Referencen For Hydrocen Hydropower technology

Investing in hydropower system flexibility

Application of decision support tools to a real case in Norway Hans Olaf Hågenvik and Birger Mo, SINTEF

Agenda

- Motivation
- Decision support tools
- Investment case(s)
- Assumptions about the future
 - Market prices
 - Inflows
- Model based results
 - Production revenue
 - Reduced economical consequences of planned or forced outages.

Motivation

- Increased amount of new renewables in the European system
- Value of flexibility and storage will increase
 - Norwegian hydro is one such provider of flexibility
- Marked based system
- Individual producer decide on investment and upgrading based on their own assumptions about the future
- Presentation about how some of SINTEFs models are used in the investment decision process
 - Real case from Lyse Kraft and the Røldal Suldal-kraftverkene (RSK) system

Decision support tools

- Price forecasting
 - Fundamental market model: EMPS or FanSi
- Revenue calculations
 - SDDP based model : ProdRisk
 - A new detailed simulator (ProdRisk-SHOP)

Future market prices

- Basic price scenario from fundamental market model
 - Detailed model of North European system
 - Stage 2030
 - Typical time resolution 3 hours
- Results:
 - Prices referred to 2030 for each time period for different weather years
 - Weather years used to correlate prices with local inflow
- Value of flexibility given by uncertainty and variation
 - Prices from model vs observed uncertainty ?

Price properties - volatility

Scaling of price volatility

A price series P(t) (with 3h-resolution) with average price \overline{P} og period averages $\langle P \rangle_{period}$ the variations δP on each time scale are given by:

- $\delta P_y(t) = \langle P \rangle_{year}(t) \overline{P}$
- $\delta P_{4w}(t) = \langle P \rangle_{4weeks}(t) \langle P \rangle_{year}(t)$
- $\delta P_w(t) = \langle P \rangle_{week}(t) \langle P \rangle_{4weeks}(t)$
- $\delta P_d(t) = \langle P \rangle_{day}(t) \langle P \rangle_{week}(t)$
- $\delta P_{3h}(t) = P(t) \langle P \rangle_{day}(t)$
- $\Rightarrow P(t) = \overline{P} + \delta P_y(t) + \delta P_{4w}(t) + \delta P_w(t) + \delta P_d(t) + \delta P_{3h}(t)$

The price variations may then be scaled on each time scale with different factors *f* :

• $P_{skalert}(t) = \bar{P} + f_y \delta P_y(t) + f_{4w} \delta P_{4w}(t) + f_w \delta P_w(t) + f_d \delta P_d(t) + f_{3h} \delta P_{3h}(t)$

Teknologi for et bedre samfunn

Future inflows

- Based on historical observations
- Adjustment to include climate change
 - Basic correction factors from a Nordic Climate project <u>Climate and Energy Systems - CES | Icelandic Meteorological office (vedur.is)</u>
 - Yearly average volume
 - Yearly profile
 - Volatility (variation at different time scales: day, week, month and year)
 - Several "possibilities" for climate change

Inflow properties - volatility

Model based simulation results

- Production revenue
 - 90 optimizations
- Reduced economical consequences of planned or forced outages.
 - 482 optimizations / simulations

Increase in production revenue

Economical consequences of forced outages

Current system

Investment case J

	2	4	8	12
4	-0.5	-1.7	-4.4	-8.2
13	-0.5	-1.3	-3.4	-5.6
22	-0.2	-1.0	-2.7	-4.2
30	-0.3	-1.0	-1.7	-2.3
39	-0.2	-0.3	-1.5	-3.5
48	-0.6	-1.2	-3.5	-6.8

A new detailed simulator (ProdRisk-SHOP)

