

Assessing the System Impacts of large scale Pumped Hydropower Storage in a Northern European Market using Stochastic Modelling

Erik Seeger Bjørnerem¹, Christian Øyn Naversen², Anders Arvesen², Magnus Korpås¹ ¹Department of Electric Power Engineering, NTNU ²Sintef Energy Research

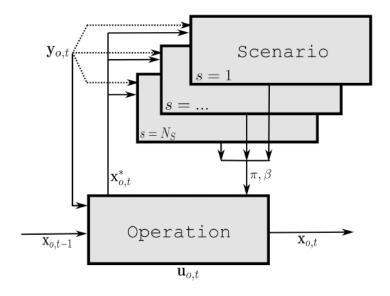
Hydropower Scheduling Conference 2022

HydroConnect

- PhD student contributing
- Effect of connecting Norwegian hydropower to the European market
- Multiple partners
 - Local power companies
 - Universities/research institutes
- Combine different models

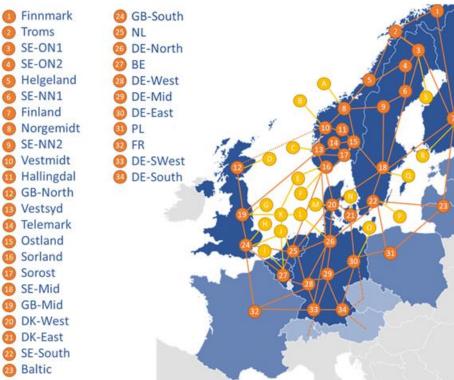
- Capacity expansion, operation scheduling, reservoir impacts

Motivation


- Variable renewable generation
- Flexibility
- Hydropower
 - Seasonal storage
 - Up/down regulation
- Indicators
 - Price distribution
 - Income distribution
 - CO₂ offset
 - Renewable utilization

FanSi

- Fundamental model
- Detailed hydropower representation
- Maintains correlation between weather years
- Two-stage problem
- Rolling horizon

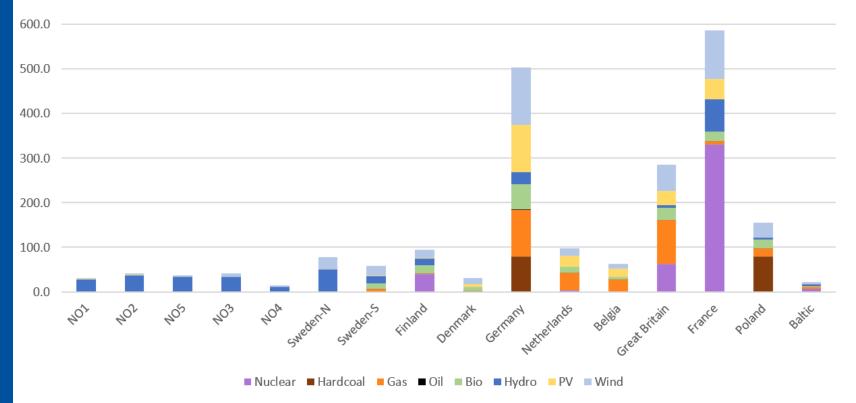


System description

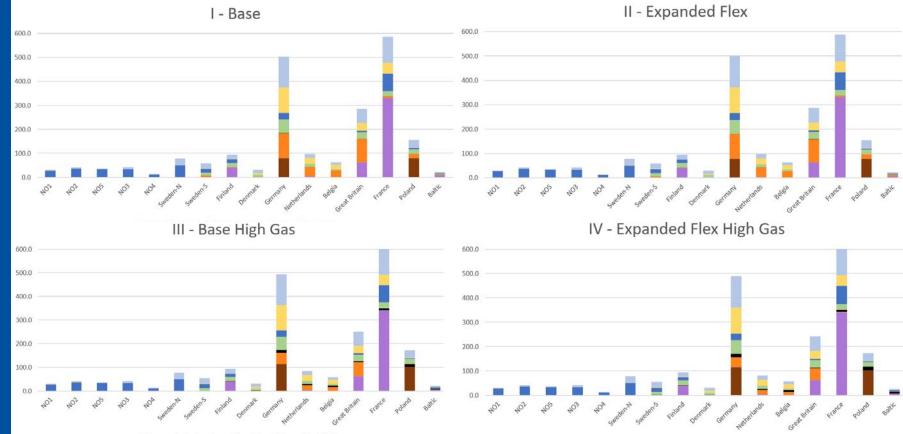
- 2030 scenario considered
- Based on NVE prognosis


