

Hierarchical planning for hydropower plant upgrades using semi-analytical policies

Andreas Kleiven¹, Selva Nadarajah², **Stein-Erik Fleten**¹ ¹Norwegian University of Science and Technology ²University of Illinois at Chicago

Background

Distribution of hydropower installed capacity by initial operating year

Contributions

- We include short-term operational aspects, provide bounds on the value of production schedules, and obtain semi-analytical investment policies for capacity upgrade
 - Compared to f.ex Bøckman et al (2008) and Andersson et al (2014)
 - Hierarchical planning (Anthony (1965), Dempster et al (1981), Lenstra et al (1984), Bitran and Tirupati (1993))
 - Reoptimization heuristic (Lai et al (2010), Nadarajah and Secomandi (2018)

Refurbish/upgrade

- Large investment cost
- Increased capacity
 - Change in the operational pattern

Wait

Common industry practice

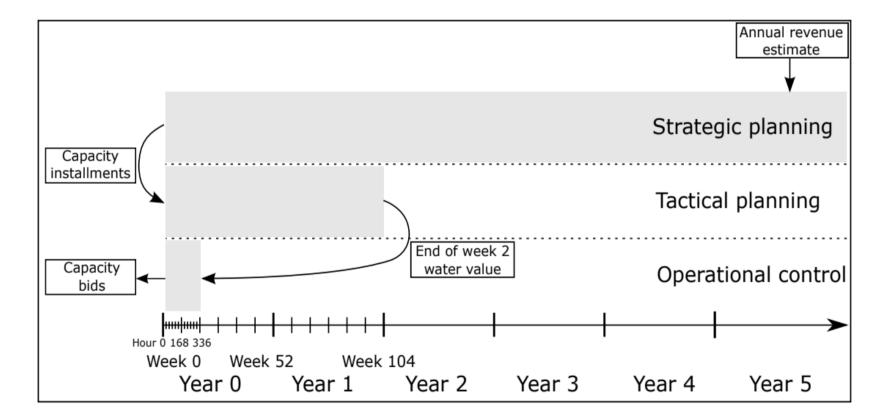
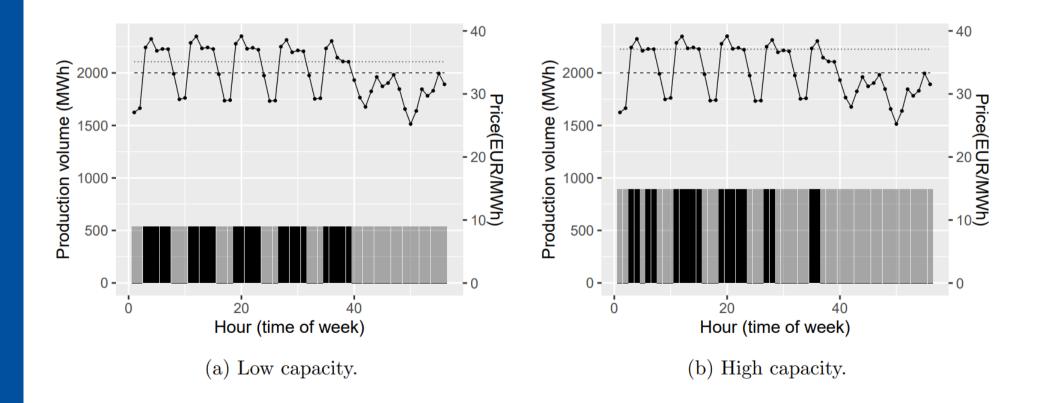
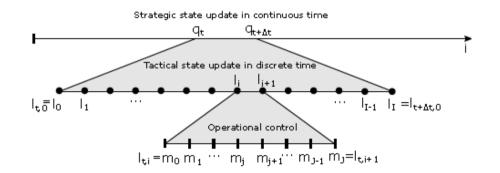



Figure 1: Common industry practice for hydropower planning.

When and how much additional capacity to install?

And how does the decision to install additional capacity depend on assumptions on future short-term price variations?

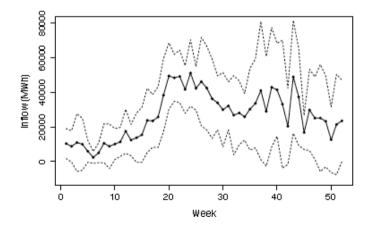

Key assumption

- Strategic decisions (i.e. upgrading) are unaffected by the level of the short-term factors
 - Short term price deviation from the equilibrium level
 - Inflow state
 - Reservoir level
- So only the movement of equilibrium price level affects the value of the investment

Decomposition

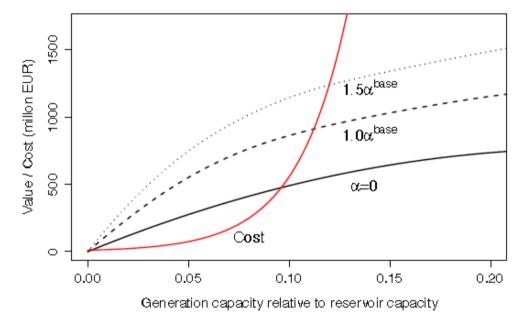
- Upper level: Investment
 - Continuous time
 - When (=at what equilibrium price level) and at what size
 - Capacity size Q is the main linking parameter
- Lower level
 - Tactical and operational decisions/values

