Short-term Cascade Inflow Forecasting using Causal Multivariate Variational Mode Decomposition (CVD)

Dr. Mojtaba Yousefi, HVL HPSC, Sep 2022

Acknowledgment

Intelligent dispatching and optimal operation of cascaded hydropower plants based on big spatiotemporal data (IntHydro),

RCN, IKTPLUSS-IKT, 2020-2024

DNTNU

https://www.ntnu.edu/inthydro#/

Western Norway University of Applied Sciences

Prof. Hossein Farahmand, NTNU.

lyse

SMART INNOVATION NORWAY

Prof. Reza Arghandeh, HVL.

Dr. Jay Rajasekharan, NTNU.

Mr. Øivind Høivik, Lyse.

Mr. Jinghao Wang, NTNU.

Dr. Mojtaba Yousefi, HVL.

Motivation

Reliable and accurate inflow forecasting is essential to:

- Meet the energy balance
- Hydropower scheduling
- Comply with environmental constraints
- Enhance flood management
- Optimal water allocation for drinking or agriculture

Lyse

• Facing climate crises

Western Norway University of Applied Sciences DNTNU

Use Case

- Location:
 - Storåna river in Hjemland, Rogaland
- Related Hydropower stations: Lyseboten I and Lyseboten II

5

Use Case

• Collected data:

- Hourly historical inflow
- Hourly meteorological data
- Hourly hydrological data

• NT

 Hourly simulated hydrological data provided by HBV

SMART INNOVATION NORWAY

Inflow Fortecsating Challenges

- Inflow forecasting is a highly stochastic problem.
- Inflow is related to complex topographical, hydrological, and metrological aspects.
- Most of models are heuristical and are highly depends on historical data. However, the climate change brings more surprises.

Methodology

Module 1: Multivariate Variational Model Decomposition

- It is a self-adaptive technique designed for nonlinear and non-stationary data
- Eliminate less useful data or noise
- Module 2: Causal Feature Selection
 - Improve information richness by removing irrelevant and redundant variables.
 - Reveal cause and effect relationships that govern complex systems

Methodology

Causal Multivariate Variational Mode Decomposition (CVD)

Western Norway University of

Module 1 Output: Multivariate Variational mode decomposition

Here we only show the precipitation timeseries for location 8:

- Each original time-series decomposed to 5 major subseries named mode
- Each mode contains a specific frequency band of the original time-series

Module 2 Output: Causal Feature Selection

33 parameters x 5 modes x 24 hr = 3984 values

3984 values >>> 33 causal values

Western Norway University of Applied Sciences SMART

Lyse

SIGNIFICANT SELECTED MODES BY CAUSAL FEATURE SELECTION ALGORITHM

Variable	Location	Mode	Lag	
Desticitation	Location 8 Actual (Kalltviet)	3	4	
Precipitation		3	2	
	Location 8 HBV	5	4	
	Location 7	3	1	
Inflow	(Lyngsåna)		4	
mnow		1	5	
	Location 8 HBV	4	1	
		1	1	
Difference Inflow	Location 8-Location 1	2	1	
	actual	3	5	
	actual	4	5	
		5	1	
Water temperature	Location 8 actual	1	1	
	Location 3 Actual (Musdalsvatn down stream)	2	5	
		1	5	
Water level	Location 7 Actual	3	1	
	Location / Actual	4	1	
		5	1	
		3	5	
	Location 6 Actual (Hiafossen)	4	3	
		5	2	
		1	1	
	Location 5 actual (Hiavatn)	2	1	
	(3	5	
		4	1	
	(Musdalsvatn)	3	3	
	Location 4 Actual	2	1	
	(Viglesdalsvatn)	5	5	

Module 3 Outputs: Forecasting Results

Model	Data	NRMSE
CVD-LSTM	weather+ hydrological data+HBV	0.45
CVD-LR	weather+ hydrological data+HBV	0.44
CVD-RF	weather+ hydrological data+HBV	0.34
CVD-MLP	weather+ hydrological data+HBV	0.32

Hourly day ahead results average over 1 month period.

Hourly day ahead results average over 1 month period.

SMART INNOVATION NORWAY Lyse

Results

Western Norway University of Applied Sciences

Data	Model	NRMSE	Computation time(s)	
weather	MLP	0.8	60	
weather+ hydrological data	MLP	0.6	90	60% improvemen
weather+ hydrological data+HBV	MLP	0.6	120	46.6%
weather+ hydrological data+HBV	CVD-MLP	0.32	61	improvemen

Forecast results for 3 months in spring and summer

Conclution

- The developed preprocessing framework CVD has:
 - Better accuracy for inflow forecasting
 - Less computation time
 - Reduce curse of dimensionality using causal inference

• Future works

- Help in discharge decision making: release how much water and when?
- Performing hydropower scheduling problem using the more accurate inflow forecast model and scenario reduction techniques.

Publications

- Yousefi, Mojtaba, et al. "Day-ahead inflow forecasting using causal empirical decomposition." Journal of Hydrology, 128265, 2022.
- Jinghao Wang, et al. "Self-organizing maps for scenario reduction in long-term hydropower scheduling ", IEEE IECON, 2022.
- Cheng, Xiaomei, et al. "Inflow Forecasting Based On Principal Component Analysis and Long Short Term Memory." *IEEE DASC*, 2021.

Lyse

Mojtaba Yousefi, Associate professor in Energy Systems, HVL <u>Mojtaba.Yousefi@hvl.no</u>

Visit Us: : <u>https://www.ci2lab.com/</u>