Technology	Installed cap. [GW]
Nuclear	60
PV	225
Wind	280
Hydro	100

NORGEM-OWP **VESTMI-OWP** VESTSY-OWP **GB-N-OWP** SORLAN-OWP AEGIR-OWP GB-M-OWP GB-S-OWP **BE-OWP** NL-OWP DOGGERBANK DE-W-OWP DK-W-OWP DK-E-OWP DE-E-OWP SE-S-OWP SE-M-OWP **FI-OWP** SE-N-OWP


Results

- System
 - Generation mix
 - Power price distribution
 - Area income who wins?
 - CO₂ offset from thermal generation
- Operational
 - Transmission utilization
 - Pumping utilization



Generation mix in TWh

I - Base

Generation mix in TWh

■ Nuclear ■ Hardcoal ■ Gas ■ Oil ■ Bio ■ Hydro ■ PV ■ Wind

■ Nuclear ■ Hardcoal ■ Gas ■ Oil ■ Bio ■ Hydro ■ PV ■ Wind

NTNU

Generation mix comparison in TWh

Case	Nuclear	Hardcoal	Gas	Oil	Bio	Hydro	Ration	PV	Wind
I-B	444.3	159.6	309.9	1.9	186.7	341.2	0.1	235.8	463.5
II-E	445.7	158.2	304.7	1.8	190.2	340.8	0.0	235.8	463.5
III-BHG	454.1	215.8	145.6	57.5	189.8	339.6	0.1	235.8	463.5
IV-EHG	455.6	219.0	122.3	65.5	193.7	339.2	0.0	235.8	463.5

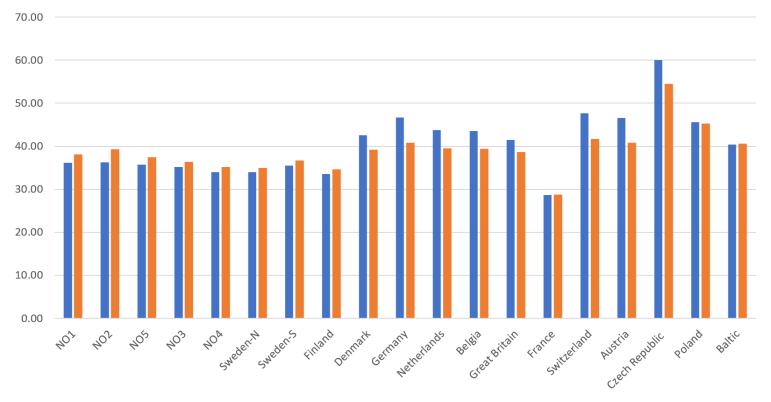
Deltas

Case	Nuclear	Hardcoal	Gas	Oil	Bio	Hydro	Ration	PV	Wind
I-B	-	-	-	-	-	-	-	-	-
II-E	1.4	-1.4	-5.2	-0.1	3.5	-0.3	0.0	0.0	0.0
III-BHG	9.9	56.1	-164.2	55.6	3.1	-1.6		0.0	0.0
IV-EHG	11.3	59.4	-187.6	63.6	7.0	-2.0	0.0	0.0	0.0