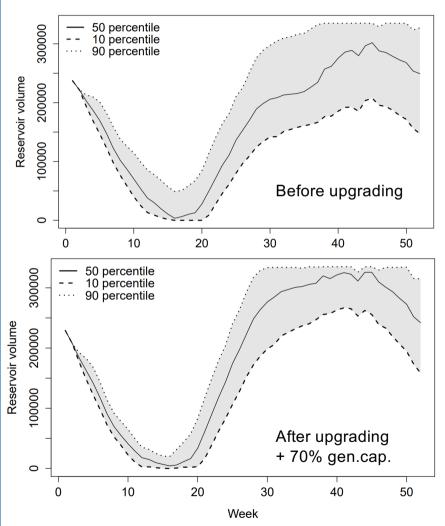
Methods

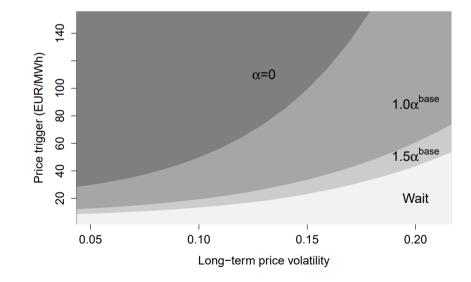

- Problem is cast as a Markov decision process
- Model-based reinforcement learning
 - Stochastic dynamic programming for the tactical-operational problem
 - Reoptimization heuristic (RH) for obtaining tactical-operational policies for different capacity upgrade alternatives
- Tactical-operational value as a function of capacity
 - Solve the investment timing problem as a joint capacity choice and real options problem

Instances

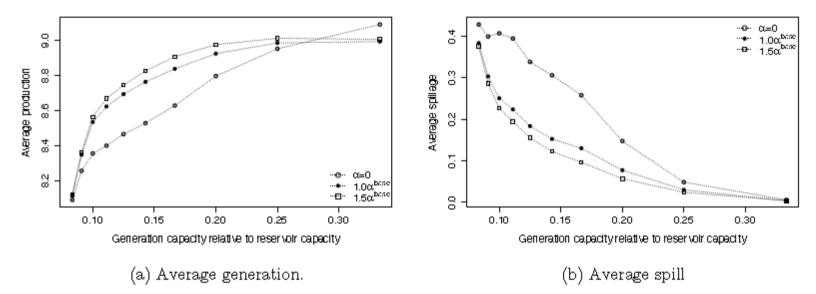
- Reservoir capacity 335 GWh
- Initial generation capacity 166 MW (8.3%/week)
- Average annual inflow 1354 GWh/year (~4x reservoir)
- Spot prices 2013-2018
- Start level equilibrium price 30 €/MWh, drift 0.012, volatility 0.146


Instance	Description	Spot price data
$lpha_{t,i}=0$	Weekly decision periods	Zero variations
$oldsymbol{lpha}_{t,i} = 1.0 oldsymbol{lpha}^{ ext{base}}$	3-hourly decision periods	Variations in 2013-2018
$oldsymbol{lpha}_{t,i} = 1.5 oldsymbol{lpha}^{ extsf{base}}$	3-hourly decision periods	1.5 × variations 2013-2018


Results


- Value of additional capacity
 - Given an equilibrium price of 32 €/MWh

Results



12

NTNU

Results: Generation and spill

- Total average generation and spill as a function of capacity alternatives.
- The curves are plotted relative to the maximum reservoir capacity.

 Most of the value of upgrading comes from the ability to exploit withinweek price variations

Scalability

- Multiple reservoirs
 - Affects the tactical-operational subproblem
 - Reservoir levels are not discretized
 - Have tested multireservoir cases
 - Reoptimization heuristic is scalable
- Multiple upgrade dimensions
 - F ex increasing generation capacity in several plants
 - Should be doable
- Multiple long-term uncertainty factors
 - No. Requires a complete redesign of the framework

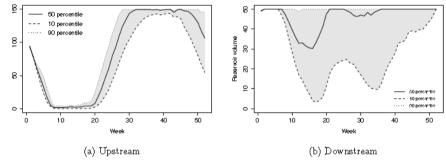


Figure 24: Reservoir management with high capacity and $\alpha - \alpha^{\text{base}}$.

Results

- The investment policy and value under different assumptions regarding within week price variations: 0, 1 and 1.5 times the variation the most recent 5 years. Values are reported in million €
- Additional capacity installments are reported as a percentage of current capacity

		$oldsymbol{lpha}=0$	$1.0oldsymbol{lpha}^{ t base}$	$1.5 oldsymbol{lpha}^{ t base}$
NPV (no investment)		5039.7	5 219.0	5294.8
NPV (investment)		5231.5	5711.9	6009.3
Real options value	$H(q_0,\xi_0)$	5256.3	5 712.1	6009.3
Capacity upgrade (invest now)	$u^*(\xi_0)$	71.3%	82.3%	87.6%
Capacity upgrade (at trigger)	$u^*(\xi^*)$	101%	83.7%	80.4%
Price trigger	$\exp\left(\xi^*\right)$	93.3 €/MWh	32.0 €/MWh	22.0 €/MW
Investment probability (10 years)		1.3%	85.0%	100%

Conclusions

- We present an approach for capacity upgrade analysis
 - Capacity affects operational pattern from which the value of the investment originates
 - Investment timing and capacity choice interacts
 - Investment is supported at lower prices when the short-term variability of these prices increases
- Future work: market effects of upgrades
 - Which plant to upgrade?
 - Flexibility value vs aggregate investment

