deflamveg Andkjel Austrekrågelva vatnet Viekeatiano Fagerbakk vassdraget Veiski um net Sisuvatnet Røyrvatn Maessing vatr BLÂMANNSISE **ALMAJALOSJIEGN**

Deltares

Methods for addressing uncertainty in reservoir operations under flood conditions

Hydropower scheduling conference 2022 Oslo

Bernhard Becker (Deltares • RWTH Aachen University)

Jiyoung Kim (NTNU)

Elena Pummer (NTNU)

Pre-release from a reservoir for flood management

Deltares

3ernhard Becker / HPSC 2022

Methods of forecastbased operations

- Pre-release:
 - when to start?
 - how much?
- What if the forecast does not come true? •
 - Good for flood protection
 - Less good for drought management

max

moving-window approach

Feedback control: Operational plan covers all situations

(e.g. seasonal volume-release plan or storage-release curves)

Tree-based optimization: ensemble groups Optimize for the whole ensemble \rightarrow one release scheme Optimize ensemble members individually: one scheme for each member \rightarrow uncertainty band Optimization: optimal release scheme for the current situation, multiple objectives ensemble forecast: uncertainty band, average, min, Forecast-based control (predictive simulation model runs with conventional control, user-defined release)

Future-based based operations

Control options under uncertainty

Optimized operations

complexity

Uncertainty becomes visible

Forecast-based feedback operations

Observation-based operation

3ernhard Becker / HPSC 2022

Sisovatnet: RTC-Tools optimization model

Input data

Deltares

Bernhard Becker / HPSC 2022

Moving window optimization

Optimization for al time steps

- Scenario analysis
- Full forecast window ("perfect forecast")
- Applied for the results in previous slides Moving window, closed loop
- Optimize for a limited forecast window
- Apply optimization result (reservoir release) for time step 1
- Move one time step forward

Moving window optimization, 5 days

Forecast length 5 days: higher volume

Inflow scenario 1968

Deltares

Bernhard Becker / HPSC 2022

Moving window optimization, 8 days

Forecast length 8 days: max. volume, release starts earlier

Inflow scenario 1968

Ensemble forecast for reservoir inflow and moving window

Inflow forecast (ensemble members)

– 0 ×

Flow Forecasting System CEMIG (Pre-Release 3, May 2015) (Stand alone)

Moving window: t0

Uncertainty band

Automatic update with new ensemble forecast when available Automatic simulation/optimization runs with new forecast

Ensemble forecast: Individual optimization

- Decision support: Which release scheme to choose?
 - Average?
 - Min?
 - Max?
- Illustrates uncertainty and worst cases
- Points to possible bottle necks

Ensemble forecast: Ensemble optimization

Functional principle:

- Find a release scheme that fits for all ensemble members
- Optimal release for the (whole) ensemble

Output:

- One release scheme (decision support)
- Driven by the cumulative extremes (envelope) from the ensemble
- Conservative ("on the safe side")

Ensemble tree optimization

Functional principle:

- Group similar ensemble members
- Optimize grouped ensemble members together until the next branching point

Output:

- One release scheme until the first branching point, different options for after the branching point
- Allows to postpone decisions while staying track with respect to operational goals and limits

Ensemble tree optimization: more branching points

Jøkulhlaup: ensemble with ice-burst scenario

- Ensemble with 5 members
 - Three members with hydrological flood only
 - Two ice bursts
 - Early
 - Late

Inflow to Sisovatn (Photo: C. R. Amundsen, 2020) **Deltares**

Bernhard Becker / HPSC 2022

Ensemble tree optimization with ice burst

- Branching point every time step
- Immediate action needed for scenario "early ice burst" (branch at first time step)
 - Large spill
 - Loss of water if the ice burst does not occur
- Late ice-burst provides a short lead time before decision for pre-release
- Pre-release moderate for late ice-burst
 - Comparatively low spill (hydropower)
- Here: ice burst probability 0.4 (2 in 5)

Deltares

15

Summary

Methods for taking uncertainty into account in reservoir operations under flood conditions

- Moving window optimization ٠
 - Accounts for limited forecast periods (5-14 days)
 - The longer the forecast horizon the better
- Ensemble optimization ۰
 - Individual ensemble member simulation/optimization illustrates uncertainty, but does not suggest a clear decision
 - Proven technology
 - Ensemble optimization produces a conservative result ٠
 - Tree-based optimization provides a decision support until a future point in time (branching point)
 - Number and position of branching points are important

Tree-based Bernhard Becker / HPSC 2022 optimization: ensemble groups Optimize for the whole ensemble \rightarrow conservative release scheme **Optimize ensemble members** individually: one scheme for each member \rightarrow uncertainty band Optimization: optimal release scheme for the current situation, multiple objectives ensemble forecast: uncertainty band, average, min, Forecast-based control (predictive simulation model runs with conventional control, user-defined release) moving-window approach 16

Note: Optimization results shown are based on hindcast with historic values (assumption: forecast becomes truth, as forecasted)

Outlook:

- Ice burst scenario
 - Can help for pre-release decision (loss of water versus dam safety)
 - Prediction/forecast of the ice burst?
- Added value of ensemble optimization for normal operations (hydropower) or low flow situations?

RTC-Tools

- A toolbox for (real-time) control and optimization of water systems
- Websites
 - o https://www.deltares.nl/en/software/rtc-tools/
 - o https://oss.deltares.nl/web/rtc-tools

- Open source
- Modelica-library with various flow equations
- Comes as Python package
- Conflict resolution with goal programming and weighting factors
- Ensemble optimization
- Integrates in Delft-FEWS for operational use

RTC-Tools optimization results in Delft-FEWS TransAlta (van Loenen & Fru, CEATI conference 2021)

Contact

 \times

- www.deltares.nl @deltares linkedin.com/company/deltares in info@deltares.nl O
 - @deltares facebook.com/deltaresNL f