NTNU

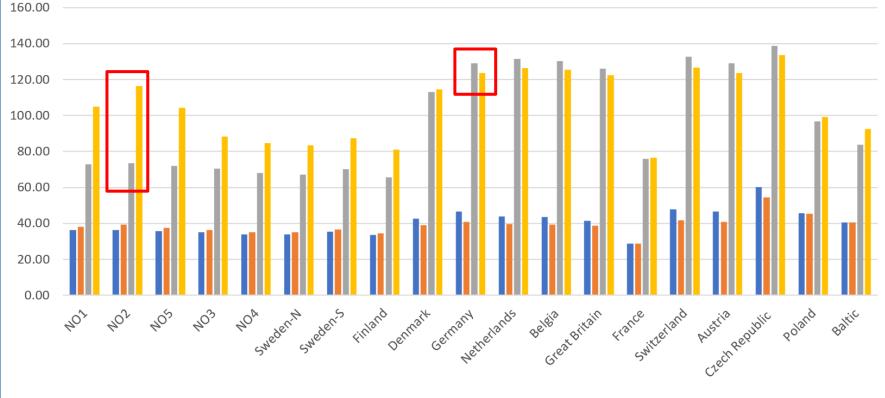
CO₂ emissions offset

 Production reduced [TWh]


Case	Hardcoal	Gas	Oil
I-B	-	-	-
II-E	-1.4	-5.2	-0.1
III-BHG	56.1	-164.2	55.6
IV-EHG	59.4	-187.6	63.6

 CO2 emissions reduced [Mt]

Case	Hardcoal	Gas	Oil	Sum		
I-B	-	-	-			
II-E	-1.3	-2.1	-0.1	-3.4		
III-BHG	50.5	-65.7	41.7	26.5		
IV-EHG	53.5	-75.0	47.7	26.1		


Average area prices [€/MWh]

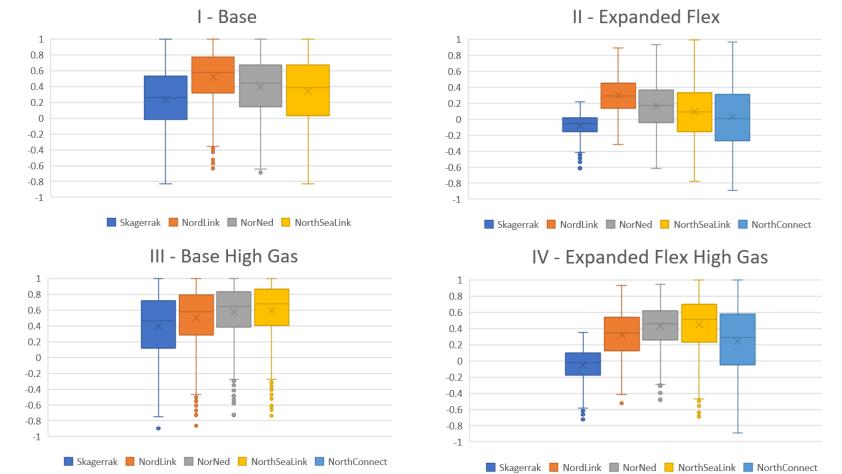
■ I - Base ■ II - Expanded Flex

Average area prices [€/MWh]

■ I - Base ■ II - Expanded Flex ■ III - Base High Gas ■ IV - Expanded Flex High Gas

