al, PMAPS 2022
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4) New improvements in the 4-D model for the 

Hydro Production Function (HPF)

A) Data-driven model for the plant-based HPF

Turbine—generator efficiency as a nonlinear
function of discarge and net head

Penstock losses as a 
nonlinear function of
discharge

✓ Handling of historical data to match the
time discretization of the models  

✓ Fitting of Generalized aditive models (GAM) 

Hourly data

weekly data

Brandão,Pessanha et al, EPSR 2022
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C) Inclusion of the effect of “side inflows” 
in the tailrace level for some plants

Source: ONS

4) New improvements in the 4-D model for the 

Hydro Production Function (HPF)

B) Use of piecewise polynomial curves 
for the tailrace level, as a function of 
total release of the plant

✓ Generalization of the model with a term 
for any non-turbined release

Reduction in the average 
deviations from the real 
HPF curve as compared 
to the original model of
(Diniz, Maceira,2008)

D) Improvements in the convex-hull 
computation

✓ Elimination of very similar cuts

✓ Use of a more efficient algorithm

✓ Improvement in the computation of 
the secant term related to spillage 

Current model

I
m

p
r
o

v
e
d

 m
o
d

e
l avg. deviations
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5) Direct link between operation planning and short

term scheduling

... scenários

NEWAVE cost-
to-go function

Representative days/weeks

“feedback”
“feedback”

Development of a soft-link 
between DESSEM model and
MELP/NEWAVE models

➢ Evaluation of the operation policy
under a very small time granularity

➢ Assessment of the impact of the high 
variability and uncertainty of new 
renewable sources on a daily basis in 
operation planning studies

➢ Assessment of the benefits of the
inclusion of storage devices

Curty, Saboia et al SNPTEE, 2022
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NW2DC tool for integration between NEWAVE and DESSEM 

Modeling of Equivalent Reservoirs

Integrated scenario generation of 
hydro inflows / wind speed

Computation of the optimal policy 
by SDDP solving procedure

Assessment of the policy through 
2,000(+) scenarios

NW2DS data 

conversion tool

Hourly simulation

.

.

.

scenario 3

𝒕 = 𝑻

scenario S

scenario 2

scenario 1

𝒕 = 𝟐 𝒕 = 𝟑𝒕 = 𝟏 …

Maceira, Barbosa et al, SNPTEE, 2022

5) Direct link between operation planning and short

term scheduling
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FUTURE DEVELOPMENTS (2022-2024)

➢ Piecewise linear model for min/max outflow
constraints as a function of initial storage
levels in the reservoirs

➢ Improvement in the consideration of “end-
effect”: derivation of the limiting FCF of the
infinite horizon problem instead of extending
the planning horizon)

➢ Individual representation of hydro plants and
inclusion of all constraints of the DECOMP 
model in the entire planning horizon

➢ Possible incoporation of climate-change
effects in the scenario generation model

➢ Conditional electrical/hydraulic constraints

➢ Representation of the DC electrical network and
consideration of scenarios for the 1st month

➢ More detailed time discretization in the 1st 
week (improved coupling with DESSEM model)

➢ Modeling of hydro unit commitment constraints

➢ MILP model for dynamic security constraints
(currently addressed with convex approximations
or heuristic iterative processes)

➢ Modeling of more detailed demand response 
constraints (“block load” shift)
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All of this would never be possible
without those people!!
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diniz@cepel.brTusen Takk !!
newave,decomp,

dessem,gevap@cepel.br

mailto:dessem@cepel.br
mailto:iniz@cepel.br
mailto:iniz@cepel.br