System income change I \rightarrow II

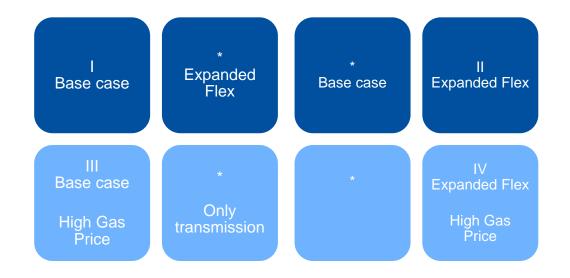
Area	Nuclear	Hardcoal	Gas	Oil	Bio	Hydro	SPP	WPP
NO1						0.042	0.000	0.000
NO2						0.127	0.000	0.002
NO5						0.063	0.000	0.001
NO3						0.028	0.000	0.002
NO4						0.009		0.001
Sweden-N						0.034	0.000	0.008
Sweden-S			0.017	0.001	0.007	0.012	0.001	0.008
Finland	0.019)	0.002	0.000	0.011	0.010	0.000	0.006
Denmark			-0.042	-0.004	-0.017		0.002	0.004
Germany		-0.430	-1.000	-0.063	-0.173	-0.066	0.011	-0.086
Netherlands	-0.007	,	-0.216	-0.015	-0.029		0.008	0.005
Belgia			-0.200	-0.024	-0.014		0.005	0.000
Great Britain	-0.140)	-0.705	-0.016	-0.045	-0.024	0.026	0.164
France	0.021		-0.012	0.000	0.002	-0.001	0.007	0.006
Switzerland								GB-S
Austria								GB-N
Czech Republic								GB-N
Poland		-0.030	-0.012	0.000	-0.003	-0.001	0.000	-0.003
Baltic	0.001	0.000	0.009		0.000	0.000	0.000	0.001



System income change III \rightarrow IV

Area	Nuclear	Hardcoal	Gas	Oil	Bio	Hydro	SPP	WPP
NO1						0.313	0.005	0.009
NO2						0.754	0.005	0.035
NO5						0.444	0.002	0.020
NO3			0.000			0.206	0.001	0.036
NO4						0.068		0.009
Sweden-N			0.003	0.000		0.289	0.002	0.085
Sweden-S			0.015	0.039	0.063	0.099	0.009	0.078
Finland	0.176		0.007	0.028	0.090	0.078	0.003	0.059
Denmark			-0.022	0.002	0.005		0.008	0.045
Germany		-0.209	-0.922	-0.049	-0.101	-0.043	0.035	0.047
Netherlands	-0.005		-0.312	-0.008	-0.021		-0.002	0.011
Belgia			-0.214	-0.013	-0.010		-0.001	0.005
Great Britain	-0.105		-1.000	-0.022	-0.032	-0.035	0.003	0.237
France	0.071		-0.012	0.008	0.005	-0.019	0.012	0.014
Switzerland								
Austria								
Czech Republic								
Poland		0.088	-0.001	0.038	0.014	0.001	0.001	0.027
Baltic	0.017	0.000	0.000	0.121	0.006	0.012	0.000	0.011

Transmission utilization []


Pump utilization

• TBC

Further work

- Effect of increased VRE capacity
- Updated scenario matrix

References

- Helseth et al (2018), *Multi-market Price Forecasting in Hydro-Thermal systems*
- Solvang et. al (2014), Norwegian hydropower for large-scale electricity balancing needs

Thanks for your attention!

- Any questions?
- Any ideas?

System capacity mix [GW]

Group name	Nuclear	Lignite	HardCoal	Gas	Oil	Bio	SPP	WPP	Hydro
Norway_South				0.0			1.9	3.1	42.1
Norway_Mid				0.0			0.2	3.7	7.6
Norway_North								0.6	2.7
Sweden_North				2.5	0.9	1.6	2.6	24.9	16.3
Finland	5.2			3.5	0.7	2.5	0.9	7.9	3.3
Denmark				2.6	0.4	1.8	5.7	13.0	
Germany	0.0		19.2	44.0	3.0	7.4	99.9	82.2	4.8
Netherlands	0.4			12.1	0.8	1.8	23.3	19.7	0.0
Belgium	0.0			10.8	1.3	0.9	16.6	10.6	0.0
Great-Britain	8.1			36.3	0.9	4.1	32.9	44.0	1.2
Sweden_South								0.0	
France	46.3			7.6	2.1	3.9	39.4	58.0	32.3
Switzerland									
Austria									
Czech_Republic									
Poland	0.0	6.4	13.0	4.5	2.4	2.4	1.0	12.4	4.2
Baltic	0.9	0.0	0.0	2.8	1.4	0.3	0.1	1.8	2.8
Sum	60.8	6.4	32.2	126.7	13.9	26.6	224.5	282.0	117.4

*Hydropower upgrade scenario

NTNU

Generation mix in TWh for case I

Area	Nuclear	Hardcoal	Gas	Oil	Bio	Hydro	Ration	PV	Wind
NO1						28.4		0.7	1.3
NO2						37.7		0.7	3.7
NO5						34.0		0.3	2.9
NO3						33.7		0.2	8.4
NO4						11.7			2.1
Sweden-N						50.5		0.4	27.6
Sweden-S			6.1	0.1	12.2	16.9		2.0	21.5
Finland	40.3		1.7	0.0	18.4	14.7		0.8	18.7
Denmark			1.9	0.2	9.4			5.2	14.1
Germany		79.7	105.0	1.3	55.1	27.6		105.9	129.7
Netherland	3.0		40.4	0.0	12.9			24.1	16.7
Belgia			28.1	0.1	6.5			17.3	11.1
Great Brita	62.6		98.2	0.2	27.8	5.2	0.0	32.3	59.6
France	331.6		6.1	0.0	22.1	73.2		44.8	109.3
Poland		79.9	18.1	0.0	20.0	3.7		1.0	32.1
Baltic	6.8	0.1	4.3		2.4	4.0		0.1	4.7
Sum I	444.3	159.6	309.9	1.9	186.7	341.2	0.1	235.8	463.5

Hydropower upgrades

• Solvang et al (2014)

Table 2.2 New power generation and pump installations - Scenario 3.

Case	Power station	Output (MW)	Upper reservoir ¹	Lower reservoir ²
A2	Tonstad pumped storage power station	1,400	Nesjen (14 cm/h)	Sirdalsvatn (3 cm/h)
B3	Holen pumped storage power station	1,000	Urarvatn (10 cm/h)	Bossvatn (12 cm/h)
B6b	Kvilldal pumped storage power station	2,400	Blåsjø (11 cm/h)	Suldalsvatn (6 cm/h)
B7b	Jøsenfjorden hydro storage power station	2,400	Blåsjø (11 cm/h)	Jøsenfjorden (sea)
C2	Tinnsjø pumped storage power station	2,000	Møsvatn (3 cm/h)	Tinnsjø (4 cm/h)
C3	Tinnsjø pumped storage power station	2,400	Kallhovd (7 cm/h)	Tinnsjø (4 cm/h)
D1	Lysebotn hydro storage power station	1,800	Lyngsvatn (12 cm/h)	Lysefjorden (sea)
E1	Mauranger hydro storage power station	400	Juklavatn (14 cm/h)	Hardangerfjorden (sea)
E2	Oksla hydro storage power station	700	Ringedalsvatn (12 cm/h)	Hardangerfjorden (sea)
E3	Tysso pumped storage power station	1,000	Langevatn (13 cm/h)	Ringedalsvatn (11 cm/h)
F1	Sy-Sima hydro storage power station	1,000	Sysenvatn (11 cm/h)	Hardangerfjorden (sea)
G1	Aurland hydro storage power station	700	Viddalsvatn(12 cm/h)	Aurlandsfjorden (sea)
G2	Tyin hydro storage power station	1,000	Tyin (2 cm/h)	Årdalsvatnet ³
	Total new power generation capacity	18,200		

¹ Water level decrease in parentheses.

² Water level increase in parentheses.

³Insufficient data to calculate water level increase in Årdalsvatnet

Transmission upgrades

2050 Extended					
	C1	C2	Сар	Additional	Total cap
NordLink	NOR	DEU	1400	4	7000
NorthSeaLink	NOR	GBR	1400	0	1400
NorthConnect	NOR	GBR	1400	2	4200
NordNed	NOR	NLD	700	1	1400
Skagerrak	NOR	DEN	1700	1	3400
			6600	10800	17400